Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 551(7681): 498-502, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29143815

RESUMEN

Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat (Triticum aestivum, genomes AABBDD) and an important genetic resource for wheat. The large size and highly repetitive nature of the Ae. tauschii genome has until now precluded the development of a reference-quality genome sequence. Here we use an array of advanced technologies, including ordered-clone genome sequencing, whole-genome shotgun sequencing, and BioNano optical genome mapping, to generate a reference-quality genome sequence for Ae. tauschii ssp. strangulata accession AL8/78, which is closely related to the wheat D genome. We show that compared to other sequenced plant genomes, including a much larger conifer genome, the Ae. tauschii genome contains unprecedented amounts of very similar repeated sequences. Our genome comparisons reveal that the Ae. tauschii genome has a greater number of dispersed duplicated genes than other sequenced genomes and its chromosomes have been structurally evolving an order of magnitude faster than those of other grass genomes. The decay of colinearity with other grass genomes correlates with recombination rates along chromosomes. We propose that the vast amounts of very similar repeated sequences cause frequent errors in recombination and lead to gene duplications and structural chromosome changes that drive fast genome evolution.


Asunto(s)
Genoma de Planta , Filogenia , Poaceae/genética , Triticum/genética , Mapeo Cromosómico , Diploidia , Evolución Molecular , Duplicación de Gen , Genes de Plantas/genética , Genómica/normas , Poaceae/clasificación , Recombinación Genética/genética , Análisis de Secuencia de ADN/normas , Triticum/clasificación
2.
Plant J ; 107(1): 303-314, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33893684

RESUMEN

Until recently, achieving a reference-quality genome sequence for bread wheat was long thought beyond the limits of genome sequencing and assembly technology, primarily due to the large genome size and > 80% repetitive sequence content. The release of the chromosome scale 14.5-Gb IWGSC RefSeq v1.0 genome sequence of bread wheat cv. Chinese Spring (CS) was, therefore, a milestone. Here, we used a direct label and stain (DLS) optical map of the CS genome together with a prior nick, label, repair and stain (NLRS) optical map, and sequence contigs assembled with Pacific Biosciences long reads, to refine the v1.0 assembly. Inconsistencies between the sequence and maps were reconciled and gaps were closed. Gap filling and anchoring of 279 unplaced scaffolds increased the total length of pseudomolecules by 168 Mb (excluding Ns). Positions and orientations were corrected for 233 and 354 scaffolds, respectively, representing 10% of the genome sequence. The accuracy of the remaining 90% of the assembly was validated. As a result of the increased contiguity, the numbers of transposable elements (TEs) and intact TEs have increased in IWGSC RefSeq v2.1 compared with v1.0. In total, 98% of the gene models identified in v1.0 were mapped onto this new assembly through development of a dedicated approach implemented in the MAGAAT pipeline. The numbers of high-confidence genes on pseudomolecules have increased from 105 319 to 105 534. The reconciled assembly enhances the utility of the sequence for genetic mapping, comparative genomics, gene annotation and isolation, and more general studies on the biology of wheat.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma de Planta , Triticum/genética , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas/química , Elementos Transponibles de ADN , Anotación de Secuencia Molecular
3.
New Phytol ; 230(5): 1940-1952, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33651378

RESUMEN

Pre-harvest sprouting (PHS), the germination of grain before harvest, is a serious problem resulting in wheat yield and quality losses. Here, we mapped the PHS resistance gene PHS-3D from synthetic hexaploid wheat to a 2.4 Mb presence-absence variation (PAV) region and found that its resistance effect was attributed to the pleiotropic Myb10-D by integrated omics and functional analyses. Three haplotypes were detected in this PAV region among 262 worldwide wheat lines and 16 Aegilops tauschii, and the germination percentages of wheat lines containing Myb10-D was approximately 40% lower than that of the other lines. Transcriptome and metabolome profiling indicated that Myb10-D affected the transcription of genes in both the flavonoid and abscisic acid (ABA) biosynthesis pathways, which resulted in increases in flavonoids and ABA in transgenic wheat lines. Myb10-D activates 9-cis-epoxycarotenoid dioxygenase (NCED) by biding the secondary wall MYB-responsive element (SMRE) to promote ABA biosynthesis in early wheat seed development stages. We revealed that the newly discovered function of Myb10-D confers PHS resistance by enhancing ABA biosynthesis to delay germination in wheat. The PAV harboring Myb10-D associated with grain color and PHS will be useful for understanding and selecting white grained PHS resistant wheat cultivars.


Asunto(s)
Dioxigenasas , Triticum , Dioxigenasas/genética , Germinación , Proteínas de Plantas/genética , Triticum/genética
4.
Plant J ; 98(5): 767-782, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31017340

RESUMEN

Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub-Saharan Africa, that is resilient to hot and drought-prone environments. An assembly of the single-haplotype inbred genome of cowpea IT97K-499-35 was developed by exploiting the synergies between single-molecule real-time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination-poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high-recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS-LRR and the SAUR-like auxin superfamilies compared with other warm-season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presented.


Asunto(s)
Cromosomas de las Plantas/genética , Genes de Plantas/genética , Tamaño del Genoma/genética , Genoma de Planta/genética , Vigna/genética , Mapeo Cromosómico , ADN de Plantas/química , ADN de Plantas/genética , Phaseolus/genética , Retroelementos/genética , Análisis de Secuencia de ADN/métodos , Sintenía
5.
Genome Res ; 27(5): 787-792, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28130360

RESUMEN

Long sequencing reads generated by single-molecule sequencing technology offer the possibility of dramatically improving the contiguity of genome assemblies. The biggest challenge today is that long reads have relatively high error rates, currently around 15%. The high error rates make it difficult to use this data alone, particularly with highly repetitive plant genomes. Errors in the raw data can lead to insertion or deletion errors (indels) in the consensus genome sequence, which in turn create significant problems for downstream analysis; for example, a single indel may shift the reading frame and incorrectly truncate a protein sequence. Here, we describe an algorithm that solves the high error rate problem by combining long, high-error reads with shorter but much more accurate Illumina sequencing reads, whose error rates average <1%. Our hybrid assembly algorithm combines these two types of reads to construct mega-reads, which are both long and accurate, and then assembles the mega-reads using the CABOG assembler, which was designed for long reads. We apply this technique to a large data set of Illumina and PacBio sequences from the species Aegilops tauschii, a large and extremely repetitive plant genome that has resisted previous attempts at assembly. We show that the resulting assembled contigs are far larger than in any previous assembly, with an N50 contig size of 486,807 nucleotides. We compare the contigs to independently produced optical maps to evaluate their large-scale accuracy, and to a set of high-quality bacterial artificial chromosome (BAC)-based assemblies to evaluate base-level accuracy.


Asunto(s)
Mapeo Contig/métodos , Genoma de Planta , Genómica/métodos , Poaceae/genética , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Mapeo Contig/normas , Tamaño del Genoma , Genómica/normas , Análisis de Secuencia de ADN/normas
6.
Plant Biotechnol J ; 18(3): 732-742, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31471988

RESUMEN

Wheat is one of the most important staple crops worldwide and also an excellent model species for crop evolution and polyploidization studies. The breakthrough of sequencing the bread wheat genome and progenitor genomes lays the foundation to decipher the complexity of wheat origin and evolutionary process as well as the genetic consequences of polyploidization. In this study, we sequenced 3286 BACs from chromosome 7DL of bread wheat cv. Chinese Spring and integrated the unmapped contigs from IWGSC v1 and available PacBio sequences to close gaps present in the 7DL assembly. In total, 8043 out of 12 825 gaps, representing 3 491 264 bp, were closed. We then used the improved assembly of 7DL to perform comparative genomic analysis of bread wheat (Ta7DL) and its D donor, Aegilops tauschii (At7DL), to identify domestication signatures. Results showed a strong syntenic relationship between Ta7DL and At7DL, although some small rearrangements were detected at the distal regions. A total of 53 genes appear to be lost genes during wheat polyploidization, with 23% (12 genes) as RGA (disease resistance gene analogue). Furthermore, 86 positively selected genes (PSGs) were identified, considered to be domestication-related candidates. Finally, overlapping of QTLs obtained from GWAS analysis and PSGs indicated that TraesCS7D02G321000 may be one of the domestication genes involved in grain morphology. This study provides comparative information on the sequence, structure and organization between bread wheat and Ae. tauschii from the perspective of the 7DL chromosome, which contribute to better understanding of the evolution of wheat, and supports wheat crop improvement.


Asunto(s)
Evolución Biológica , Cromosomas de las Plantas/genética , Genoma de Planta , Triticum/genética , Aegilops/genética , Hibridación Genómica Comparativa , Sitios de Carácter Cuantitativo , Sintenía
7.
New Phytol ; 228(3): 1027-1037, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32583535

RESUMEN

Powdery mildew, a fungal disease caused by Blumeria graminis f. sp. tritici (Bgt), has a serious impact on wheat production. Loss of resistance in cultivars prompts a continuing search for new sources of resistance. Wild emmer wheat (Triticum turgidum ssp. dicoccoides, WEW), the progenitor of both modern tetraploid and hexaploid wheats, harbors many powdery mildew resistance genes. We report here the positional cloning and functional characterization of Pm41, a powdery mildew resistance gene derived from WEW, which encodes a coiled-coil, nucleotide-binding site and leucine-rich repeat protein (CNL). Mutagenesis and stable genetic transformation confirmed the function of Pm41 against Bgt infection in wheat. We demonstrated that Pm41 was present at a very low frequency (1.81%) only in southern WEW populations. It was absent in other WEW populations, domesticated emmer, durum, and common wheat, suggesting that the ancestral Pm41 was restricted to its place of origin and was not incorporated into domesticated wheat. Our findings emphasize the importance of conservation and exploitation of the primary WEW gene pool, as a valuable resource for discovery of resistance genes for improvement of modern wheat cultivars.


Asunto(s)
Ascomicetos , Triticum , Ascomicetos/genética , Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas , Triticum/genética
8.
New Phytol ; 228(3): 1011-1026, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32569398

RESUMEN

Powdery mildew poses severe threats to wheat production. The most sustainable way to control this disease is through planting resistant cultivars. We report the map-based cloning of the powdery mildew resistance allele Pm5e from a Chinese wheat landrace. We applied a two-step bulked segregant RNA sequencing (BSR-Seq) approach in developing tightly linked or co-segregating markers to Pm5e. The first BSR-Seq used phenotypically contrasting bulks of recombinant inbred lines (RILs) to identify Pm5e-linked markers. The second BSR-Seq utilized bulks of genetic recombinants screened from a fine-mapping population to precisely quantify the associated genomic variation in the mapping interval, and identified the Pm5e candidate genes. The function of Pm5e was validated by transgenic assay, loss-of-function mutants and haplotype association analysis. Pm5e encodes a nucleotide-binding domain leucine-rich-repeat-containing (NLR) protein. A rare nonsynonymous single nucleotide variant (SNV) within the C-terminal leucine rich repeat (LRR) domain is responsible for the gain of powdery mildew resistance function of Pm5e, an allele endemic to wheat landraces of Shaanxi province of China. Results from this study demonstrate the value of landraces in discovering useful genes for modern wheat breeding. The key SNV associated with powdery mildew resistance will be useful for marker-assisted selection of Pm5e in wheat breeding programs.


Asunto(s)
Resistencia a la Enfermedad , Triticum , China , Resistencia a la Enfermedad/genética , Genes de Plantas , Nucleótidos , Fitomejoramiento , Enfermedades de las Plantas/genética , Triticum/genética
9.
Theor Appl Genet ; 133(9): 2545-2554, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32494869

RESUMEN

KEY MESSAGE: A locus for perennial growth was mapped on Lophopyrum elongatum chromosome arm 4ES and introgressed into the wheat genome. Evidence was obtained that in addition to chromosome 4E, other L. elongatum chromosomes control perennial growth. Monocarpy versus polycarpy is one of the fundamental developmental dichotomies in flowering plants. Advances in the understanding of the genetic basis of this dichotomy are important for basic biological reasons and practically for genetic manipulation of growth development in economically important plants. Nine wheat introgression lines (ILs) harboring germplasm of the Lophopyrum elongatum genome present in the octoploid amphiploid Triticum aestivum cv. Chinese Spring (subgenomes AABBDD) × L. elongatum (genomes EE) were selected from a population of ILs developed earlier. These ILs were employed here in genomic analyses of post-sexual cycle regrowth (PSCR), which is a component of polycarpy in caespitose L. elongatum. Analyses of disomic substitution (DS) lines confirmed that L. elongatum chromosome 4E confers PSCR on wheat. The gene was mapped into a short distal region of L. elongatum arm 4ES and was tentatively named Pscr1. ILs harboring recombined chromosomes with 4ES segments, including Pscr1, incorporated into the distal part of the 4DS chromosome arm were identified. Based on the location, Pscr1 is not orthologous with the rice rhizome-development gene Rhz2 located on rice chromosome Os3, which is homoeologous with chromosome 4E, but it may correspond to the Teosinte branched1 (TB1) gene, which is located in the introgressed region in the L. elongatum and Ae. tauschii genomes. A hexaploid IL harboring a large portion of the E-genome but devoid of chromosome 4E also expressed PSCR, which provided evidence that perennial growth is controlled by genes on other L. elongatum chromosomes in addition to 4E.


Asunto(s)
Genes de Plantas , Fitomejoramiento , Poaceae/crecimiento & desarrollo , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Genotipo , Poaceae/genética , Polimorfismo de Nucleótido Simple , Poliploidía
10.
Theor Appl Genet ; 133(4): 1227-1241, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31980837

RESUMEN

KEY MESSAGE: We introgressed wheatgrass germplasm from the octoploid amphiploid Triticum aestivum× Lophopyrum elongatum into wheat by manipulating the wheat Ph1 gene and discovered and characterized 130 introgression lines harboring single or, in various combinations, complete and recombined L. elongatum chromosomes. Diploid wheatgrass Lophopyrum elongatum (genomes EE) possesses valuable traits for wheat genetics and breeding. We evaluated several strategies for introgression of this germplasm into wheat. To detect it, we developed and validated multiplexed sets of Sequenom MassARRAY single nucleotide polymorphism (SNP) markers, which differentiated disomic and monosomic L. elongatum chromosomes from wheat chromosomes. We identified 130 introgression lines (ILs), which harbored 108 complete and 89 recombined L. elongatum chromosomes. Of the latter, 59 chromosomes were recombined by one or more crossovers and 30 were involved in centromeric (Robertsonian) translocations or were telocentric. To identify wheat chromosomes substituted for or recombined with L. elongatum chromosomes, we genotyped the ILs with the wheat 90-K Infinium SNP array. We found that most of the wheat 90-K probes correctly detected their targets in the L. elongatum genome and showed that some wheat SNPs are ancient and had originated prior to the divergence of the wheat and L. elongatum lineages. Of the 130 ILs, 52% were homozygous for Ph1 deletion and thus are staged to be recombined further. We failed to detect in the L. elongatum genome the 4/5 reciprocal translocation that has been reported in Thinopyrum bessarabicum and several other Triticeae genomes.


Asunto(s)
Cruzamientos Genéticos , Genoma de Planta , Endogamia , Ploidias , Poaceae/genética , Triticum/genética , Pan , Cromosomas de las Plantas/genética , Marcadores Genéticos , Polimorfismo de Nucleótido Simple/genética
11.
Plant J ; 95(2): 371-384, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29681136

RESUMEN

Genomes of varying sizes have been sequenced with next-generation sequencing platforms. However, most reference sequences include draft unordered scaffolds containing chimeras caused by mis-scaffolding. A BioNano genome (BNG) optical map was constructed to improve the previously sequenced flax genome (Linum usitatissimum L., 2n = 30, about 373 Mb), which consisted of 3852 scaffolds larger than 1 kb and totalling 300.6 Mb. The high-resolution BNG map of cv. CDC Bethune totalled 317 Mb and consisted of 251 BNG contigs with an N50 of 2.15 Mb. A total of 622 scaffolds (286.6 Mb, 94.9%) aligned to 211 BNG contigs (298.6 Mb, 94.2%). Of those, 99 scaffolds, diagnosed to contain assembly errors, were refined into 225 new scaffolds. Using the newly refined scaffold sequences and the validated bacterial artificial chromosome-based physical map of CDC Bethune, the 211 BNG contigs were scaffolded into 94 super-BNG contigs (N50 of 6.64 Mb) that were further assigned to the 15 flax chromosomes using the genetic map. The pseudomolecules total about 316 Mb, with individual chromosomes of 15.6 to 29.4 Mb, and cover 97% of the annotated genes. Evidence from the chromosome-scale pseudomolecules suggests that flax has undergone palaeopolyploidization and mesopolyploidization events, followed by rearrangements and deletions or fusion of chromosome arms from an ancient progenitor with a haploid chromosome number of eight.


Asunto(s)
Mapeo Cromosómico/métodos , Lino/genética , Genoma de Planta/genética , Cromosomas de las Plantas/genética , Filogenia
12.
Plant J ; 95(3): 487-503, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29770515

RESUMEN

Homology was searched with genes annotated in the Aegilops tauschii pseudomolecules against genes annotated in the pseudomolecules of tetraploid wild emmer wheat, Brachypodium distachyon, sorghum and rice. Similar searches were performed with genes annotated in the rice pseudomolecules. Matrices of collinear genes and rearrangements in their order were constructed. Optical BioNano genome maps were constructed and used to validate rearrangements unique to the wild emmer and Ae. tauschii genomes. Most common rearrangements were short paracentric inversions and short intrachromosomal translocations. Intrachromosomal translocations outnumbered segmental intrachromosomal duplications. The densities of paracentric inversion lengths were approximated by exponential distributions in all six genomes. Densities of collinear genes along the Ae. tauschii chromosomes were highly correlated with meiotic recombination rates but those of rearrangements were not, suggesting different causes of the erosion of gene collinearity and evolution of major chromosome rearrangements. Frequent rearrangements sharing breakpoints suggested that chromosomes have been rearranged recurrently at some sites. The distal 4 Mb of the short arms of rice chromosomes Os11 and Os12 and corresponding regions in the sorghum, B. distachyon and Triticeae genomes contain clusters of interstitial translocations including from 1 to 7 collinear genes. The rates of acquisition of major rearrangements were greater in the large wild emmer wheat and Ae. tauschii genomes than in the lineage preceding their divergence or in the B. distachyon, rice and sorghum lineages. It is suggested that synergy between large quantities of dynamic transposable elements and annual growth habit have been the primary causes of the fast evolution of the Triticeae genomes.


Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Genómica , Poaceae/genética , Aegilops/genética , Brachypodium/genética , Mapeo Cromosómico , Genes de Plantas/genética , Oryza/genética , Análisis de Secuencia de ADN , Sorghum/genética , Triticum/genética
13.
Funct Integr Genomics ; 19(6): 993-1005, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31197605

RESUMEN

α-Gliadins are a major group of gluten proteins in wheat flour that contribute to the end-use properties for food processing and contain major immunogenic epitopes that can cause serious health-related issues including celiac disease (CD). α-Gliadins are also the youngest group of gluten proteins and are encoded by a large gene family. The majority of the gene family members evolved independently in the A, B, and D genomes of different wheat species after their separation from a common ancestral species. To gain insights into the origin and evolution of these complex genes, the genomic regions of the Gli-2 loci encoding α-gliadins were characterized from the tetraploid wild emmer, a progenitor of hexaploid bread wheat that contributed the AABB genomes. Genomic sequences of Gli-2 locus regions for the wild emmer A and B genomes were first reconstructed using the genome sequence scaffolds along with optical genome maps. A total of 24 and 16 α-gliadin genes were identified for the A and B genome regions, respectively. α-Gliadin pseudogene frequencies of 86% for the A genome and 69% for the B genome were primarily caused by C to T substitutions in the highly abundant glutamine codons, resulting in the generation of premature stop codons. Comparison with the homologous regions from the hexaploid wheat cv. Chinese Spring indicated considerable sequence divergence of the two A genomes at the genomic level. In comparison, conserved regions between the two B genomes were identified that included α-gliadin pseudogenes containing shared nested TE insertions. Analyses of the genomic organization and phylogenetic tree reconstruction indicate that although orthologous gene pairs derived from speciation were present, large portions of α-gliadin genes were likely derived from differential gene duplications or deletions after the separation of the homologous wheat genomes ~ 0.5 MYA. The higher number of full-length intact α-gliadin genes in hexaploid wheat than that in wild emmer suggests that human selection through domestication might have an impact on α-gliadin evolution. Our study provides insights into the rapid and dynamic evolution of genomic regions harboring the α-gliadin genes in wheat.


Asunto(s)
Evolución Molecular , Gliadina/genética , Triticum/genética , Genes de Plantas , Familia de Multigenes , Seudogenes
14.
Theor Appl Genet ; 132(12): 3265-3276, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31529271

RESUMEN

KEY MESSAGE: Su1-Ph1, which we previously introgressed into wheat from Aegilops speltoides, is a potent suppressor of Ph1 and a valuable tool for gene introgression in tetraploid wheat. We previously introgressed Su1-Ph1, a suppressor of the wheat Ph1 gene, from Aegilops speltoides into durum wheat cv Langdon (LDN). Here, we evaluated the utility of the introgressed suppressor for inducing introgression of alien germplasm into durum wheat. We built LDN plants heterozygous for Su1-Ph1 that simultaneously contained a single LDN chromosome 5B and a single Ae. searsii chromosome 5Sse, which targeted them for recombination. We genotyped 28 BC1F1 and 84 F2 progeny with the wheat 90-K Illumina single-nucleotide polymorphism assay and detected extensive recombination between the two chromosomes, which we confirmed by non-denaturing fluorescence in situ hybridization (ND-FISH). We constructed BC1F1 and F2 genetic maps that were 65.31 and 63.71 cM long, respectively. Recombination rates between the 5B and 5Sse chromosomes were double the expected rate computed from their meiotic pairing, which we attributed to selection against aneuploid gametes. Recombination rate between 5B and 5Sse was depressed compared to that between 5B chromosomes in the proximal region of the long arm. We integrated ND-FISH signals into the genetic map and constructed a physical map, which we used to map a 172,188,453-bp Ph1 region. Despite the location of the region in a low-recombination region of the 5B chromosome, we detected three crossovers in it. Our data show that Su1-Ph1 is a valuable tool for gene introgression and gene mapping based on recombination between homoeologous chromosomes in wheat.


Asunto(s)
Aegilops/genética , Fitomejoramiento , Recombinación Genética , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Genes de Plantas , Tetraploidía
15.
Theor Appl Genet ; 132(12): 3449, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31578615

RESUMEN

Unfortunately, the 9th author name was incorrectly published in the original publication. The complete correct name is given below.

16.
Nature ; 496(7443): 87-90, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23535596

RESUMEN

Bread wheat (Triticum aestivum, AABBDD) is one of the most widely cultivated and consumed food crops in the world. However, the complex polyploid nature of its genome makes genetic and functional analyses extremely challenging. The A genome, as a basic genome of bread wheat and other polyploid wheats, for example, T. turgidum (AABB), T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m)A(m)), is central to wheat evolution, domestication and genetic improvement. The progenitor species of the A genome is the diploid wild einkorn wheat T. urartu, which resembles cultivated wheat more extensively than do Aegilops speltoides (the ancestor of the B genome) and Ae. tauschii (the donor of the D genome), especially in the morphology and development of spike and seed. Here we present the generation, assembly and analysis of a whole-genome shotgun draft sequence of the T. urartu genome. We identified protein-coding gene models, performed genome structure analyses and assessed its utility for analysing agronomically important genes and for developing molecular markers. Our T. urartu genome assembly provides a diploid reference for analysis of polyploid wheat genomes and is a valuable resource for the genetic improvement of wheat.


Asunto(s)
Genoma de Planta/genética , Triticum/genética , Secuencia de Bases , Brachypodium/genética , Productos Agrícolas/clasificación , Productos Agrícolas/genética , Diploidia , Marcadores Genéticos/genética , Datos de Secuencia Molecular , Oryza/genética , Filogenia , Sorghum/genética , Sintenía/genética , Triticum/clasificación , Zea mays/genética
17.
Proc Natl Acad Sci U S A ; 113(29): 7949-56, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27354512

RESUMEN

Haplotype variation not only involves SNPs but also insertions and deletions, in particular gene copy number variations. However, comparisons of individual genomes have been difficult because traditional sequencing methods give too short reads to unambiguously reconstruct chromosomal regions containing repetitive DNA sequences. An example of such a case is the protein gene family in maize that acts as a sink for reduced nitrogen in the seed. Previously, 41-48 gene copies of the alpha zein gene family that spread over six loci spanning between 30- and 500-kb chromosomal regions have been described in two Iowa Stiff Stalk (SS) inbreds. Analyses of those regions were possible because of overlapping BAC clones, generated by an expensive and labor-intensive approach. Here we used single-molecule real-time (Pacific Biosciences) shotgun sequencing to assemble the six chromosomal regions from the Non-Stiff Stalk maize inbred W22 from a single DNA sequence dataset. To validate the reconstructed regions, we developed an optical map (BioNano genome map; BioNano Genomics) of W22 and found agreement between the two datasets. Using the sequences of full-length cDNAs from W22, we found that the error rate of PacBio sequencing seemed to be less than 0.1% after autocorrection and assembly. Expressed genes, some with premature stop codons, are interspersed with nonexpressed genes, giving rise to genotype-specific expression differences. Alignment of these regions with those from the previous analyzed regions of SS lines exhibits in part dramatic differences between these two heterotic groups.


Asunto(s)
Dosificación de Gen , Genes de Plantas , Zea mays/genética , ADN de Plantas/genética , Genoma de Planta , Haplotipos , Análisis de Secuencia de ADN/métodos
18.
Plant J ; 92(4): 571-583, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28857322

RESUMEN

Among the wheat prolamins important for its end-use traits, α-gliadins are the most abundant, and are also a major cause of food-related allergies and intolerances. Previous studies of various wheat species estimated that between 25 and 150 α-gliadin genes reside in the Gli-2 locus regions. To better understand the evolution of this complex gene family, the DNA sequence of a 1.75-Mb genomic region spanning the Gli-2 locus was analyzed in the diploid grass, Aegilops tauschii, the ancestral source of D genome in hexaploid bread wheat. Comparison with orthologous regions from rice, sorghum, and Brachypodium revealed rapid and dynamic changes only occurring to the Ae. tauschii Gli-2 region, including insertions of high numbers of non-syntenic genes and a high rate of tandem gene duplications, the latter of which have given rise to 12 copies of α-gliadin genes clustered within a 550-kb region. Among them, five copies have undergone pseudogenization by various mutation events. Insights into the evolutionary relationship of the duplicated α-gliadin genes were obtained from their genomic organization, transcription patterns, transposable element insertions and phylogenetic analyses. An ancestral glutamate-like receptor (GLR) gene encoding putative amino acid sensor in all four grass species has duplicated only in Ae. tauschii and generated three more copies that are interspersed with the α-gliadin genes. Phylogenetic inference and different gene expression patterns support functional divergence of the Ae. tauschii GLR copies after duplication. Our results suggest that the duplicates of α-gliadin and GLR genes have likely taken different evolutionary paths; conservation for the former and neofunctionalization for the latter.


Asunto(s)
Genoma de Planta/genética , Gliadina/genética , Familia de Multigenes/genética , Poaceae/genética , Triticum/genética , Secuencia de Aminoácidos , Evolución Molecular , Duplicación de Gen , Sitios Genéticos , Genómica , Datos de Secuencia Molecular , Filogenia , Prolaminas/genética , Regiones Promotoras Genéticas/genética , Análisis de Secuencia de ADN , Sintenía
19.
Plant Biotechnol J ; 16(1): 280-291, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28635103

RESUMEN

Wheat was introduced to China approximately 4500 years ago, where it adapted over a span of time to various environments in agro-ecological growing zones. We investigated 717 Chinese and 14 Iranian/Turkish geographically diverse, locally adapted wheat landraces with 27 933 DArTseq (for 717 landraces) and 312 831 Wheat660K (for a subset of 285 landraces) markers. This study highlights the adaptive evolutionary history of wheat cultivation in China. Environmental stresses and independent selection efforts have resulted in considerable genome-wide divergence at the population level in Chinese wheat landraces. In total, 148 regions of the wheat genome show signs of selection in at least one geographic area. Our data show adaptive events across geographic areas, from the xeric northwest to the mesic south, along and among homoeologous chromosomes, with fewer variations in the D genome than in the A and B genomes. Multiple variations in interdependent functional genes such as regulatory and metabolic genes controlling germination and flowering time were characterized, showing clear allelic frequency changes corresponding to the dispersion of wheat in China. Population structure and selection data reveal that Chinese wheat spread from the northwestern Caspian Sea region to South China, adapting during its agricultural trajectory to increasingly mesic and warm climatic areas.


Asunto(s)
Triticum/genética , China , Frecuencia de los Genes/genética , Variación Genética/genética , Genoma de Planta/genética , Triticum/fisiología
20.
Theor Appl Genet ; 131(11): 2451-2462, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30141064

RESUMEN

KEY MESSAGE: Comparison of genome sequences of wild emmer wheat and Aegilops tauschii suggests a novel scenario of the evolution of rearranged wheat chromosomes 4A, 5A, and 7B. Past research suggested that wheat chromosome 4A was subjected to a reciprocal translocation T(4AL;5AL)1 that occurred in the diploid progenitor of the wheat A subgenome and to three major rearrangements that occurred in polyploid wheat: pericentric inversion Inv(4AS;4AL)1, paracentric inversion Inv(4AL;4AL)1, and reciprocal translocation T(4AL;7BS)1. Gene collinearity along the pseudomolecules of tetraploid wild emmer wheat (Triticum turgidum ssp. dicoccoides, subgenomes AABB) and diploid Aegilops tauschii (genomes DD) was employed to confirm these rearrangements and to analyze the breakpoints. The exchange of distal regions of chromosome arms 4AS and 4AL due to pericentric inversion Inv(4AS;4AL)1 was detected, and breakpoints were validated with an optical Bionano genome map. Both breakpoints contained satellite DNA. The breakpoints of reciprocal translocation T(4AL;7BS)1 were also found. However, the breakpoints that generated paracentric inversion Inv(4AL;4AL)1 appeared to be collocated with the 4AL breakpoints that had produced Inv(4AS;4AL)1 and T(4AL;7BS)1. Inv(4AS;4AL)1, Inv(4AL;4AL)1, and T(4AL;7BS)1 either originated sequentially, and Inv(4AL;4AL)1 was produced by recurrent chromosome breaks at the same breakpoints that generated Inv(4AS;4AL)1 and T(4AL;7BS)1, or Inv(4AS;4AL)1, Inv(4AL;4AL)1, and T(4AL;7BS)1 originated simultaneously. We prefer the latter hypothesis since it makes fewer assumptions about the sequence of events that produced these chromosome rearrangements.


Asunto(s)
Inversión Cromosómica , Cromosomas de las Plantas/genética , Evolución Molecular , Translocación Genética , Triticum/genética , Mapeo Cromosómico , ADN Satélite/genética , Genoma de Planta , Poaceae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA