Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 173(2): 443-455.e12, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576450

RESUMEN

Hereditary xerocytosis is thought to be a rare genetic condition characterized by red blood cell (RBC) dehydration with mild hemolysis. RBC dehydration is linked to reduced Plasmodium infection in vitro; however, the role of RBC dehydration in protection against malaria in vivo is unknown. Most cases of hereditary xerocytosis are associated with gain-of-function mutations in PIEZO1, a mechanically activated ion channel. We engineered a mouse model of hereditary xerocytosis and show that Plasmodium infection fails to cause experimental cerebral malaria in these mice due to the action of Piezo1 in RBCs and in T cells. Remarkably, we identified a novel human gain-of-function PIEZO1 allele, E756del, present in a third of the African population. RBCs from individuals carrying this allele are dehydrated and display reduced Plasmodium infection in vitro. The existence of a gain-of-function PIEZO1 at such high frequencies is surprising and suggests an association with malaria resistance.


Asunto(s)
Anemia Hemolítica Congénita/patología , Población Negra/genética , Hidropesía Fetal/patología , Canales Iónicos/genética , Malaria/patología , Alelos , Anemia Hemolítica Congénita/genética , Animales , Deshidratación , Modelos Animales de Enfermedad , Eritrocitos/citología , Eritrocitos/metabolismo , Eliminación de Gen , Genotipo , Humanos , Hidropesía Fetal/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/deficiencia , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales Iónicos/química , Malaria/genética , Malaria/parasitología , Malaria/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/patogenicidad , Linfocitos T/citología , Linfocitos T/metabolismo
2.
Cell ; 173(3): 762-775.e16, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677517

RESUMEN

Mechanotransduction plays a crucial role in vascular biology. One example of this is the local regulation of vascular resistance via flow-mediated dilation (FMD). Impairment of this process is a hallmark of endothelial dysfunction and a precursor to a wide array of vascular diseases, such as hypertension and atherosclerosis. Yet the molecules responsible for sensing flow (shear stress) within endothelial cells remain largely unknown. We designed a 384-well screening system that applies shear stress on cultured cells. We identified a mechanosensitive cell line that exhibits shear stress-activated calcium transients, screened a focused RNAi library, and identified GPR68 as necessary and sufficient for shear stress responses. GPR68 is expressed in endothelial cells of small-diameter (resistance) arteries. Importantly, Gpr68-deficient mice display markedly impaired acute FMD and chronic flow-mediated outward remodeling in mesenteric arterioles. Therefore, GPR68 is an essential flow sensor in arteriolar endothelium and is a critical signaling component in cardiovascular pathophysiology.


Asunto(s)
Mecanotransducción Celular , Interferencia de ARN , Receptores Acoplados a Proteínas G/fisiología , Animales , Materiales Biocompatibles , Calcio/metabolismo , Línea Celular Tumoral , Células Endoteliales/fisiología , Endotelio Vascular/citología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Concentración de Iones de Hidrógeno , Arterias Mesentéricas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/genética , Resistencia al Corte , Estrés Mecánico , Resistencia Vascular
3.
Proc Natl Acad Sci U S A ; 115(50): 12817-12822, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30482854

RESUMEN

PIEZO1 is a cation channel that is activated by mechanical forces such as fluid shear stress or membrane stretch. PIEZO1 loss-of-function mutations in patients are associated with congenital lymphedema with pleural effusion. However, the mechanistic link between PIEZO1 function and the development or function of the lymphatic system is currently unknown. Here, we analyzed two mouse lines lacking PIEZO1 in endothelial cells (via Tie2Cre or Lyve1Cre) and found that they exhibited pleural effusion and died postnatally. Strikingly, the number of lymphatic valves was dramatically reduced in these mice. Lymphatic valves are essential for ensuring proper circulation of lymph. Mechanical forces have been implicated in the development of lymphatic vasculature and valve formation, but the identity of mechanosensors involved is unknown. Expression of FOXC2 and NFATc1, transcription factors known to be required for lymphatic valve development, appeared normal in Tie2Cre;Piezo1cKO mice. However, the process of protrusion in the valve leaflets, which is associated with collective cell migration, actin polymerization, and remodeling of cell-cell junctions, was impaired in Tie2Cre;Piezo1cKO mice. Consistent with these genetic findings, activation of PIEZO1 by Yoda1 in cultured lymphatic endothelial cells induced active remodeling of actomyosin and VE-cadherin+ cell-cell adhesion sites. Our analysis provides evidence that mechanically activated ion channel PIEZO1 is a key regulator of lymphatic valve formation.


Asunto(s)
Canales Iónicos/metabolismo , Linfangiogénesis/fisiología , Sistema Linfático/metabolismo , Sistema Linfático/fisiología , Vasos Linfáticos/metabolismo , Vasos Linfáticos/fisiología , Actomiosina/metabolismo , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Factores de Transcripción Forkhead/metabolismo , Uniones Intercelulares/metabolismo , Uniones Intercelulares/fisiología , Transporte Iónico/fisiología , Ratones , Factores de Transcripción NFATC/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
4.
J Neurosci ; 33(28): 11451-63, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23843517

RESUMEN

Transient Receptor Potential Vanilloid 1 (TRPV1) is a polymodal, Ca(2+)-permeable cation channel crucial to regulation of nociceptor responsiveness. Sensitization of TRPV1 by G-protein coupled receptor (GPCR) agonists to its endogenous activators, such as low pH and noxious heat, is a key factor in hyperalgesia during tissue injury as well as pathological pain syndromes. Conversely, chronic pharmacological activation of TRPV1 by capsaicin leads to calcium influx-induced adaptation of the channel. Paradoxically, both conditions entail activation of phospholipase C (PLC) enzymes, which hydrolyze phosphoinositides. We found that in sensory neurons PLCß activation by bradykinin led to a moderate decrease in phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), but no sustained change in the levels of its precursor PI(4)P. Preventing this selective decrease in PI(4,5)P2 inhibited TRPV1 sensitization, while selectively decreasing PI(4,5)P2 independently of PLC potentiated the sensitizing effect of protein kinase C (PKC) on the channel, thereby inducing increased TRPV1 responsiveness. Maximal pharmacological TRPV1 stimulation led to a robust decrease of both PI(4,5)P2 and its precursor PI(4)P in sensory neurons. Attenuating the decrease of either lipid significantly reduced desensitization, and simultaneous reduction of PI(4,5)P2 and PI(4)P independently of PLC inhibited TRPV1. We found that, on the mRNA level, the dominant highly Ca(2+)-sensitive PLC isoform in dorsal root ganglia is PLCδ4. Capsaicin-induced desensitization of TRPV1 currents was significantly reduced, whereas capsaicin-induced nerve impulses in the skin-nerve preparation increased in mice lacking this isoform. We propose a comprehensive model in which differential changes in phosphoinositide levels mediated by distinct PLC isoforms result in opposing changes in TRPV1 activity.


Asunto(s)
Membrana Celular/metabolismo , Nociceptores/metabolismo , Fosfatidilinositoles/antagonistas & inhibidores , Fosfatidilinositoles/metabolismo , Canales Catiónicos TRPV/fisiología , Animales , Capsaicina/farmacología , Membrana Celular/efectos de los fármacos , Células Cultivadas , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nociceptores/efectos de los fármacos , Técnicas de Cultivo de Órganos , Xenopus laevis
5.
J Biol Chem ; 288(49): 35003-13, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24158445

RESUMEN

The regulation of the heat- and capsaicin-activated transient receptor potential vanilloid 1 (TRPV1) channels by phosphoinositides is controversial. Data in cellular systems support the dependence of TRPV1 activity on phosphoinositides. The purified TRPV1, however, was recently shown to be fully functional in artificial liposomes in the absence of phosphoinositides. Here, we show that several other negatively charged phospholipids, including phosphatidylglycerol, can also support TRPV1 activity in excised patches at high concentrations. When we incorporated TRPV1 into planar lipid bilayers consisting of neutral lipids, capsaicin-induced activity depended on phosphatidylinositol 4,5-bisphosphate. We also found that TRPV1 activity in excised patches ran down and that MgATP reactivated the channel. Inhibition of phosphatidylinositol 4-kinases or enzymatic removal of phosphatidylinositol abolished this effect of MgATP, suggesting that it activated TRPV1 by generating endogenous phosphoinositides. We conclude that endogenous phosphoinositides are positive cofactors for TRPV1 activity. Our data highlight the importance of specificity in lipid regulation of ion channels and may reconcile discordant data obtained in various experimental settings.


Asunto(s)
Fosfatidilinositoles/metabolismo , Canales Catiónicos TRPV/metabolismo , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Oocitos/metabolismo , Técnicas de Placa-Clamp , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinositido Fosfolipasa C/metabolismo , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética , Xenopus laevis
6.
J Physiol ; 589(Pt 24): 6007-27, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22005680

RESUMEN

The activity of the cold- and menthol-activated transient receptor potential melastatin 8 (TRPM8) channels diminishes over time in the presence of extracellular Ca(2+), a phenomenon referred to as desensitization or adaptation. Here we show that activation of TRPM8 by cold or menthol evokes a decrease in cellular phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] levels. The decrease in PtdIns(4,5)P(2) levels was accompanied by increased inositol 1,4,5 trisphosphate (InsP(3)) production, and was inhibited by loading the cells with the Ca(2+) chelator BAPTA-AM, showing that it was the consequence of the activation of phospholipase C (PLC) by increased intracellular Ca(2+) concentrations. PtdIns(4,5)P(2) hydrolysis showed excellent temporal correlation with current desensitization in simultaneous patch clamp and fluorescence-based PtdIns(4,5)P(2) level measurements. Intracellular dialysis of PtdIns(4,5)P(2) inhibited desensitization both in native neuronal and recombinant TRPM8 channels. PtdIns(4)P, the precursor of PtdIns(4,5)P(2), did not inhibit desensitization, consistent with its minimal effect in excised patches. Omission of MgATP from the intracellular solution accelerated desensitization, and MgATP reactivated TRPM8 channels in excised patches in a phosphatidylinositol 4-kinase (PI4K)-dependent manner. PLC-independent depletion of PtdIns(4,5)P(2) using a voltage-sensitive phosphatase (ci-VSP) inhibited TRPM8 currents, and omission of ATP from the intracellular solution inhibited recovery from this inhibition. Inhibitors of PKC had no effect on the kinetics of desensitization. We conclude that Ca(2+) influx through TRPM8 activates a Ca(2+)-sensitive PLC isoform, and the resulting depletion of PtdIns(4,5)P(2) plays a major role in desensitization of both cold and menthol responses.


Asunto(s)
Adaptación Fisiológica/fisiología , Frío , Mentol/farmacología , Fosfatidilinositol 4,5-Difosfato/fisiología , Canales Catiónicos TRPM/fisiología , Adenosina Trifosfato/fisiología , Animales , Quelantes/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Células HEK293 , Humanos , Ratones , Técnicas de Placa-Clamp , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteína Quinasa C/fisiología
7.
Sci Signal ; 13(629)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345727

RESUMEN

ANO1 (TMEM16A) is a Ca2+-activated Cl- channel (CaCC) expressed in peripheral somatosensory neurons that are activated by painful (noxious) stimuli. These neurons also express the Ca2+-permeable channel and noxious heat sensor TRPV1, which can activate ANO1. Here, we revealed an intricate mechanism of TRPV1-ANO1 channel coupling in rat dorsal root ganglion (DRG) neurons. Simultaneous optical monitoring of CaCC activity and Ca2+ dynamics revealed that the TRPV1 ligand capsaicin activated CaCCs. However, depletion of endoplasmic reticulum (ER) Ca2+ stores reduced capsaicin-induced Ca2+ increases and CaCC activation, suggesting that ER Ca2+ release contributed to TRPV1-induced CaCC activation. ER store depletion by plasma membrane-localized TRPV1 channels was demonstrated with an ER-localized Ca2+ sensor in neurons exposed to a cell-impermeable TRPV1 ligand. Proximity ligation assays established that ANO1, TRPV1, and the IP3 receptor IP3R1 were often found in close proximity to each other. Stochastic optical reconstruction microscopy (STORM) confirmed the close association between all three channels in DRG neurons. Together, our data reveal the existence of ANO1-containing multichannel nanodomains in DRG neurons and suggest that coupling between TRPV1 and ANO1 requires ER Ca2+ release, which may be necessary to enhance ANO1 activation.


Asunto(s)
Anoctamina-1/metabolismo , Señalización del Calcio , Calcio/metabolismo , Ganglios Espinales/metabolismo , Neuronas/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Ratas , Ratas Wistar
8.
J Neurosci ; 27(26): 7070-80, 2007 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-17596456

RESUMEN

The membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 or PIP2] regulates many ion channels. There are conflicting reports on the effect of PtdIns(4,5)P2 on transient receptor potential vanilloid 1 (TRPV1) channels. We show that in excised patches PtdIns(4,5)P2 and other phosphoinositides activate and the PIP2 scavenger poly-Lys inhibits TRPV1. TRPV1 currents undergo desensitization on exposure to high concentrations of capsaicin in the presence of extracellular Ca2+. We show that in the presence of extracellular Ca2+, capsaicin activates phospholipase C (PLC) in TRPV1-expressing cells, inducing depletion of both PtdIns(4,5)P2 and its precursor PtdIns(4)P (PIP). The PLC inhibitor U73122 and dialysis of PtdIns(4,5)P2 or PtdIns(4)P through the patch pipette inhibited desensitization of TRPV1, indicating that Ca2+-induced activation of PLC contributes to desensitization of TRPV1 by depletion of PtdIns(4,5)P2 and PtdIns(4)P. Selective conversion of PtdIns(4,5)P2 to PtdIns(4)P by a rapamycin-inducible PIP2 5-phosphatase did not inhibit TRPV1 at high capsaicin concentrations, suggesting a significant role for PtdIns(4)P in maintaining channel activity. Currents induced by low concentrations of capsaicin and moderate heat, however, were potentiated by conversion of PtdIns(4,5)P2 to PtdIns(4)P. Increasing PtdIns(4,5)P2 levels by coexpressing phosphatidylinositol-4-phosphate 5-kinase inhibited TRPV1 at low but not at saturating capsaicin concentrations. These data show that at low capsaicin concentrations and other moderate stimuli, PtdIns(4,5)P2 partially inhibits TRPV1 in a cellular context, but this effect is likely to be indirect, because it is not detectable in excised patches. We conclude that phosphoinositides have both inhibitory and activating effects on TRPV1, resulting in complex and distinct regulation at various stimulation levels.


Asunto(s)
Membrana Celular/metabolismo , Neuronas Aferentes/metabolismo , Nociceptores/metabolismo , Dolor/metabolismo , Fosfatidilinositoles/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Capsaicina/farmacología , Línea Celular , Membrana Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Calor/efectos adversos , Humanos , Neuronas Aferentes/efectos de los fármacos , Nociceptores/efectos de los fármacos , Oocitos , Dolor/inducido químicamente , Dolor/fisiopatología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/farmacología , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/farmacología , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/farmacología , Ratas , Canales Catiónicos TRPV/efectos de los fármacos , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo , Xenopus laevis
9.
Mol Neurobiol ; 37(2-3): 153-63, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18528787

RESUMEN

The transient receptor potential vanilloid type 1 (TRPV1) channels are involved in both thermosensation and nociception. They are activated by heat, protons, and capsaicin and modulated by a plethora of other agents. This review will focus on the consequences of phospholipase C (PLC) activation, with special emphasis on the effects of phosphatidylinositol 4,5-bisphosphate (PIP2) on these channels. Two opposing effects of PIP2 have been reported on TRPV1. PIP2 has been proposed to inhibit TRPV1, and relief from this inhibition was suggested to be involved in sensitization of these channels by pro-inflammatory agents. In excised patches, however, PIP2 was shown to activate TRPV1. Calcium flowing through TRPV1 activates PLC and the resulting depletion of PIP2 was proposed to play a role in capsaicin-induced desensitization of these channels. We will describe the data indicating involvement of PLC and PIP2 in sensitization and desensitization of TRPV1 and will also discuss other pathways potentially contributing to these two phenomena. We attempt to resolve the seemingly contradictory data by proposing that PIP2 can both activate and inhibit TRPV1 depending on the experimental conditions, more specifically on the level of stimulation of these channels. Finally, we also discuss data in the literature indicating that other TRP channels, TRPA1 and some members of the TRPC subfamily, may also be under a similar dual control by PIP2.


Asunto(s)
Canales Catiónicos TRPV/metabolismo , Fosfolipasas de Tipo C/metabolismo , Animales , Canales de Calcio/metabolismo , Capsaicina/metabolismo , Activación Enzimática , Humanos , Modelos Moleculares , Proteínas del Tejido Nervioso/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Conformación Proteica , Fármacos del Sistema Sensorial/metabolismo , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética , Canales de Potencial de Receptor Transitorio/metabolismo
10.
Elife ; 42015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-26001274

RESUMEN

Red blood cells (RBCs) experience significant mechanical forces while recirculating, but the consequences of these forces are not fully understood. Recent work has shown that gain-of-function mutations in mechanically activated Piezo1 cation channels are associated with the dehydrating RBC disease xerocytosis, implicating a role of mechanotransduction in RBC volume regulation. However, the mechanisms by which these mutations result in RBC dehydration are unknown. In this study, we show that RBCs exhibit robust calcium entry in response to mechanical stretch and that this entry is dependent on Piezo1 expression. Furthermore, RBCs from blood-cell-specific Piezo1 conditional knockout mice are overhydrated and exhibit increased fragility both in vitro and in vivo. Finally, we show that Yoda1, a chemical activator of Piezo1, causes calcium influx and subsequent dehydration of RBCs via downstream activation of the KCa3.1 Gardos channel, directly implicating Piezo1 signaling in RBC volume control. Therefore, mechanically activated Piezo1 plays an essential role in RBC volume homeostasis.


Asunto(s)
Calcio/metabolismo , Eritrocitos/fisiología , Canales Iónicos/fisiología , Mecanotransducción Celular/fisiología , Análisis de Varianza , Animales , Fenómenos Biomecánicos , Western Blotting , Cartilla de ADN/genética , Ensayo de Inmunoadsorción Enzimática , Recuento de Eritrocitos , Eritrocitos/metabolismo , Eritrocitos/ultraestructura , Citometría de Flujo , Fluorescencia , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Mutación/genética , Bibliotecas de Moléculas Pequeñas/farmacología
11.
Nat Neurosci ; 18(12): 1756-62, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26551544

RESUMEN

Proprioception, the perception of body and limb position, is mediated by proprioceptors, specialized mechanosensory neurons that convey information about the stretch and tension experienced by muscles, tendons, skin and joints. In mammals, the molecular identity of the stretch-sensitive channel that mediates proprioception is unknown. We found that the mechanically activated nonselective cation channel Piezo2 was expressed in sensory endings of proprioceptors innervating muscle spindles and Golgi tendon organs in mice. Two independent mouse lines that lack Piezo2 in proprioceptive neurons showed severely uncoordinated body movements and abnormal limb positions. Moreover, the mechanosensitivity of parvalbumin-expressing neurons that predominantly mark proprioceptors was dependent on Piezo2 expression in vitro, and the stretch-induced firing of proprioceptors in muscle-nerve recordings was markedly reduced in Piezo2-deficient mice. Together, our results indicate that Piezo2 is the major mechanotransducer of mammalian proprioceptors.


Asunto(s)
Canales Iónicos/deficiencia , Canales Iónicos/genética , Mecanotransducción Celular/fisiología , Propiocepción/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Células Cultivadas , Femenino , Ganglios Espinales/fisiología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Trastornos del Movimiento/genética , Trastornos del Movimiento/metabolismo , Trastornos del Movimiento/patología
12.
Nat Commun ; 6: 8329, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26387913

RESUMEN

Piezo1 ion channels are mediators of mechanotransduction in several cell types including the vascular endothelium, renal tubular cells and erythrocytes. Gain-of-function mutations in PIEZO1 cause an autosomal dominant haemolytic anaemia in humans called dehydrated hereditary stomatocytosis. However, the phenotypic consequence of PIEZO1 loss of function in humans has not previously been documented. Here we discover a novel role of this channel in the lymphatic system. Through whole-exome sequencing, we identify biallelic mutations in PIEZO1 (a splicing variant leading to early truncation and a non-synonymous missense variant) in a pair of siblings affected with persistent lymphoedema caused by congenital lymphatic dysplasia. Analysis of patients' erythrocytes as well as studies in a heterologous system reveal greatly attenuated PIEZO1 function in affected alleles. Our results delineate a novel clinical category of PIEZO1-associated hereditary lymphoedema.


Asunto(s)
Anemia Hemolítica Congénita/metabolismo , Hidropesía Fetal/metabolismo , Canales Iónicos/metabolismo , Enfermedades Linfáticas/metabolismo , Secuencia de Aminoácidos , Anemia Hemolítica Congénita/genética , Preescolar , Eritrocitos/metabolismo , Femenino , Genes Recesivos , Humanos , Hidropesía Fetal/genética , Lactante , Canales Iónicos/química , Canales Iónicos/genética , Enfermedades Linfáticas/genética , Masculino , Datos de Secuencia Molecular , Mutación , Mutación Missense , Alineación de Secuencia
13.
J Biol Chem ; 283(22): 14980-7, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18390907

RESUMEN

TRPV6 is a member of the transient receptor potential superfamily of ion channels that facilitates Ca(2+) absorption in the intestines. These channels display high selectivity for Ca(2+), but in the absence of divalent cations they also conduct monovalent ions. TRPV6 channels have been shown to be inactivated by increased cytoplasmic Ca(2+) concentrations. Here we studied the mechanism of this Ca(2+)-induced inactivation. Monovalent currents through TRPV6 substantially decreased after a 40-s application of Ca(2+), but not Ba(2+). We also show that Ca(2+), but not Ba(2+), influx via TRPV6 induces depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2) or PIP(2)) and the formation of inositol 1,4,5-trisphosphate. Dialysis of DiC(8) PI(4,5)P(2) through the patch pipette inhibited Ca(2+)-dependent inactivation of TRPV6 currents in whole-cell patch clamp experiments. PI(4,5)P(2) also activated TRPV6 currents in excised patches. PI(4)P, the precursor of PI(4,5)P(2), neither activated TRPV6 in excised patches nor had any effect on Ca(2+)-induced inactivation in whole-cell experiments. Conversion of PI(4,5)P(2) to PI(4)P by a rapamycin-inducible PI(4,5)P(2) 5-phosphatase inhibited TRPV6 currents in whole-cell experiments. Inhibiting phosphatidylinositol 4 kinases with wortmannin decreased TRPV6 currents and Ca(2+) entry into TRPV6-expressing cells. We propose that Ca(2+) influx through TRPV6 activates phospholipase C and the resulting depletion of PI(4,5)P(2) contributes to the inactivation of TRPV6.


Asunto(s)
Canales de Calcio/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales Catiónicos TRPV/metabolismo , Bario/metabolismo , Calcio/metabolismo , Línea Celular , Humanos , Hidrólisis , Inositol 1,4,5-Trifosfato/metabolismo , Absorción Intestinal/fisiología , Mucosa Intestinal/metabolismo , Transporte Iónico/fisiología , Técnicas de Placa-Clamp , Especificidad por Sustrato/fisiología , Fosfolipasas de Tipo C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA