Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 111(4): 1015-1031, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35699670

RESUMEN

Bud dormancy helps woody perennials survive winter and activate robust plant development in the spring. For apple (Malus × domestica), short-term chilling induces bud dormancy in autumn, then prolonged chilling leads to dormancy release and a shift to a quiescent state in winter, with subsequent warm periods promoting bud break in spring. Epigenetic regulation contributes to seasonal responses such as vernalization. However, how histone modifications integrate seasonal cues and internal signals during bud dormancy in woody perennials remains largely unknown. Here, we show that H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. The global changes in gene expression strongly correlated with changes in H3K4me3, but not H3K27me3. High expression of DORMANCY-ASSOCIATED MADS-box (DAM) genes, key regulators of dormancy, in autumn was associated with high H3K4me3 levels. In addition, known DAM/SHORT VEGETATIVE PHASE (SVP) target genes significantly overlapped with H3K4me3-modified genes as bud dormancy progressed. These data suggest that H3K4me3 contributes to the central dormancy circuit, consisting of DAM/SVP and abscisic acid (ABA), in autumn. In winter, the lower expression and H3K4me3 levels at DAMs and gibberellin metabolism genes control chilling-induced release of dormancy. Warming conditions in spring facilitate the expression of genes related to phytohormones, the cell cycle, and cell wall modification by increasing H3K4me3 toward bud break. Our study also revealed that activation of auxin and repression of ABA sensitivity in spring are conditioned at least partly through temperature-mediated epigenetic regulation in winter.


Asunto(s)
Malus , Ácido Abscísico/metabolismo , Cromatina/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Histonas , Malus/metabolismo , Latencia en las Plantas/genética
2.
J Integr Plant Biol ; 65(10): 2304-2319, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37526209

RESUMEN

Proanthocyanidins (PAs) are specialized metabolites that influence persimmon fruit quality. Normal astringent (A)-type and non-astringent (NA)-type mutants show significant variation in PA accumulation, but the influencing mechanism remains unclear. In this study, among the six identified DTXs/MATEs proteins associated with PA accumulation, we observed that allelic variation and preferential transport by DkDTX5/MATE5 induced variation in PA accumulation for A-type and NA-type fruit. The expression pattern of DkDTX5/MATE5 was correlated with PA accumulation in NA-type fruit. Upregulation and downregulation of DkDTX5/MATE5 promoted and inhibited PA accumulation, respectively, in the NA-type fruit. Interestingly, transporter assays of Xenopus laevis oocytes indicated that DkDTX5/MATE5 preferentially transported the PA precursors catechin, epicatechin, and epicatechin gallate, resulting in their increased ratios relative to the total PAs, which was the main source of variation in PA accumulation between the A-type and NA-type. The allele lacking Ser-84 in DkDTX5/MATE5 was identified as a dominantly expressed gene in the A-type and lost its transport function. Site-directed mutagenesis revealed that DkDTX5/MATE5 binds to PA precursors via Ser-84. These findings clarify the association between the transporter function of DkDTX5/MATE5 and PA variation, and can contribute to the breeding of new cultivars with improved fruit quality.


Asunto(s)
Diospyros , Proantocianidinas , Diospyros/genética , Diospyros/metabolismo , Astringentes/metabolismo , Frutas/genética , Frutas/metabolismo , Fitomejoramiento , Proantocianidinas/metabolismo
3.
Plant J ; 106(6): 1708-1727, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33835602

RESUMEN

Proanthocyanidins (PAs) are phenolic secondary metabolites that contribute to the protection of plant and human health. Persimmon (Diospyros kaki Thunb.) can accumulate abundant PAs in fruit, which cause a strong sensation of astringency. Proanthocyanidins can be classified into soluble and insoluble PAs; the former cause astringency but the latter do not. Soluble PAs can be converted into insoluble PAs upon interacting with acetaldehydes. We demonstrate here that DkMYB14, which regulates the accumulation of PA in persimmon fruit flesh, is a bifunctional transcription factor that acts as a repressor in PA biosynthesis but becomes an activator when involved in acetaldehyde biosynthesis. Interestingly, both functions contribute to the elimination of astringency by decreasing PA biosynthesis and promoting its insolubilization. We show that the amino acid Gly39 in the R2 domain and the ethylene response factor-associated amphiphilic repression-like motif in the C-terminal of DkMYB14 are essential for the regulation of both PA and acetaldehyde synthesis. The repressive function of DkMYB14 was lost after the mutation of either motif, and all activities of DkMYB14 were eliminated following the mutation of both motifs. Our results demonstrate that DkMYB14 functions as both a transcriptional activator and a repressor, directly repressing biosynthesis of PA and promoting its insolubilization, resulting in non-astringency in persimmon.


Asunto(s)
Diospyros/metabolismo , Frutas/química , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Proantocianidinas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Diospyros/genética , Proteínas de Plantas/genética , Semillas , Factores de Transcripción/genética , Regulación hacia Arriba
4.
J Exp Bot ; 73(22): 7312-7325, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36070755

RESUMEN

Fruit shape is an important trait that attracts consumers, and the regulation of genes related to cell division is crucial for shaping multicellular organs. In Arabidopsis, MYB3R transcription factors, which harbor three imperfect repeats in the N-terminus, control organ growth by regulating cell division. However, the function of MYB3Rs in tomato remains unknown. Here, we characterized tomato SlMYB3R3, which was preferentially expressed in flowers and placed in a subclade with two Arabidopsis cell cycle suppressors (MYB3R3/5). slmyb3r3 knockout mutants were generated using the CRISPR/Cas9 system. Morphological observation of the slmyb3r3 mutants showed that fruits that were elongated and occasionally peanut-like in shape were formed, which was caused by significantly increased cell numbers in the longitudinal direction. Transcriptome and yeast one-hybrid assay results suggested that SlMYB3R3 acted as a suppressor of cell-cycle-related genes by binding to the mitosis-specific activator (MSA) motifs in their promoters. Taken together, knock out of the suppressor SlMYB3R3 leads to elongated fruit, which results from the altered cell division pattern at the ovary stage, by regulating cell-cycle-related genes in an MSA-dependent manner. Our results suggest that SlMYB3R3 and its orthologs have the potential to change fruit shape as part of the molecular breeding of fruit crops.


Asunto(s)
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Factores de Transcripción/genética , Edición Génica , División Celular , Ciclo Celular/genética
5.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328620

RESUMEN

Persimmon fruits accumulate a large amount of proanthocyanidins (PAs), which makes an astringent sensation. Proanthocyanidins (PAs) are the polymers of flavan-3-ols stored in plant vacuoles under laccase activation. A laccase gene, DkLAC2, is putatively involved in PAs biosynthesis and regulated by microRNA (DkmiR397) in persimmon. However, the polymerization of PAs in association with miRNA397 still needs to be explored in persimmon. Here, we identified pre-DkmiR397 and its target gene DkLAC2 in 'Eshi 1' persimmon. Histochemical staining with GUS and dual luciferase assay both confirmed DkmiR397-DkLAC2 binding after co-transformation in tobacco leaves. Diverse expression patterns of DkLAC2 and DkmiR397 were exhibited during persimmon fruit development stages. Moreover, a contrasting expression pattern was also observed after the combined DkLAC2-miR397 transformation in persimmon leaves, suggesting that DkmiR397 might be a negative regulator of DkLAC2. Similarly, the transient transformation of DkmiR397 in persimmon fruit discs in vitro also reduced PA accumulation by repressing DkLAC2, whereas the up-regulation of DkLAC2 increased the accumulation of PAs by short tandem target mimic STTM-miR397. A similar expression pattern was observed when overexpressing of DkLAC2 in Arabidopsis wild type (WT) and overexpression of DkLAC2, DkmiR397 in persimmon leaf callus. Our results revealed that the role of DkmiR397 repressed the expression of DkLAC2 concerning PA biosynthesis, providing a potential target for the manipulation of PAs metabolism in persimmon.


Asunto(s)
Arabidopsis , Diospyros , Proantocianidinas , Arabidopsis/metabolismo , China , Diospyros/genética , Diospyros/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Lacasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo
6.
BMC Plant Biol ; 21(1): 356, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34325657

RESUMEN

BACKGROUND: Proanthocyanidins (PAs) are important plant secondary metabolites that confer flavor, nutritional value, and resistance to pathogens. Persimmon is one of the PA richest crops. Mature fruits can be inedible because of the astringency caused by high PA levels and need to go through a de-astringency treatment before consumption. The molecular basis for PA accumulation is poorly known, particularly transcriptional regulators. We characterised three genotypes ('Luotiantianshi' (LT), 'Mopanshi' (MP), and 'Youhou' (YH)) with different PA accumulation patterns using an approach that combined PacBio full-length sequencing and Illumina-based RNA sequencing to build high-quality full-length transcriptomes. Additionally, we analysed transcriptome dynamics of the three genotypes (LT, MP, and YH) at four key fruit developmental stages. RESULTS: A total of 96,463 transcripts were obtained. We identified 80,075 protein-coding sequences (CDSs), 71,137 simple sequence repeats (SSRs), and 27,845 long noncoding RNAs (lncRNAs). Pearson correlation coefficient (PCC), principal component analysis (PCA), and differentially expressed transcripts (DETs) analyses indicated that the four different developmental stages within a genotype exhibited similar transcriptome activities. A total of 2,164 transcripts specific to each fruit developmental stage were detected. The transcripts specific to early stages were attributed to phenylpropanoid and flavonoid biosynthesis. Co-expression network analyses revealed MEbrown and MEblue modules were strongly associated to PA accumulation. From these two modules, 20 hub TFs are potential regulators for PA accumulation. Among them, Cluster_78388 (SBP protein), Cluster_63454 (bZIP protein), and Cluster_66595 (MYB protein) appear to involve in the PA biosynthesis in Chinese genotypes. CONCLUSIONS: This is the first high-quality reference transcriptome for commercial persimmon. Our work provides insights into the molecular pathways underlying PA accumulation and enhances our global understanding of transcriptome dynamics throughout fruit development.


Asunto(s)
Diospyros/crecimiento & desarrollo , Diospyros/genética , Frutas/crecimiento & desarrollo , Frutas/genética , Proantocianidinas/biosíntesis , Proantocianidinas/genética , Factores de Transcripción/fisiología , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo
7.
Molecules ; 26(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069333

RESUMEN

Husk and pellicle as the agri-food waste in the walnut-product industry are in soaring demand because of their rich polyphenol content. This study investigated the differential compounds related to walnut polyphenol between husk and pellicle during fruit development stage. By using ultra-high performance liquid chromatography-quadrupole-orbitrap (UHPLC-Q-Orbitrap), a total of 110 bioactive components, including hydrolysable tannins, flavonoids, phenolic acids and quinones, were tentatively identified, 33 of which were different between husk and pellicle. The trend of dynamic content of 16 polyphenols was clarified during walnut development stage by high-performance liquid chromatography (HPLC). This is the first time to comprehensive identification of phenolic compounds in walnut husk and pellicle, and our results indicated that the pellicle is a rich resource of polyphenols. The dynamic trend of some polyphenols was consistent with total phenols. The comprehensive characterization of walnut polyphenol and quantification of main phenolic compounds will be beneficial for understanding the potential application value of walnut and for exploiting its metabolism pathway.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Juglans/química , Espectrometría de Masas/métodos , Fenoles/análisis , Flavonoides/análisis , Quinonas/análisis , Taninos/análisis
8.
Plant Biotechnol J ; 15(11): 1409-1419, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28301712

RESUMEN

Removal of astringency by endogenously formed acetaldehyde, achieved by postharvest anaerobic treatment, is of critical importance for many types of persimmon fruit. Although an anaerobic environment accelerates de-astringency, it also has the deleterious effect of promoting excessive softening, reducing shelf life and marketability. Some hypoxia-responsive ethylene response factors (ERFs) participate in anaerobic de-astringency, but their role in accelerated softening was unclear. Undesirable rapid softening induced by high CO2 (95%) was ameliorated by adding the ethylene inhibitor 1-MCP (1 µL/L), resulting in reduced astringency while maintaining firmness, suggesting that CO2 -induced softening involves ethylene signalling. Among the hypoxia-responsive genes, expression of eight involved in fruit cell wall metabolism (Dkß-gal1/4, DkEGase1, DkPE1/2, DkPG1, DkXTH9/10) and three ethylene response factor genes (DkERF8/16/19) showed significant correlations with postdeastringency fruit softening. Dual-luciferase assay indicated that DkERF8/16/19 could trans-activate the DkXTH9 promoter and this interaction was abolished by a mutation introduced into the C-repeat/dehydration-responsive element of the DkXTH9 promoter, supporting the conclusion that these DkERFs bind directly to the DkXTH9 promoter and regulate this gene, which encodes an important cell wall metabolism enzyme. Some hypoxia-responsive ERF genes are involved in deastringency and softening, and this linkage was uncoupled by 1-MCP. Fruit of the Japanese cultivar 'Tonewase' provide a model for altered anaerobic response, as they lost astringency yet maintained firmness after CO2 treatment without 1-MCP and changes in cell wall enzymes and ERFs did not occur.


Asunto(s)
Diospyros/metabolismo , Etilenos/farmacología , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Hipoxia/metabolismo , Dióxido de Carbono/metabolismo , Pared Celular/enzimología , Pared Celular/metabolismo , Ciclopropanos , Diospyros/enzimología , Diospyros/genética , Diospyros/crecimiento & desarrollo , Frutas/enzimología , Frutas/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Hipoxia/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Taninos/metabolismo , Factores de Transcripción
9.
BMC Plant Biol ; 15: 11, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25604351

RESUMEN

BACKGROUND: microRNAs (miRNAs) have been shown to play key roles in regulating gene expression at post-transcriptional level, but miRNAs associated with natural deastringency of Chinese pollination-constant nonastringent persimmon (CPCNA) have never been identified. RESULTS: In this study, two small RNA libraries established using 'Eshi No. 1' persimmon (Diospyros kaki Thunb.; CPCNA) fruits collected at 15 and 20 weeks after flowering (WAF) were sequenced through Solexa platform in order to identify miRNAs involved in deastringency of persimmon. A total of 6,258,487 and 7,634,169 reads were generated for the libraries at 15 and 20 WAF, respectively. Based on sequence similarity and hairpin structure prediction, 236 known miRNAs belonging to 65 miRNA families and 33 novel miRNAs were identified using persimmon transcriptome data. Sixty one of the characterized miRNAs exhibited pronounced difference in the expression levels between 15 and 20 WAF, 17 up-regulated and 44 down-regulated. Expression profiles of 12 conserved and 10 novel miRNAs were validated by stem loop qRT-PCR. A total of 198 target genes were predicted for the differentially expressed miRNAs, including several genes that have been reported to be implicated in proanthocyanidins (PAs, or called tannin) accumulation. In addition, two transcription factors, a GRF and a bHLH, were experimentally confirmed as the targets of dka-miR396 and dka-miR395, respectively. CONCLUSIONS: Taken together, the present data unraveled several important miRNAs in persimmon. Among them, miR395p-3p and miR858b may regulate bHLH and MYB, respectively, which are influenced by SPL under the control of miR156j-5p and in turn regulate the structural genes involved in PA biosynthesis. In addition, dka-miR396g and miR2911a may regulate their target genes associated with glucosylation and insolubilization of tannin precursors. All of these miRNAs might play key roles in the regulation of (de)astringency in persimmon fruits under normal development conditions.


Asunto(s)
Diospyros/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/genética , Polinización/genética , Secuencia de Bases , Diospyros/crecimiento & desarrollo , Flores/genética , Frutas/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Ontología de Genes , MicroARNs/química , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Proantocianidinas/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Factores de Tiempo
10.
BMC Genomics ; 15: 112, 2014 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-24507483

RESUMEN

BACKGROUND: The persimmon Diospyros kaki Thunb. is an important commercial and deciduous fruit tree. The fruits have proanthocyanidin (PA) content of >25% of the dry weight and are astringent. PAs cause astringency that is often undesirable for human consumption; thus, the removal of astringency is an important practice in the persimmon industry. Soluble PAs can be converted to insoluble PAs by enclosing the fruit in a polyethylene bag containing diluted ethanol. The genomic resource development of the persimmon is delayed because of its large and complex genome. Second-generation sequencing is an efficient technique for generating huge sequences that can represent a large number of genes and their expression levels. RESULTS: We used 454 sequencing for the de novo transcriptome assembly of persimmon fruit treated with 5% ethanol (Tr library) and without treatment as the control (Co library) to investigate the genes and pathways that control PA biosynthesis and other secondary metabolites. We obtained 374.6 Mb in clean nucleotides comprising 624,690 and 626,203 clean sequencing reads from the Tr and Co libraries, respectively. We also identified 83,898 unigenes; 54,719 (~65.2%) unigenes were annotated based on similarity searches with known proteins. Up to 14,954 of the unigenes were assigned to the protein database Clusters of Orthologous Groups (COG), 24,337 were assigned to the term annotation database of Gene Ontology (GO), and 45,506 were assigned to 200 pathways in the database of Kyoto Encyclopedia of Genes and Genomes (KEGG). The two libraries were compared to identify the differentially expressed unigenes. The expression levels of genes involved in PA biosynthesis and tannin coagulation were analysed, and some of them were verified using quantitative real time PCR (qRT-PCR). CONCLUSIONS: This study provides abundant genomic data for persimmon and offers comprehensive sequence resources for persimmon research. The transcriptome dataset will improve our understanding of the molecular mechanisms of tannin coagulation and other biochemical processes in persimmons.


Asunto(s)
Diospyros/genética , Etanol/química , Genes de Plantas , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , China , Frutas/genética , Biblioteca de Genes , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Polinización , Proantocianidinas/biosíntesis , Proantocianidinas/química , Piruvato Descarboxilasa/genética , Piruvato Descarboxilasa/metabolismo
11.
Metabolites ; 14(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38786760

RESUMEN

The tomato is a fruit vegetable rich in nutritional and medicinal value grown in greenhouses and fields worldwide. It is severely sensitive to heat stress, which frequently occurs with rising global warming. Predictions indicate a 0.2 °C increase in average surface temperatures per decade for the next three decades, which underlines the threat of austere heat stress in the future. Previous studies have reported that heat stress adversely affects tomato growth, limits nutrient availability, hammers photosynthesis, disrupts reproduction, denatures proteins, upsets signaling pathways, and damages cell membranes. The overproduction of reactive oxygen species in response to heat stress is toxic to tomato plants. The negative consequences of heat stress on the tomato have been the focus of much investigation, resulting in the emergence of several therapeutic interventions. However, a considerable distance remains to be covered to develop tomato varieties that are tolerant to current heat stress and durable in the perspective of increasing global warming. This current review provides a critical analysis of the heat stress consequences on the tomato in the context of global warming, its innate response to heat stress, and the elucidation of domains characterized by a scarcity of knowledge, along with potential avenues for enhancing sustainable tolerance against heat stress through the involvement of diverse advanced technologies. The particular mechanism underlying thermotolerance remains indeterminate and requires further elucidatory investigation. The precise roles and interplay of signaling pathways in response to heat stress remain unresolved. The etiology of tomato plants' physiological and molecular responses against heat stress remains unexplained. Utilizing modern functional genomics techniques, including transcriptomics, proteomics, and metabolomics, can assist in identifying potential candidate proteins, metabolites, genes, gene networks, and signaling pathways contributing to tomato stress tolerance. Improving tomato tolerance against heat stress urges a comprehensive and combined strategy including modern techniques, the latest apparatuses, speedy breeding, physiology, and molecular markers to regulate their physiological, molecular, and biochemical reactions.

12.
Plants (Basel) ; 13(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891249

RESUMEN

The main units of persimmon proanthocyanidins (PAs) are composed of flavan-3-ols including epigallocatechin gallate (EGCG) and gallocatechin gallate (GCG). Precise quantification of GCG is challenging due to its trace amounts in persimmon. In this study, to establish the optimal UHPLC-Q-Exactive Orbitrap/MS technique for the determination of PAs monomer composition in persimmon fruit flesh of different astringency types, mass spectrometry and chromatographic conditions were optimized. The results showed that when operating in negative ion mode, using a T3 chromatographic column (a type of C18 column with high-strength silica), acetonitrile as the organic phase, a 0.1% mobile phase acid content, and a mobile phase flow rate of 0.2 mL/min, the chromatographic peak shape and resolution of the PAs monomer composition improved. Additionally, there was no tailing phenomenon observed in the chromatographic peaks. At the same time, the intra-day and inter-day precision, stability, and recovery of the procedure were good. The relative standard deviation (RSD) of stability was less than 5%. The intra-day precision was in the range of 1.14% to 2.36%, and the inter-day precision ranged from 1.03% to 2.92%, both of which were less than 5%. The recovery rate ranged from 94.43% to 98.59% with an RSD less than 5%. The results showed that the UHPLC-Q-Exactive Orbitrap/MS technique established in this study can not only be used for the quantification of EGCG and GCG in persimmon fruit flesh but also be suitable for analyzing other PAs monomer compositions, providing robust support for the related research on persimmon PAs.

13.
Mol Biol Rep ; 40(4): 2809-20, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23224657

RESUMEN

Proanthocyanidins (PAs, condensed tannins) are important health-promoting phytochemicals that are abundant in many plants. Oriental persimmon (Diospyros kaki Thunb.) is an excellent source of PAs because of its unique ability to accumulate large quantities of these compounds in its young fruit. There are two different spontaneous mutant phenotypes of oriental persimmons which lose their astringent taste naturally on the tree; while plants without these mutations remain rich in soluble PAs until the fruit fully ripened. The mutations are referred to as pollination-constant non-astringent genotypes named J-PCNA and C-PCNA, and are from Japan and China respectively. In this work we speculated that the loss of astringency in C-PCNA fruit is due to the soluble PAs transferred into insoluble upon polymerization, which was quite different from that of the J-PCNA. A DkLAC1 gene was isolated by the homology-based clone method. The predicted protein product of this gene showed that the DkLAC1 is a plant laccase which is phylogenetically related to the known enzyme AtLAC15 involved in the polymerization of PAs. Expression patterns of PAs biosynthetic genes associated with soluble PAs contents in three types of Oriental persimmons. Expression levels of DkLAC1 in C-PCNA type plants were linked with the reduction of soluble PAs in the flesh of the fruit. In addition the cis-elements in the DkLAC1 promoter regions indicated that the gene might also be regulated by the DkMYB4 as is seen with other well-known structural genes in Oriental persimmon. We conclude that DkLAC1 is potentially involved in PA polymerization in C-PCNA during normal ripening in C-PCNA persimmon.


Asunto(s)
Diospyros/enzimología , Frutas/enzimología , Lacasa/genética , Secuencia de Aminoácidos , Diospyros/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Lacasa/química , Datos de Secuencia Molecular , Mutación , Fenotipo , Filogenia , Polimerizacion , Proantocianidinas/química , Proantocianidinas/metabolismo , Regiones Promotoras Genéticas
14.
Plants (Basel) ; 12(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37050079

RESUMEN

MdPG1 encoding polygalacturonase in apple (Malus × domestica) is a key gene associated with fruit firmness and texture variations among apple cultivars. However, the causative variants of MdPG1 are still not known. In this study, we identified a SNPA/C variant within an ERF-binding element located in the promoter region of MdPG1. The promoter containing the ERF-binding element with SNPA, rather than the SNPC, could be strongly bound and activated by MdCBF2, a member of the AP2/ERF transcription factor family, as determined by yeast-one-hybrid and dual-luciferase reporter assays. We also demonstrated that the presence of a novel long non-coding RNA, lncRNAPG1, in the promoter of MdPG1 was a causative variant. lncRNAPG1 was specifically expressed in fruit tissues postharvest. lncRNAPG1 could reduce promoter activity when it was fused to the promoter of MdPG1 and a tobacco gene encoding Mg-chelatase H subunit (NtCHLH) in transgenic tobacco cells but could not reduce promoter activity when it was supplied in a separate gene construct, indicating a cis-regulatory effect. Our results provide new insights into genetic regulation of MdPG1 allele expression and are also useful for the development of elite apple cultivars.

15.
Plants (Basel) ; 12(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37570910

RESUMEN

Apricot is a widely cultivated fruit tree of the drupe family, and its sweet/bitter kernel traits are important indicators of the quality and merchantability of apricots. The sweetness/bitterness traits were mainly determined by amygdalin content. However, the lack of high-quality genomes has limited insight into the traits. In this study, a high-quality genome of 'Xiaobaixing' was obtained by using single-molecule sequencing and chromosome-conformation capture techniques, with eight chromosomes of 0.21 Gb in length and 52.80% repetitive sequences. A total of 29,157 protein-coding genes were predicted with contigs N50 = 3.56 Mb and scaffold N50 = 26.73 Mb. Construction of phylogenetic trees of 15 species of Rosaceae fruit trees, with 'Xiaobaixing' differentiated by 5.3 Ma as the closest relative to 'Yinxiangbai'. GO functional annotation and KEGG enrichment analysis identified 227 specific gene families to 'Xiaobaixing', with 569 expansion-gene families and 1316 contraction-gene families, including the significant expansion of phenylalanine N-monooxygenase and ß-glucosidase genes associated with amygdalin synthesis, significant contraction of wild black cherry glucoside ß-glucosidase genes, amygdalin ß-glucosidase genes, and ß-glucosidase genes, and significant enrichment of positively selected genes in the cyanogenic amino acid metabolic pathway. The 88 bHLH genes were identified in the genome of 'Xiaobaixing', and ParbHLH66 (rna-Par24659.1) was found to be a key gene for the identification of sweet/bitter kernels of apricots. The amino acid sequence encoded by its gene is highly conserved in the species of Prunus mume, Prunus dulcis, Prunus persica, and Prunus avium and may be participating in the regulation of amygdalin biosynthesis, which provides a theoretical foundation for the molecular identification of sweet/bitter kernels of apricots.

16.
Plants (Basel) ; 12(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36678984

RESUMEN

Dwarfing rootstocks are capable of high-density planting and are therefore urgently needed in the modern citrus cultivation system. However, little is known about the physiological relevance and molecular basis underlying citrus height. This study aimed to comprehensively analyze phytohormone, carbohydrate, and associated transcriptome changes in the stem of two weak growth rootstocks ('TO' and 'FD') relative to the vigorous 'CC' rootstock. The phenotypic observation revealed that the plant height, plant weight, and internode length were reduced in dwarfing rootstocks. Moreover, the contents of indole-3-acetic acid (IAA), trans-zeatin (tZ), and abscisic acid (ABA), were higher in TO and FD rootstocks, whereas the gibberellin 3 (GA3) content was higher in the CC rootstocks. The carbohydrate contents, including sucrose, fructose, glucose, starch, and lignin significantly decreased in both the TO and FD rootstocks. The full-length transcriptome analysis revealed a potential mechanism regulating dwarfing phenotype that was mainly related to the phytohormone signaling transduction, sugar and starch degradation, lignin synthesis, and cellulose and hemicellulose degradation processes. In addition, many transcription factors (TFs), long non-coding RNAs (lncRNAs), and alternative splicing (AS) events were identified, which might act as important contributors to control the stem elongation and development in the weak growth rootstocks. These findings might deepen the understanding of the complex mechanisms of the stem development responsible for citrus dwarfing and provide a series of candidate genes for the application in breeding new rootstocks with intensive dwarfing.

17.
Planta ; 235(5): 895-906, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22101946

RESUMEN

Thirteen ethylene signaling related genes were isolated and studied during ripening of non-astringent 'Yangfeng' and astringent 'Mopan' persimmon fruit. Some of these genes were characterized as ethylene responsive. Treatments, including ethylene and CO(2), had different effects on persimmon ripening, but overlapping roles in astringency removal, such as increasing the reduction in levels of soluble tannins. DkERS1, DkETR2, and DkERF8, may participate in persimmon fruit ripening and softening. The expression patterns of DkETR2, DkERF4, and DkERF5 had significant correlations with decreases in soluble tannins in 'Mopan' persimmon fruit, suggesting that these genes might be key components in persimmon fruit astringency removal and be the linkage between different treatments, while DkERF1 and DkERF6 may be specifically involved in CO(2) induced astringency removal. The possible roles of ethylene signaling genes in persimmon fruit astringency removal are discussed.


Asunto(s)
Dióxido de Carbono/metabolismo , Diospyros/genética , Etilenos/metabolismo , Frutas/crecimiento & desarrollo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , China , Diospyros/fisiología , Genes de Plantas , Variación Genética , Genotipo , Transducción de Señal , Taninos/metabolismo
18.
J Exp Bot ; 63(18): 6393-405, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23095993

RESUMEN

The persimmon fruit is a particularly good model for studying fruit response to hypoxia, in particular, the hypoxia-response ERF (HRE) genes. An anaerobic environment reduces fruit astringency by converting soluble condensed tannins (SCTs) into an insoluble form. Although the physiology of de-astringency has been widely studied, its molecular control is poorly understood. Both CO(2) and ethylene treatments efficiently removed the astringency from 'Mopan' persimmon fruit, as indicated by a decrease in SCTs. Acetaldehyde, the putative agent for causing de-astringency, accumulated during these treatments, as did activities of the key enzymes of acetaldehyde synthesis, alcohol dehydrogenase (ADH), and pyruvate decarboxylase (PDC). Eight DkADH and DkPDC genes were isolated, and three candidates for a role in de-astringency, DkADH1, DkPDC1, and DkPDC2, were characterized by transcriptional analysis in different tissues. The significance of these specific isoforms was confirmed by principal component analysis. Transient expression in leaf tissue showed that DkPDC2 decreased SCTs. Interactions of six hypoxia-responsive ERF genes and target promoters were tested in transient assays. The results indicated that two hypoxia-responsive ERF genes, DkERF9 and DkERF10, were involved in separately regulating the DkPDC2 and DkADH1 promoters. It is proposed that a DkERF-DkADH/DkPDC cascade is involved in regulating persimmon de-astringency.


Asunto(s)
Alcohol Deshidrogenasa/genética , Astringentes/metabolismo , Diospyros/genética , Diospyros/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Piruvato Descarboxilasa/genética , Alcohol Deshidrogenasa/metabolismo , Anaerobiosis , Dióxido de Carbono/metabolismo , Etilenos/metabolismo , Etiquetas de Secuencia Expresada , Frutas/genética , Frutas/metabolismo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Proantocianidinas/metabolismo , Regiones Promotoras Genéticas , Piruvato Descarboxilasa/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de Proteína , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Front Neurosci ; 15: 687832, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248488

RESUMEN

Semantic segmentation of mitochondria from electron microscopy (EM) images is an essential step to obtain reliable morphological statistics about mitochondria. However, automatically delineating plenty of mitochondria of varied shapes from complex backgrounds with sufficient accuracy is challenging. To address these challenges, we develop a hierarchical encoder-decoder network (HED-Net), which has a three-level nested U-shape architecture to capture rich contextual information. Given the irregular shape of mitochondria, we introduce a novel soft label-decomposition strategy to exploit shape knowledge in manual labels. Rather than simply using the ground truth label maps as the unique supervision in the model training, we introduce additional subcategory-aware supervision by softly decomposing each manual label map into two complementary label maps according to mitochondria's ovality. The three label maps are integrated with our HED-Net to supervise the model training. While the original label map guides the network to segment all the mitochondria of varied shapes, the auxiliary label maps guide the network to segment subcategories of mitochondria of circular shape and elliptic shape, respectively, which are much more manageable tasks. Extensive experiments on two public benchmarks show that our HED-Net performs favorably against state-of-the-art methods.

20.
IEEE J Biomed Health Inform ; 25(3): 737-745, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32750914

RESUMEN

Accurate segmentation of brain tumor from magnetic resonance images (MRIs) is crucial for clinical treatment decision and surgical planning. Due to the large diversity of the tumors and complex boundary interactions between sub-regions, it is of a great challenge. Besides accuracy, resource constraint is another important consideration. Recently, impressive improvement has been achieved for this task by using deep convolutional networks. However, most of state-of-the-art models rely on expensive 3D convolutions as well as model cascade/ensemble strategies, which result in high computational overheads and undesired system complexity. For clinical usage, the challenge is how to pursue the best accuracy within very limited computational budgets. In this study, we segment 3D volumetric image in one-pass with a hierarchical decoupled convolution network (HDC-Net), which is a light-weight but efficient pseudo-3D model. Specifically, we replace 3D convolutions with a novel hierarchical decoupled convolution (HDC) module, which can explore multi-scale multi-view spatial contexts with high efficiency. Extensive experiments on the BraTS 2018 and 2017 challenge datasets show that our method performs favorably against state of the art in accuracy yet with greatly reduced computational complexity.


Asunto(s)
Neoplasias Encefálicas , Procesamiento de Imagen Asistido por Computador , Neoplasias Encefálicas/diagnóstico por imagen , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA