Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35684393

RESUMEN

For the high-valued utilization of hemicelluloses and for realizing the controllable synthesis of NPs, this paper's aim is to combine xylan, chitosan and nanometal materials at the same time. In this research study, firstly, propargyl xylan was synthesized via nucleophilic substitution reaction between xylan and propargyl bromide in NaOH solution. On the other hand, a tosyl group was introduced onto the 6th position of synthesized quaternized chitosan (QCS), and the azide group replaced the tosyl group to obtain 6-amido-QCS (QCS-N3). The synthesis conditions of the above reactions were optimized. Subsequently, the novel xylan-click-QCS polymer was obtained via click reaction between terminal alkyne groups on the xylan chains and azide groups on QCS. Then, AgNPs and AuNPs were synthesized by adopting the xylan-click-QCS polymer as the reducing and stabilizing agent, and the reaction conditions were optimized to obtain well-dispersed and highly stable nanoparticles. There were two kinds of Ag nanomaterials, with diameters of 10~20 nm and 2~5 nm, respectively, indicating the formation of Ag nanoclusters, except for Ag nanoparticles, in this reaction. The diameter of the synthesized AuNPs was 20~30 nm, which possessed a more uniform size distribution. The Ag nanoclusters with a smaller size (2~5 nm) could inhibit MCF-7 cell proliferation effectively, indicating their application potential in cancer therapy. The study gives a new approach to the high-value utilization of biopolymers.


Asunto(s)
Quitosano , Nanopartículas del Metal , Azidas , Química Clic , Oro , Polímeros , Plata , Xilanos
2.
ACS Appl Mater Interfaces ; 15(32): 39017-39024, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37526528

RESUMEN

Directional liquid transport along one-dimensional structures finds vast applications in fog harvest, liquid separation, sensing, chemical synthesis, and numerous other scenarios. Dynamically, the liquid transport speed is boosted by the driving force and retarded by the hysteresis from the liquid/substrate interface. A capillary force-relied lubricant film or a covalently attached polymer brush on the surface could increase liquid mobility temporarily by reducing the interfacial hysteresis. However, the easy depletion of the lubricant film and the stringent restriction of the substrate severely hamper droplet's directional transport in a long run. Herein, we report a feasible and durable hysteresis reduction design with the polymer-brush stabilized lubricating surface (PBSLS). The PBSLS is achieved through incorporating liquid-like polydimethylsiloxane brushes (b-PDMS) and the liquid PDMS oligomer (o-PDMS). The covalent attached b-PDMS "locks" the lubricant oil o-PDMS to the cone surface via strong intermolecular van der Waals force in between. The PBSLS on the cone surface can be sustained under constant shearing force from liquid transport for at least 6 h. A cone with such PBSLS shows increased ability of droplet transport and enhanced fog collection performance in the long run. This design supplies an effective way toward regulating macro-level interfacial performance through surface design on the molecular level.

3.
J Colloid Interface Sci ; 549: 123-132, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31029840

RESUMEN

Recently, two-way oil/water separation materials bearing both "water-removing" and "oil-removing" functions are of great interest for treating environmental water pollution. Despite having switchable surface wettability, these materials are generally designed to possess superhydrophilicity in air, which, standing on the viewpoint of thermodynamics, is unstable and easy to lose the superwetting property. Concerning the full exploitation of sustainable biomass resources, herein, we use soy protein and ramie fiber to fabricate a cross-linked biocomposite whose amphiphilicity can be tuned by introducing a low surface-energy agent, octadecylamine. The resultant composite can be used as a coating for stainless steel meshes, preparing stably hydrophobic surface in air as well as achieving dual superlyophobicity under liquid that is required for efficiently separating light and heavy oils from water. Furthermore, a high separation efficiency is acquired for both light oil/water and heavy oil/water mixtures during cyclicusage. Notably, the fully bio-based coating displays high resistance against mechanical abrasion and harsh chemical corrosions (acid, alkaline, and salt) without losing high separation efficiency, indicating the potential application of such material in oily wastewater treatment.


Asunto(s)
Materiales Biocompatibles/química , Reactivos de Enlaces Cruzados/química , Aceites/química , Agua/química , Boehmeria/química , Materiales Biocompatibles Revestidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Soja/química , Acero Inoxidable/química , Propiedades de Superficie , Aguas Residuales , Purificación del Agua/métodos , Humectabilidad
4.
Carbohydr Polym ; 140: 122-8, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26876835

RESUMEN

This work reported a facile and green method to prepare highly stable and uniformly distributed Au nanoparticles (AuNPs), using biopolymer xylan as stabilizing and reducing agent. Full characterizations were performed and the results revealed that AuNPs were well dispersed with the diameters of 10-30nm. The optimal condition was as follows: the ratio of xylan to HAuCl4 was 150mg:15mg, reaction temperature was 80°C and reaction time was 40min. The xylan/AuNPs composite exhibited highly selective and sensitive sensing of cysteine in aqueous solution, it could distinguish cysteine among dozens kinds of amino acids, and the limit of detection (LOD) for cysteine was calculated as 0.57µM. Besides, the xylan/AuNPs composite was applied for Cys detection in human serum. This study provides a new way for high-value utilization of the rich biomass resource and a cheap, rapid and simple method for Cys detection in real biological samples.


Asunto(s)
Cisteína/análisis , Oro/química , Límite de Detección , Nanopartículas del Metal/química , Xilanos/química , Cisteína/sangre , Humanos , Polisacáridos/química , Sustancias Reductoras/química
5.
Carbohydr Polym ; 137: 375-381, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26686141

RESUMEN

Quaternized chitosan/organic montmorillonite (QCS/OMMT) nanocomposites were synthesized under microwave irradiation. XRD and TEM analyses confirmed that QCS intercalated into the interlayer of OMMT and clay layers distributed uniformly in QCS matrix. QCS/OMMT nanocomposites were used as retention and drainage-aid agents in pulp suspension, during which the interface behavior of positively charged QCS/OMMT nanocomposites on negatively charged cellulosic substrate and CaCO3 substrate was investigated. With the addition of QCS/OMMT nanocomposites, the particle size of cellulosic substrate increased, while the beating degree and the total residual carbohydrate concentration decreased. The results indicated that QCS/OMMT nanocomposite made a difference in paper making process through the charge patch interaction. Moreover, QCS/OMMT nanocomposites had a strong interaction with CaCO3, which was significant in fiber fines retention and paper production. When the mass ratio of QCS to OMMT was 8:1, the QCS/OMMT nanocomposite demonstrated the strongest retention and drainage-aid effect.


Asunto(s)
Bentonita/química , Celulosa/química , Quitosano/química , Nanocompuestos/química
7.
Nanoscale ; 7(2): 690-700, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25429650

RESUMEN

This work reported a facile and green method to prepare highly stable and uniformly distributed Ag nanoparticles (AgNPs), in which a biopolymer xylan was used as the stabilizing and reducing agent via the Tollens reaction under microwave irradiation. Different variables were evaluated to optimize the reaction conditions. Complete characterization was performed using UV-Vis, XRD, TEM, size distribution analysis and XPS. The results revealed that AgNPs were well dispersed with diameters of 20-35 nm due to the packing of xylan. The optimal conditions were as follows: microwave irradiation temperature was 60-70 °C, microwave power was 800 W, microwave time was 30 min, the ratio of xylan to AgNO3 was 50 mg: 0.13 mmol, and ammonia concentration was 2%. In addition, the AgNPs were collected via high-speed centrifugal separation, and the supernatant was tested by HPAEC, GPC, FT-IR, and NMR. By comparing the structure of xylan before and after the reaction, the reaction mechanism was discussed. It was noted that the xylan-AgNPs composites showed high selectivity and sensitivity for Hg(2+) detection. The other 15 metal ions used had no obvious effect on the detection of Hg(2+), and the limit of detection (LOD) was 4.6 nM, which is lower than the allowed maximum level of 30 nM for drinking water by WHO. In addition, the xylan-AgNPs composites can be applied for Hg(2+) detection in real water samples. This study provides a novel way for the high-value utilization of a rich biomass resource, and a green method for the synthesis of AgNPs for the selective and sensitive detection of harmful heavy metals.


Asunto(s)
Mercurio/análisis , Nanopartículas del Metal/química , Plata/química , Xilanos/química , Agua Dulce/química , Tecnología Química Verde , Iones/química , Límite de Detección , Microondas , Tamaño de la Partícula , Soluciones/química , Espectrofotometría Ultravioleta , Temperatura
8.
ACS Appl Mater Interfaces ; 6(18): 16147-55, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25144307

RESUMEN

This study reports the rapid preparation of silver nanoparticles (AgNPs) from Tollens' reagent under microwave irradiation. In the synthesis, lignin with reducing groups and spatial three-dimensional structure was used as reducing and stabilizing agents without other chemical reagents, and the effects of the ratio of lignin to Ag(+), reaction temperature, and heating time on the synthesis of AgNPs were investigated. The obtained AgNPs were further characterized by UV-vis, Malvern particle size, TEM, XRD, and XPS analyses. The structural changes of lignin before and after reaction were also studied by FT-IR, (1)H NMR, (13)C NMR, and GC-MS. The results revealed that the obtained AgNPs were mostly spherical with diameters of around 24 nm. The optimum reaction conditions were a ratio 50 mg of lignin to 0.3 mM of Ag(+), a microwave irradiation temperature of 60 °C, and a heating time of 10 min. Moreover, AgNPs redispersed well in water and ethanol after centrifugation for the removal of lignin. During the formation of AgNPs, lignin was oxidized, and the side chains of lignin were partly disrupted into small molecules, such as hydrocarbon and alcohol. The resultant lignin-AgNPs showed highly selective sensing detection for Hg(2+), and the color of the lignin-AgNP solution containing Hg(2+) decreased gradually with increasing amounts of Hg(2+) within seconds, but the other 19 metal ions had little effect on the color and surface plasmon absorption band of the lignin-AgNPs. Also, there was a linear relationship between the absorbance and Hg(2+) concentration, with a limit of detection concentration of 23 nM. This study provides not only a new way to take advantage of agricultural and forestry residues, but also a green and rapid method for the synthesis of AgNPs to detect the toxic ion Hg(2+) selectively and sensitively.


Asunto(s)
Lignina/química , Mercurio/análisis , Nanopartículas del Metal/química , Nanotecnología/métodos , Plata/química , Límite de Detección , Mercurio/química , Microondas
9.
Carbohydr Polym ; 92(2): 1078-85, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23399131

RESUMEN

Microwave irradiation was used to intercalate quaternized carboxymethyl chitosan oligosaccharide (QCMCO) into the layer of rectorite (REC) to prepare QCMCO/REC (QCOR) nanocomposites in 70 min, which was much faster than conventional heating method of 48 h. The structures and morphology of QCOR nanocomposites were characterized by XRD, TEM, FT-IR and zeta potential analysis, the thermal behavior and antimicrobial activity of QCOR nanocomposites were also discussed. The results revealed that the interlayer distance of QCOR nanocomposites enlarged with the increase of QCMCO content, hydrogen bonding and electrostatic interaction between QCMCO and REC took place. As compared to QCMCO, the crystallinity of QCOR nanocomposites reduced, the thermal stability of QCOR nanocomposites improved, and the inhibitory activity of QCOR nanocomposites against microorganisms was stronger, the lowest minimum inhibition concentration was only 0.025% (w/v), the antimicrobial mechanism was discussed via TEM and SEM micrographs.


Asunto(s)
Silicatos de Aluminio/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Quitosano/química , Quitosano/farmacología , Minerales/química , Nanocompuestos/química , Oligosacáridos/química , Aspergillus niger/efectos de los fármacos , Bacterias/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Temperatura
10.
Carbohydr Polym ; 98(1): 835-41, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23987419

RESUMEN

A facile method is reported to prepare Maillard reaction products (MRPs) from chitosan and xylan in co-solvent ionic liquid. UV absorbance and fluorescence changes were regarded as indicators of the occurrence of Maillard reaction. FT-IR, NMR, XRD and TG were used to investigate the structure of chitosan-xylan conjugate. The results revealed that when chitosan reacted with xylan in ionic liquid, the hydrogen bonds in chitosan were destroyed, the facts resulted in the formation of chitosan-xylan MRPs. Moreover, when the mass ratio of chitosan to xylan was 1:1, the Maillard reaction proceeded easily. In addition, relatively high antioxidant property was also noted for the chitosan-xylan conjugate with mass ratio 1:1. So the obtained chitosan-xylan MRP is a promising antioxidant agent for food industry.


Asunto(s)
Quitosano/química , Depuradores de Radicales Libres/química , Líquidos Iónicos/química , Reacción de Maillard , Xilanos/química , Soluciones , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA