Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Chem Phys ; 160(4)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38294314

RESUMEN

The utility of UiO-67 Metal-Organic Frameworks (MOFs) for practical applications requires a comprehensive understanding of intermolecular host-guest MOF-analyte interactions. To investigate intermolecular interactions between UiO-67 MOFs and complex molecules, it is useful to evaluate the interactions with simple polar and non-polar analytes. This problem is approached by investigating the interactions of polar (acetone and isopropanol) and non-polar (n-heptane) molecules with functionalized UiO-67 MOFs via temperature programmed desorption mass spectrometry and temperature programmed Fourier transform infrared spectroscopy. We find that isopropanol, acetone, and n-heptane bind reversibly and non-destructively to UiO-67 MOFs, where MOF and analyte functionality influence relative binding strengths (n-heptane ≈ isopropanol > acetone). During heating, all three analytes diffuse into the internal pore environment and directly interact with the µ3-OH groups located within the tetrahedral pores, evidenced by the IR response of ν(µ3-OH). We observe nonlinear changes in the infrared cross sections of the ν(CH) modes of acetone, isopropanol, and n-heptane following diffusion into UiO-67. Similarly, acetone's ν(C=O) infrared cross section increases dramatically when diffused into UiO-67. Ultimately, this in situ investigation provides insights into how individual molecular functional groups interact with UiO MOFs and enables a foundation where MOF interactions with complex molecular systems can be evaluated.

2.
Angew Chem Int Ed Engl ; 61(44): e202209034, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35929949

RESUMEN

With increasing demands for high-performance water sorption materials, metal-organic frameworks (MOFs) have gained considerable attention due to their high maximum uptake capacities. In many cases, however, high overall capacity is not necessarily accomplishing high working capacity under operating conditions, due to insufficient hydrophilicity and/or water stability. Herein, we present a post-synthetic modification (PSM) of MOF-808, with di-sulfonic acids enhancing simultaneously its hydrophilicity and water stability without sacrificing its uptake capacity of ≈30 mmol g-1 . Di-sulfonic acid PSM enabled a shift of the relative humidity (RH) associated with a sharp step in water vapor sorption from 35-40 % RH in MOF-808 to below 25 % RH. While MOF-808 lost uptake capacity and crystallinity over multiple sorption/desorption cycles, the di-sulfonic acid PSM MOF-808 retained >80 % of the original capacity. PSM MOF-808 exhibited good hydrothermal stability up to 60 °C and high swing capacity.

3.
J Am Chem Soc ; 142(19): 8776-8781, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32311264

RESUMEN

While metal-organic frameworks (MOFs) have been identified as promising materials for sensitizing near-infrared emitting lanthanide ions (Ln3+) for biological imaging, long-wavelength excitation of such materials requires large, highly delocalized organic linkers or guest-chromophores. Incorporation of such species generally coincides with fewer Ln3+ emitters per unit volume. Herein, the excitation bands of ytterbium-based MOFs are extended to 800 nm via the postsynthetic coupling of acetylene units to form a high density of conjugated π-systems throughout MOF pores. The resulting long wavelength excitation/absorption bands are a synergistic property of the composite material as they are not observed in the individual organic components after disassociation of the MOFs, thus circumventing the need for large organic chromophores. We demonstrate that the long wavelength excitation and emission properties of these modified MOFs are maintained in the biological conditions of cell culture (aqueous environment, salts, heating), pointing toward their promising use for biological imaging applications.


Asunto(s)
Elementos de la Serie de los Lantanoides/química , Estructuras Metalorgánicas/química , Imagen Óptica , Animales , Estructuras Metalorgánicas/síntesis química , Ratones , Estructura Molecular , Tamaño de la Partícula , Células RAW 264.7
4.
J Am Chem Soc ; 142(6): 2897-2904, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31972094

RESUMEN

Gossypol (Gsp), a natural toxin concentrated in cottonseeds, poses great risks to the safe consumption of cottonseed products, which are used extensively throughout the food industry. In this work, we report the first luminescence "turn-on" sensors for Gsp using near-infrared emitting lanthanide (Ln3+) materials, including Ln3+ MOFs and Ln3+ salts. We first demonstrate that the Yb3+ photoluminescence of a Yb3+ MOF, Yb-NH2-TPDC, can be employed to selectively detect Gsp with a limit of detection of 25 µg/mL via a "turn-on" response from a completely nonemissive state in the absence of Gsp. The recyclability and stability of Yb-NH2-TPDC in the presence of Gsp was demonstrated by fluorescence spectroscopy and PXRD analysis, respectively. A variety of background substances present in practical samples that would require Gsp sensing, such as refined cottonseed oil, palmitic acid, linoleic acid, and α-tocopherol, did not interfere with the Yb3+ photoluminescence signal. We further identified that the "turn-on" of Yb-NH2-TPDC photoluminescence was due to the "antenna effect" of Gsp, as evidenced by spectroscopic studies and supported by computational analysis. This is the first report that Gsp can effectively sensitize Yb3+ photoluminescence. Leveraging this sensing mechanism, we demonstrate facile, highly sensitive, fast-response detection of Gsp using YbCl3·6H2O and NdCl3·6H2O solutions. Overall, we show for the first time that Ln3+-based materials are promising luminescent sensors for Gsp detection. We envision that the reported sensing approach will be applicable to the detection of a wide variety of aromatic molecules using Ln3+ compounds including MOFs, complexes, and salts.

5.
J Am Chem Soc ; 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33170677

RESUMEN

Atom-by-atom manipulation on metal nanoclusters (NCs) has long been desired, as the resulting series of NCs can provide insightful understanding of how a single atom affects the structure and properties as well as the evolution with size. Here, we report crystallizations of Au22(SAdm)16 and Au22Cd1(SAdm)16 (SAdm = adamantanethiolate) which link up with Au21(SAdm)15 and Au24(SAdm)16 NCs and form an atom-by-atom evolving series protected by the same ligand. Structurally, Au22(SAdm)16 has an Au3(SAdm)4 surface motif which is longer than the Au2(SAdm)3 on Au21(SAdm)15, whereas Au22Cd1(SAdm)16 lacks one staple Au atom compared to Au24(SAdm)16 and thus the surface structure is reconstructed. A single Cd atom triggers the structural transition from Au22 with a 10-atom bioctahedral kernel to Au22Cd1 with a 13-atom cuboctahedral kernel, and correspondingly, the optical properties are dramatically changed. The photoexcited carrier lifetime demonstrates that the optical properties and excited state relaxation are highly sensitive at the single atom level. By contrast, little change in both ionization potential and electron affinity is found in this series of NCs by theoretical calculations, indicating the electronic properties are independent of adding a single atom in this series. The work provides a paradigm that the NCs with continuous metal atom numbers are accessible and crystallizable when meticulously designed, and the optical properties are more affected at the single atom level than the electronic properties.

6.
J Am Chem Soc ; 141(5): 2161-2168, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30636428

RESUMEN

We introduce the concept of domain building blocks (DBBs) as an effective approach to increasing the diversity and complexity of metal-organic frameworks (MOFs). DBBs are defined as distinct structural or compositional regions within a MOF material. Using the DBB approach, we illustrate how an immense number of multivariate MOF materials can be prepared from a small collection of molecular building blocks comprising the distinct domains. The multivariate nature of the MOFs is determined by the sequence of DBBs within the MOF. We then apply this approach to the construction of a rich library of UiO-67 stratified MOF (sMOF) particles consisting of multiple concentric DBBs. We discuss and highlight the negative consequences of linker exchange reactions on the compositional integrity of DBBs in the UiO-67 sMOFs and propose and demonstrate mitigation strategies. We also demonstrate that individual strata can be specifically postsynthetically addressed and manipulated. Finally, we demonstrate the versatility of these synthetic strategies through the preparation of sMOF-nanoparticle composite materials.

7.
Angew Chem Int Ed Engl ; 58(52): 18798-18802, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31702861

RESUMEN

The synthesis and structure of atomically precise Au130-x Agx (average x=98) alloy nanoclusters protected by 55 ligands of 4-tert-butylbenzenethiolate are reported. This large alloy structure has a decahedral M54 (M=Au/Ag) core. The Au atoms are localized in the truncated Marks decahedron. In the core, a drum of Ag-rich sites is found, which is enclosed by a Marks decahedral cage of Au-rich sites. The surface is exclusively Ag-SR; X-ray absorption fine structure analysis supports the absence of Au-S bonds. The optical absorption spectrum shows a strong peak at 523 nm, seemingly a plasmon peak, but fs spectroscopic analysis indicates its non-plasmon nature. The non-metallicity of the Au130-x Agx nanocluster has set up a benchmark to study the transition to metallic state in the size evolution of bimetallic nanoclusters. The localized Au/Ag binary architecture in such a large alloy nanocluster provides atomic-level insights into the Au-Ag bonds in bimetallic nanoclusters.

8.
J Am Chem Soc ; 140(43): 14235-14243, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30293424

RESUMEN

Doping of metal nanoclusters is an effective strategy for tailoring their functionalities for specific applications. To gain fundamental insight into the doping mechanism, it is of critical importance to have access to a series of correlated bimetal nanoclusters with different doping levels and further reveal the successive transformations. Herein, we report asymmetric doping of Ag into an Au21 nanocluster to form a series of new Au/Ag bimetal nanoclusters and the effects of doping on the evolution of size, structure, and properties based upon X-ray crystallography and optical spectroscopy analyses. The asymmetric doping discovered in the series reveals two important rules. First, the heteroatom doping-induced kernel transformation mechanism is revealed, explaining the successive conversions from Au21(S-Adm)15 with an incomplete cuboctahedral kernel to Au20Ag1(S-Adm)15 with a complete cuboctahedral Au12Ag1 kernel and then to Au19Ag4(S-Adm)15 with an icosahedral Au10Ag3 kernel. The electron density accumulated on the central Au atom(s) is rationalized to force an expansion of radial metal-metal bond angles, which triggers the cuboctahedral-to-icosahedral kernel conversion. This mechanism is generalized by elucidating several other cases. Second, through comparison of a series of seven nanoclusters (all protected by adamantanethiolate), we find that the unit cell symmetry of their crystals is correlated with the symmetry of the cluster's kernel. Specifically, we observe a sequential change from triclinic to monoclinic to trigonal unit cell in the series with increasing kernel symmetry. The kernel structure-dependent optical properties are also discussed.

9.
J Am Chem Soc ; 140(20): 6194-6198, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29719954

RESUMEN

Using diverse building blocks, such as different heterometallic clusters, in metal-organic framework (MOF) syntheses greatly increases MOF complexity and leads to emergent synergistic properties. However, applying reticular chemistry to syntheses involving more than two molecular building blocks is challenging and there is limited progress in this area. We are therefore motivated to develop a strategy for achieving systematic and differential control over the coordination of multiple metals in MOFs. Herein, we report the design and synthesis of a diverse series of heterobimetallic MOFs with different metal ions and clusters severally distributed throughout two or three inorganic secondary building units (SBUs). By taking advantage of the bifunctional isonicotinate linker and its derivatives, which can coordinatively distinguish between early and late transition metals, we control the assembly and topology of up to three different inorganic SBUs in one-pot solvothermal reactions. Specifically, M6(µ3-O) n(µ3-OH)8- n(CO2)12 (M = Zr4+, Hf4+, Dy3+) SBUs are formed along with metal-pyridyl complexes. By controlling the geometry of the metal-pyridyl complexes, we direct the overall topology to produce eight new MOFs with fcu, ftw, and previously unreported trinodal pfm crystallographic nets.

10.
J Am Chem Soc ; 139(29): 9994-10001, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28661158

RESUMEN

We report the synthesis and crystal structure determination of a gold nanocluster with 103 gold atoms protected by 2 sulfidos and 41 thiolates (i.e., 2-naphthalenethiolates, S-Nap), denoted as Au103S2(S-Nap)41. The crystallographic analysis reveals that the thiolate ligands on the nanocluster form local tetramers by intracluster interactions of C-H···π and π···π stacking. The herringbone pattern formation via intercluster interactions is also observed, which leads to a linearly connected zigzag pattern in the single crystal. The kernel of the nanocluster is a Marks decahedron of Au79, which is the same as the kernel of the previously reported Au102(pMBA)44 (pMBA = -SPh-p-COOH); this is a surprise given the much bulkier naphthalene-based ligand than pMBA, indicating the robustness of the decahedral structure as well as the 58-electron configuration. Despite the same kernel, the surface structure of Au103 is quite different from that of Au102, indicating the major role of ligands in constructing the surface structure. Other implications from Au103 and Au102 include (i) both nanoclusters show similar HOMO-LUMO gap energy (i.e., Eg ≈ 0.45 eV), indicating the kernel is decisive for Eg while the surface is less critical; and (ii) significant differences are observed in the excited-state lifetimes by transient absorption spectroscopy analysis, revealing the kernel-to-surface relaxation pathway of electron dynamics. Overall, this work demonstrates the ligand-effected modification of the gold-thiolate interface independent of the kernel structure, which in turn allows one to map out the respective roles of kernel and surface in determining the electronic and optical properties of the 58e nanoclusters.

11.
J Am Chem Soc ; 139(27): 9333-9340, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28618777

RESUMEN

The Td point group symmetry of rare earth (RE3+) metal clusters RE4(µ3-OH)4(COO)62+ makes them attractive building blocks for creating metal-organic frameworks (MOFs) with controllable topologies. Herein, we describe the design and synthesis of a series of isoreticular MOFs featuring pcu topology [MOF-1114(RE) and MOF-1115(RE)] with variable rare earth metal ions (RE3+ = Y3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+) and linear amino-functionalized dicarboxylate linkers of different lengths. In total, we report 22 MOFs that vary in both composition and structure yet share the same RE4(µ3-OH)4 cluster motif. We demonstrate that these pcu MOFs are cationic and that anion exchange can be used to affect the MOF properties. We also investigate the luminescence properties of a representative member of this MOF series [MOF-1114(Yb)] that exhibits near-infrared emission. We show that the excitation energy for Yb3+ sensitization can be carefully adjusted to lower energy via covalent postsynthetic modification at the amino group sites within the MOF.

12.
J Am Chem Soc ; 139(49): 17779-17782, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29182284

RESUMEN

Atomically precise metal nanoclusters with tailored surface structures are important for both fundamental studies and practical applications. The development of new methods for tailoring the surface structure in a controllable manner has long been sought. In this work, we report surface reconstruction induced by cadmium doping into the [Au23(SR)16]- (R = cyclohexyl) nanocluster, in which two neighboring surface Au atomic sites "coalesce" into one Cd atomic site and, accordingly, a new bimetal nanocluster, [Au19Cd2(SR)16]-, is produced. Interestingly, a Cd(S-Au-S)3 "paw-like" surface motif is observed for the first time in nanocluster structures. In such a motif, the Cd atom acts as a junction which connects three monomeric -S-Au-S- motifs. Density functional theory calculations are performed to understand the two unique Cd locations. Furthermore, we demonstrate different doping modes when the [Au23(SR)16]- nanocluster is doped with different metals (Cu, Ag), including (i) simple substitution and (ii) total structure transformation, as opposed to surface reconstruction for Cd doping. This work greatly expands doping chemistry for tailoring the structures of nanoclusters and is expected to open new avenues for designing nanoclusters with novel surface structures using different dopants.

13.
J Am Chem Soc ; 138(37): 12045-8, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27593173

RESUMEN

Crystalline 3-D materials bearing interlinked domains of differential porosity and functionality offer the potential for organizing and shuttling molecular and nanoscale matter to specific locations within 3-D space. Here, we present methods for creating prototype MOF materials that have such structural features. Specifically, the process of pore expansion via ligand exchange was studied for an isoreticular series of mesoporous MOFs based on bMOF-100. It was found that pore expansion occurs incrementally in small steps and that it proceeds gradually in an "outside→in" fashion within individual crystals. The ligand exchange reaction can be terminated prior to complete crystal conversion to yield intermediate product MOFs, denoted bMOF-100/102 and bMOF-102/106, which bear descending porosity gradients from the crystal periphery to the crystal core. As a proof of concept, size-sensitive incorporation of a gold-thiolate nanocluster, Au133(SR)52, selectively in the bMOF-102/106 crystal periphery region was accomplished via cation exchange. These new methods open up the possibility of controlling molecular organization and transport within porous MOF materials.

14.
J Am Chem Soc ; 137(33): 10508-11, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26256310

RESUMEN

A sequential postsynthetic ligand exchange process was used to prepare a series of mono-, di-, and trifunctionalized mesoporous metal-organic frameworks (MOFs). Using this process, orthogonal functional groups were installed and thereafter postsynthetically modified with dye and quencher molecules. Microspectrophotometry studies were used to determine the distribution of the two orthogonal functional groups within the MOF crystals.

15.
Ann Transl Med ; 11(2): 137, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36819589

RESUMEN

Background: Central retinal artery occlusion (CRAO) is an acute eye disease that seriously damages vision. Patients with CRAO often have a combination of various cardio-cerebrovascular diseases (CCVDs), and CRAO patients often ignore their cardio-cerebrovascular disorders because of their ocular symptoms. In addition, there are few reports about CRAO patients with CCVDs received effective interventions implemented. We report the diagnosis and treatment of a Chinese CRAO patient with CCVD who received timely multidisciplinary interventional therapy to provide ideas for clinical ophthalmologists in the diagnosis and treatment of similar diseases. Case Description: A 76-year-old male patient, who had previously been diagnosed with hypertension, was admitted to hospital due to a sudden decrease in vision in his right eye for >2 days with a severe headache. After fundus photography, he was diagnosed with CRAO in the right eye. His cerebral angiography revealed multiple stenoses at arteries of his neck and brain included the right ophthalmic artery. Neurosurgery was attempted to perform a thrombolysis of the right ophthalmic artery while performing the angiography, but failed to find the opening of the right ophthalmic artery. However, through electrocardiogram (ECG) monitoring during the operation, we found that the patient had frequent ventricular premature beats, so the Department of Cardiology performed coronary arteriography for him which revealed severe stenosis of the left anterior descending (LAD) artery. The cardiologists performed a percutaneous coronary intervention (PCI) at the same time as the coronary angiography. Some 2 months later, the patient was admitted to the Neurosurgery Department to implant stent at the left vertebral artery. After stent implantation, his headache symptom improved significantly and his right eye vision improved. Conclusions: Through timely cerebral angiography and ophthalmic examinations, the patient was diagnosed with CRAO combined with CCVD, and after received multidisciplinary interventional therapy, the patient's right eye vision and headache symptom improved and more severe cardio-cerebrovascular adverse events were avoided. In treating CRAO patients, in addition to aggressive eye treatment, the systemic cardio-cerebrovascular situation of each patient should also be assessed, a timely diagnosis made, and effective interventions implemented to reduce morbidity- and mortality-related cardio-cerebrovascular events.

16.
Sci Rep ; 12(1): 12634, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879423

RESUMEN

We aimed to examine whether the efficacy of the risk of poor prognosis in patients with coronary artery disease is jointly affected by total cholesterol and baseline serum albumin in a secondary analysis of previous study. We analyzed the data of 204 patients from October 2014 to October 2017 for newly diagnosed stable CAD. The outcome was major adverse cardiac events (MACE; defined as all cause mortality, non fatal myocardial infarction, and non fatal stroke). The median duration of follow-up was 783 days. Multivariable COX model was performed to revalidate the relationship between the sALB and MACE and interaction tests were conducted to find the effects of total cholesterol on their association. A total of 28 MACE occurred among the 204 participants. The risk of MACE varied by baseline serum albumin and total cholesterol. Specifically, lower serum albumin indicated higher risk of MACE (HR 3.52, 95% CI 1.30-9.54), and a test for interaction between baseline serum albumin and total cholesterol on MACE was significant (P = 0.0005). We suggested that baseline serum albumin and total cholesterol could interactively affect the risk of poor prognosis of patients with coronary artery diseases. Our findings need to be confirmed by further randomized trials.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Colesterol , Humanos , Infarto del Miocardio/complicaciones , Valor Predictivo de las Pruebas , Pronóstico , Factores de Riesgo , Albúmina Sérica
17.
Chem Commun (Camb) ; 58(22): 3601-3604, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35103744

RESUMEN

Novel two-dimensional kagome metal-organic frameworks with mononuclear Zr4+/Hf4+ nodes chelated by benzene-1,4-dihydroxamate linkers were synthesized. The MOFs, namely SUM-1, are chemically robust and kinetically favorable, as confirmed by theoretical and experimental studies. SUM-1(Zr) can be readily made into large (∼100 µm) single crystals and nanoplates (∼50 nm), constituting a versatile MOF platform.

18.
ChemSusChem ; 15(1): e202102217, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34725931

RESUMEN

Ammonia is a widely used toxic industrial chemical that can cause severe respiratory ailments. Therefore, understanding and developing materials for its efficient capture and controlled release is necessary. One such class of materials is 3D porous metal-organic frameworks (MOFs) with exceptional surface areas and robust structures, ideal for gas storage/transport applications. Herein, interactions between ammonia and UiO-67-X (X: H, NH2 , CH3 ) zirconium MOFs were studied under cryogenic, ultrahigh vacuum (UHV) conditions using temperature-programmed desorption mass spectrometry (TPD-MS) and in-situ temperature-programmed infrared (TP-IR) spectroscopy. Ammonia was observed to interact with µ3 -OH groups present on the secondary building unit of UiO-67-X MOFs via hydrogen bonding. TP-IR studies revealed that under cryogenic UHV conditions, UiO-67-X MOFs are stable towards ammonia sorption. Interestingly, an increase in the intensity of the C-H stretching mode of the MOF linkers was detected upon ammonia exposure, attributed to NH-π interactions with linkers. These same binding interactions were observed in grand canonical Monte Carlo simulations. Based on TPD-MS, binding strength of ammonia to three MOFs was determined to be approximately 60 kJ mol-1 , suggesting physisorption of ammonia to UiO-67-X. In addition, missing linker defect sites, consisting of H2 O coordinated to Zr4+ sites, were detected through the formation of nNH3 ⋅H2 O clusters, characterized through in-situ IR spectroscopy. Structures consistent with these assignments were identified through density functional theory calculations. Tracking these bands through adsorption on thermally activated MOFs gave insight into the dehydroxylation process of UiO-67 MOFs. This highlights an advantage of using NH3 for the structural analysis of MOFs and developing an understanding of interactions between ammonia and UiO-67-X zirconium MOFs, while also providing directions for the development of stable materials for efficient toxic gas sorption.


Asunto(s)
Estructuras Metalorgánicas , Adsorción , Amoníaco , Sitios de Unión
19.
Bioorg Med Chem Lett ; 21(23): 7045-9, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22004724

RESUMEN

A series of novel cationic lipids based on 1,4,7-triazacyclononane (TACN) with different hydrophobic chains were synthesized via the formation of a biodegradable ester bond. These lipids were found to have good buffering capacity at the pH range of 5.0-6.5, which is similar to that of the acidic endosomal compartments. The liposomes formed from these lipids and DOPE could condense DNA into nanoparticles with proper sizes. In vitro experiments showed moderate to good gene transfection efficiency of the formed lipoplexes. The structure-activity relationships of this type of lipids were discussed.


Asunto(s)
Ésteres/química , Técnicas de Transferencia de Gen , Compuestos Heterocíclicos/química , Lípidos/química , Cationes , Células HEK293 , Humanos , Estructura Molecular , Relación Estructura-Actividad
20.
Water Res ; 194: 116909, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33609905

RESUMEN

In this work, a rhamnolipid (RL) pretreatment technology was proposed to promote methane production from two-phase anaerobic digestion of waste activated sludge. In the first phase (i.e., acidogenic phase), the WAS hydrolysis and acidogenesis were significantly enhanced after RL pretreatment for 4 day, under which the concentration of soluble protein and the short-chain fatty acids (SCFA) in the presence of RL at 0.04 g/g TSS was respectively 2.50 and 5.02 times higher than that without RL pretreatment. However, methane production was inhibited in the presence of RL. In the second phase (i.e., methanogenic phase), batch biochemical methane potential tests suggested that the addition of RL is effective in promoting anaerobic methane production. With an increase of RL dosage from 0 to 0.04 g/g TSS, the cumulative methane yield increased from 100.42 ± 3.01 to 168.90 ± 5.42 mL. Although the added RL could be utilized to produce methane, it was not the major contributor to the enhancement of methane yield. Further analysis revealed that total cumulative yield from the entire two-phase anaerobic digestion (sum of the yield of the acidogenic phase and methanogenic phase) increased from 113.42 ± 3.56 to 164.18 ± 5.20 mL when RL dosage increased from 0 to 0.03 g/g TSS, indicating that the addition of RL induced positive effect on the methane production of the entire two-phase anaerobic digestion. The enzyme activity analysis showed that although higher dosages of RL still inhibited the microorganisms related to methanogenesis to some extends in the methanogenic phase, the inhibitory effect was significantly weakened compared to the acidogenic phase. Microbial analysis revealed that RL reduced the abundance of Candidatus_Methanofastidiosum sp. while increased the abundance of Methanosaeta sp., causing the major methanogenesis pathway to change from hydrogenotrophic to aceticlastic. Moreover, the community of hydrolytic microbes and acidogens was shifted in the direction that is conducive to hydrolysis-acidogenesis. The findings reported not only expand the application field of RL, but also may provide supports for sustainable operation of wastewater treatment plants (WWTPs).


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Reactores Biológicos , Glucolípidos , Metano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA