Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Trends Cell Biol ; 8(9): 339-42, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9728393

RESUMEN

Eukaryotic cells encounter two types of DNA ends: telomeres, the natural ends of linear chromosomes, and double-strand breaks, resulting from DNA damage or normal chromosomal processes such as meiotic or V(D)J recombination. These two termini have long been seen as functionally distinct, based on whether they are resistant to fusion with other ends or instead are acted upon by the DNA-repair machinery. However, a series of recent papers has shown that members of a set of proteins that are crucial for the rejoining of DNA strand breaks are also required for normal telomere function, raising new questions about how these two types of termini maintain their functional distinction.


Asunto(s)
Antígenos Nucleares , ADN Helicasas , Reparación del ADN/fisiología , Telómero/fisiología , Proteínas de Unión al ADN/fisiología , Células Eucariotas , Autoantígeno Ku , Proteínas Nucleares/fisiología
2.
Science ; 288(5474): 2141-2, 2000 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-10896588

RESUMEN

Many molecules help maintain the ends of chromosomes, which get chewed off as cells age. Lundblad in her provocative Perspective now tells us about another protein, hRap1, that regulates the length of telomeres in human cells with the help of the TRF proteins. The homology between hRap1 and its counterpart in yeast suggests how the complex molecular machinery needed to maintain chromosome ends may have evolved.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Unión al ADN/metabolismo , Desintegrinas/metabolismo , Metaloendopeptidasas/metabolismo , Telómero/metabolismo , ADN/química , ADN/metabolismo , ADN de Hongos/química , ADN de Hongos/metabolismo , Desintegrinas/química , Desintegrinas/genética , Evolución Molecular , Homeostasis , Humanos , Metaloendopeptidasas/química , Metaloendopeptidasas/genética , Conformación de Ácido Nucleico , Secuencias Repetitivas de Ácidos Nucleicos , Saccharomycetales , Telomerasa/metabolismo , Telómero/química , Telómero/ultraestructura , Proteína 2 de Unión a Repeticiones Teloméricas
3.
Science ; 286(5437): 117-20, 1999 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-10506558

RESUMEN

Cdc13 and Est1 are single-strand telomeric DNA binding proteins that contribute to telomere replication in the yeast Saccharomyces cerevisiae. Here it is shown that fusion of Cdc13 to the telomerase-associated Est1 protein results in greatly elongated telomeres. Fusion proteins consisting of mutant versions of Cdc13 or Est1 confer similar telomere elongation, indicating that close physical proximity can bypass telomerase-defective mutations in either protein. Fusing Cdc13 directly to the catalytic core of telomerase allows stable telomere maintenance in the absence of Est1, consistent with a role for Est1 in mediating telomerase access. Telomere length homeostasis therefore is maintained in part by restricting access of telomerase to chromosome termini, but this limiting situation can be overcome by directly tethering telomerase to the telomere.


Asunto(s)
Ciclina B/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Telomerasa/metabolismo , Telómero/metabolismo , Sitios de Unión , Ciclina B/genética , ADN de Hongos/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas Fúngicas/genética , Prueba de Complementación Genética , Homeostasis , Modelos Biológicos , Mutación , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Telomerasa/genética
4.
Science ; 276(5312): 561-7, 1997 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-9110970

RESUMEN

Telomerase is a ribonucleoprotein enzyme essential for the replication of chromosome termini in most eukaryotes. Telomerase RNA components have been identified from many organisms, but no protein component has been demonstrated to catalyze telomeric DNA extension. Telomerase was purified from Euplotes aediculatus, a ciliated protozoan, and one of its proteins was partially sequenced by nanoelectrospray tandem mass spectrometry. Cloning and sequence analysis of the corresponding gene revealed that this 123-kilodalton protein (p123) contains reverse transcriptase motifs. A yeast (Saccharomyces cerevisiae) homolog was found and subsequently identified as EST2 (ever shorter telomeres), deletion of which had independently been shown to produce telomere defects. Introduction of single amino acid substitutions within the reverse transcriptase motifs of Est2 protein led to telomere shortening and senescence in yeast, indicating that these motifs are important for catalysis of telomere elongation in vivo. In vitro telomeric DNA extension occurred with extracts from wild-type yeast but not from est2 mutants or mutants deficient in telomerase RNA. Thus, the reverse transcriptase protein fold, previously known to be involved in retroviral replication and retrotransposition, is essential for normal chromosome telomere replication in diverse eukaryotes.


Asunto(s)
Euplotes/enzimología , ADN Polimerasa Dirigida por ARN/química , ARN , Telomerasa/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Catálisis , Cromosomas/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN , Evolución Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Genes Protozoarios , Datos de Secuencia Molecular , Conformación Proteica , ARN de Hongos/metabolismo , ARN Protozoario/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae , Alineación de Secuencia , Telomerasa/genética , Telomerasa/aislamiento & purificación , Telomerasa/metabolismo , Telómero/metabolismo , Moldes Genéticos
5.
Science ; 274(5285): 249-52, 1996 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-8824190

RESUMEN

The CDC13 gene has previously been implicated in the maintenance of telomere integrity in Saccharomyces cerevisiae. With the use of two classes of mutations, here it is shown that CDC13 has two discrete roles at the telomere. The cdc13-2est mutation perturbs a function required in vivo for telomerase regulation but not in vitro for enzyme activity, whereas cdc13-1ts defines a separate essential role at the telomere. In vitro, purified Cdc13p binds to single-strand yeast telomeric DNA. Therefore, Cdc13p is a telomere-binding protein required to protect the telomere and mediate access of telomerase to the chromosomal terminus.


Asunto(s)
Ciclinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Telomerasa/metabolismo , Telómero/metabolismo , Alelos , Secuencia de Bases , Clonación Molecular , Ciclina B , Ciclinas/genética , ADN de Hongos/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Datos de Secuencia Molecular , Mutación , Fenotipo , Saccharomyces cerevisiae/genética , Telomerasa/genética
7.
Curr Biol ; 11(23): R957-60, 2001 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-11728321

RESUMEN

Recent studies in yeast have shed light on the molecular mechanisms by which telomere dysfunction leads to chromosome fusions. Furthermore, examination of the consequences of telomerase loss in mice suggests that only a few critically short telomeres may be sufficient to promote genomic instability.


Asunto(s)
Genoma Fúngico , Saccharomyces cerevisiae/genética , ADN de Hongos/genética , Telómero
8.
Curr Biol ; 7(12): 969-76, 1997 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-9382847

RESUMEN

BACKGROUND: Telomeres are replicated in most eukaryotes by the enzyme telomerase, a specialized reverse transcriptase. A genetic screen in Saccharomyces cerevisiae designed to detect telomerase components previously led to the identification of four EST ('ever shorter telomeres') genes which are required for telomerase function in vivo. This report describes the cloning and characterization of EST3. RESULTS: We identified a potential site of +1 ribosomal frameshifting in the EST3 coding sequence and demonstrated that translation both upstream and downstream of this site is required for EST3 function. Mutation of EST3 such that it could not frameshift resulted in a strain with the same phenotype as an est3 null mutant, showing that EST3 frameshifting is required for telomere replication. Immunoblot analysis revealed that two proteins were synthesized from EST3: a truncated protein resulting from translation of only the first open reading frame, as well as the full-length 181 amino-acid Est3 protein resulting from translation through the frameshift site. Only the full-length Est3 protein was required for normal EST3 function. CONCLUSIONS: A programmed translational frameshifting mechanism similar to that used by yeast retrotransposons is employed to produce full-length Est3 protein. This is the first example in yeast of a cellular gene that uses frameshifting to make its protein product, and a potential link is suggested between retrotransposition and the telomerase pathway for telomere maintenance.


Asunto(s)
Mutación del Sistema de Lectura , Proteínas Fúngicas , Biosíntesis de Proteínas , Proteínas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Telomerasa/metabolismo , Telómero , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Datos de Secuencia Molecular , Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Telomerasa/genética
9.
Curr Biol ; 10(13): 809-12, 2000 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-10898986

RESUMEN

EST1, EST2, EST3 and TLC1 function in a single pathway for telomere replication in the yeast Saccharomyces cerevisiae [1] [2], as would be expected if these genes all encode components of the same complex. Est2p, the reverse transcriptase protein subunit, and TLC1, the templating RNA, are subunits of the catalytic core of yeast telomerase [3] [4] [5]. In contrast, mutations in EST1, EST3 or CDC13 eliminate telomere replication in vivo [1] [6] [7] [8] but are dispensable for in vitro telomerase catalytic activity [2] [9]. Est1p and Cdc13p, as components of telomerase and telomeric chromatin, respectively, cooperate to recruit telomerase to the end of the chromosome [7] [10]. However, Est3p has not yet been biochemically characterized and thus its specific role in telomere replication is unclear. We show here that Est3p is a stable component of the telomerase holoenzyme and furthermore, association of Est3p with the enzyme requires an intact catalytic core. As predicted for a telomerase subunit, fusion of Est3p to the high affinity Cdc13p telomeric DNA binding domain greatly increases access of telomerase to the telomere. Est1p is also tightly associated with telomerase; however, Est1p is capable of forming a stable TLC1-containing complex even in the absence of Est2p or Est3p. Yeast telomerase therefore contains a minimum of three Est proteins for which there is both in vivo and in vitro evidence for their role in telomere replication as subunits of the telomerase complex.


Asunto(s)
Proteínas/metabolismo , ARN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Telomerasa/metabolismo , Sitios de Unión , Ciclina B/genética , Ciclina B/metabolismo , ADN Recombinante , Proteínas de Unión al ADN , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pruebas de Precipitina , Unión Proteica , Proteínas/genética , ARN de Hongos/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Telomerasa/genética
10.
Curr Biol ; 8(11): 657-60, 1998 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-9635193

RESUMEN

Telomeres are functionally distinct from ends generated by chromosome breakage, in that telomeres, unlike double-strand breaks, are insulated from recombination with other chromosomal termini [1]. We report that the Ku heterodimer and the Rad50/Mre11/Xrs2 complex, both of which are required for repair of double-strand breaks [2-5], have separate roles in normal telomere maintenance in yeast. Using epistasis analysis, we show that the Ku end-binding complex defined a third telomere-associated activity, required in parallel with telomerase [6] and Cdc13, a protein binding the single-strand portion of telomere DNA [7,8]. Furthermore, loss of Ku function altered the expression of telomere-located genes, indicative of a disruption of telomeric chromatin. These data suggest that the Ku complex and the Cdc13 protein function as terminus-binding factors, contributing distinct roles in chromosome end protection. In contrast, MRE11 and RAD50 were required for the telomerase-mediated pathway, rather than for telomeric end protection; we propose that this complex functions to prepare DNA ends for telomerase to replicate. These results suggest that as a part of normal telomere maintenance, telomeres are identified as double-strand breaks, with additional mechanisms required to prevent telomere recombination. Ku, Cdc13 and telomerase define three epistasis groups required in parallel for telomere maintenance.


Asunto(s)
Antígenos Nucleares , ADN Helicasas , Reparación del ADN , Endodesoxirribonucleasas , Exodesoxirribonucleasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Replicación del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Autoantígeno Ku , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Telomerasa/metabolismo , Telómero/genética
11.
Mol Cell Biol ; 21(9): 3144-58, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11287619

RESUMEN

CTF4 and CTF18 are required for high-fidelity chromosome segregation. Both exhibit genetic and physical ties to replication fork constituents. We find that absence of either CTF4 or CTF18 causes sister chromatid cohesion failure and leads to a preanaphase accumulation of cells that depends on the spindle assembly checkpoint. The physical and genetic interactions between CTF4, CTF18, and core components of replication fork complexes observed in this study and others suggest that both gene products act in association with the replication fork to facilitate sister chromatid cohesion. We find that Ctf18p, an RFC1-like protein, directly interacts with Rfc2p, Rfc3p, Rfc4p, and Rfc5p. However, Ctf18p is not a component of biochemically purified proliferating cell nuclear antigen loading RF-C, suggesting the presence of a discrete complex containing Ctf18p, Rfc2p, Rfc3p, Rfc4p, and Rfc5p. Recent identification and characterization of the budding yeast polymerase kappa, encoded by TRF4, strongly supports a hypothesis that the DNA replication machinery is required for proper sister chromatid cohesion. Analogous to the polymerase switching role of the bacterial and human RF-C complexes, we propose that budding yeast RF-C(CTF18) may be involved in a polymerase switch event that facilities sister chromatid cohesion. The requirement for CTF4 and CTF18 in robust cohesion identifies novel roles for replication accessory proteins in this process.


Asunto(s)
Cromátides/fisiología , Cromosomas Fúngicos/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Homeodominio , Proteínas , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Represoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Animales , Replicación del ADN , ADN de Hongos , ADN Ribosómico , Proteínas de Unión al ADN/genética , Células Eucariotas/metabolismo , Proteínas Fúngicas/genética , Fase G2 , Humanos , Antígenos de Histocompatibilidad Menor , Mitosis/fisiología , Mutagénesis , Proteína de Replicación C , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Schizosaccharomyces/metabolismo , Huso Acromático/fisiología
14.
Curr Opin Chem Biol ; 3(5): 573-7, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10508671

RESUMEN

Recent studies on the telomerase reverse transcriptase have benefited from the identification of the catalytic core subunits. Cellular factors that participate in the assembly of the core enzyme have been identified and regulatory mechanisms that control telomerase activity are beginning to be elucidated.


Asunto(s)
Telomerasa/metabolismo , Animales , Sitios de Unión , Humanos , Análisis de Secuencia de ADN
15.
Genetics ; 109(1): 3-19, 1985 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-2981756

RESUMEN

Excision of the prokaryotic transposon Tn10 is a host-mediated process that occurs in the absence of recA function or any transposon-encoded functions. To determine which host functions might play a role in transposon excision, we have isolated 40 mutants of E. coli K12, designated tex, which increase the frequency of Tn10 precise excision. Three of these mutations (texA) have been shown to qualitatively alter RecBC function. We show that 21 additional tex mutations with a mutator phenotype map to five genes previously identified as components of a methylation-directed pathway for repair of base pair mismatches: uvrD, mutH, mutL, mutS and dam. Previously identified alleles of these genes also have a Tex phenotype.--Several other E. coli mutations affecting related functions have been analyzed for their effects on Tn10 excision. Other mutations affecting the frequency of spontaneous mutations (mutT, polA, ung), different excision repair pathways (uvrA, uvrB) or the state of DNA methylation (dcm) have no effect on Tn10 excision. Mutations ssb-113 and mutD5, however, do increase Tn10 excision.--The products of the mismatch correction genes probably function in a coordinated way during DNA repair in vivo. Thus, mutations in these genes might also enhance transposon excision by a single general mechanism. Alternatively, since mutations in each gene have qualitatively and quantitatively different effects on transposon excision, defects in different mismatch repair genes may enhance excision by different mechanisms.


Asunto(s)
Reparación del ADN , Elementos Transponibles de ADN , Escherichia coli/genética , Mutación , Proteínas Bacterianas/fisiología , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Genes Bacterianos , Metiltransferasas/fisiología , Rec A Recombinasas/fisiología , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)
16.
Genetics ; 144(4): 1399-412, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8978029

RESUMEN

The primary determinant for telomere replication is the enzyme telomerase, responsible for elongating the G-rich strand of the telomere. The only component of this enzyme that has been identified in Saccharomyces cerevisiae is the TLC1 gene, encoding the telomerase RNA subunit. However, a yeast strain defective for the EST1 gene exhibits the same phenotypes (progressively shorter telomeres and a senescence phenotype) as a strain deleted for TLC1, suggesting that EST1 encodes either a component of telomerase or some other factor essential for telomerase function. We designed a multitiered screen that led to the isolation of 22 mutants that display the same phenotypes as est1 and tlc1 mutant strains. These mutations mapped to four complementation groups: the previously identified EST1 gene and three additional genes, called EST2, EST3 and EST4. Cloning of the EST2 gene demonstrated that it encodes a large, extremely basic novel protein with no motifs that provide clues as to function. Epistasis analysis indicated that the four EST genes function in the same pathway for telomere replication as defined by the TLC1 gene, suggesting that the EST genes encode either components of telomerase or factors that positively regulate telomerase activity.


Asunto(s)
Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , ARN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Telomerasa/genética , Proteínas de Unión a Telómeros , Telómero/genética , Secuencia de Aminoácidos , Clonación Molecular , ADN de Hongos/genética , Proteínas de Unión al ADN , Datos de Secuencia Molecular , Mutación , Proteínas/genética
18.
Mutat Res ; 451(1-2): 227-40, 2000 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-10915875

RESUMEN

This review focuses on the factors that define the differences between the two types of DNA ends encountered by eukaryotic cells: telomeres and double strand breaks (DSBs). Although these two types of DNA termini are functionally distinct, recent studies have shown that a number of proteins is shared at telomeres and sites of DSB repair. The significance of these common components is discussed, as well as the types of DNA repair events that can compensate for a defective telomere.


Asunto(s)
Cromosomas , Reparación del ADN/fisiología , ADN/genética , Telómero
19.
Curr Protoc Mol Biol ; Chapter 13: Unit13.4, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-18265100

RESUMEN

This unit describes some of the most commonly used yeast vectors, as well as the cloned yeast genes that form the basis for these plasmids. Yeast vectors can be grouped into five general classes, based on their mode of replication in yeast: YIp, YRp, YCp, YEp, and YLp plasmids. With the exception of the YLp plasmids (yeast linear plasmids), all of these plasmids can be maintained in E. coli as well as in S. cerevisiae and thus are referred to as shuttle vectors. The nomenclature of different classes of yeast vectors, as well as details about their mode of replication in yeast are discussed.


Asunto(s)
Clonación Molecular , Escherichia coli/genética , Genes Fúngicos/genética , Vectores Genéticos , Saccharomyces cerevisiae/genética , Plásmidos
20.
Curr Protoc Mol Biol ; Chapter 13: Unit13.8, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-18265103

RESUMEN

This unit presents a generalized protocol and describes the principles involved in cloning yeast genes by complementation in yeast. The protocol is presented using a hypothetical mutation of yeast, the cdc101-1 mutation. This mutation was isolated as a cell cycle mutant and is both recessive and temperature-sensitive for growth: it can grow relatively normally at 30 degrees C but is unable to make a colony at 37 degrees C. A genomic DNA clone that complements this mutation will be isolated by transforming the cdc101-1 strain with a yeast genomic library and subsequently screening for temperature-resistant colonies. Once isolated, two steps are necessary to prove that the insert present on the plasmid contains the wild-type CDC101 gene. First, segregation of the complementing plasmid must result in co-loss of both the plasmid-borne selectable marker and the complementing phenotype, demonstrating that the observed complementation is plasmid-specific and is not due to reversion of the cdc101-1 mutation. Second, it must be ruled out whether the cloned gene encodes a phenotypic suppressor of the mutation, rather than the wild-type gene. This is done via a complementation test, which demonstrates whether or not a disruption of the cloned gene that is integrated into the genome can complement the original mutation.


Asunto(s)
Clonación Molecular , Genes Fúngicos/genética , Levaduras/genética , Prueba de Complementación Genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA