Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Immunol Cell Biol ; 101(7): 600-609, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36975092

RESUMEN

Chemokine (C-C) ligand 17 (CCL17) was first identified as thymus- and activation-regulated chemokine when it was found to be constitutively expressed in the thymus and identified as a T-cell chemokine. This chemoattractant molecule has subsequently been found at elevated levels in a range of autoimmune and inflammatory diseases, as well as in cancer. CCL17 is a C-C chemokine receptor type 4 (CCR4) ligand, with chemokine (C-C) ligand 22 being the other major ligand and, as CCR4 is highly expressed on helper T cells, CCL17 can play a role in T-cell-driven diseases, usually considered to be via its chemotactic activity on T helper 2 cells; however, given that CCR4 is also expressed by other cell types and there is elevated expression of CCL17 in many diseases, a broader CCL17 biology is suggested. In this review, we summarize the biology of CCL17, its regulation and its potential contribution to the pathogenesis of various preclinical models. Reference is made, for example, to recent literature indicating a role for CCL17 in the control of pain as part of a granulocyte macrophage-colony-stimulating factor/CCL17 pathway in lymphocyte-independent models and thus not as a T-cell chemokine. The review also discusses the potential for CCL17 to be a biomarker and a therapeutic target in human disorders.


Asunto(s)
Autoinmunidad , Receptores de Quimiocina , Humanos , Ligandos , Receptores de Quimiocina/metabolismo , Quimiocina CCL17/metabolismo , Quimiocinas , Inflamación
2.
J Biol Chem ; 293(29): 11415-11423, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29871928

RESUMEN

Interleukin 4 (IL4) is generally viewed as a Th2 cytokine capable of polarizing macrophages into an anti-inflammatory phenotype, whereas granulocyte macrophage-colony-stimulating factor (GM-CSF) is often viewed as a proinflammatory cytokine with part of this function due to its action on monocytes/macrophages. Paradoxically, these two cytokines act additively to enhance the in vitro differentiation of dendritic cells from precursors such as monocytes. One up-regulated marker of an IL4-polarized M2 macrophage is the chemokine (C-C motif) ligand 17 (CCL17), which we have recently reported to be induced by GM-CSF in monocytes/macrophages in an interferon regulatory factor 4 (IRF4)-dependent manner. In this study, we report that IL4 also induces CCL17 production by acting through IRF4 in human monocytes and murine macrophages. Furthermore, evidence is presented that IL4 up-regulates IRF4 expression at the epigenetic level by enhancing the expression and activity of jumonji domain-containing protein 3 (JMJD3) demethylase. Intriguingly, silencing the signal transducer and activator of transcription 6 (STAT6) gene led to a decrease in not only CCL17 formation, but also in that of its upstream regulators, JMJD3 and IRF4. Moreover, IL4 treatment of human monocytes resulted in an increased association of STAT6 to the promoter regions of the CCL17, IRF4, and JMJD3 genes. Thus, despite their vastly different functions, IL4 and GM-CSF appear to share elements of a common signaling pathway in regulating CCL17 production in human monocytes and murine macrophages.


Asunto(s)
Quimiocina CCL17/genética , Epigénesis Genética , Interleucina-4/genética , Macrófagos/metabolismo , Monocitos/metabolismo , Activación Transcripcional , Animales , Células Cultivadas , Humanos , Factores Reguladores del Interferón/genética , Histona Demetilasas con Dominio de Jumonji/genética , Ratones , Ratones Endogámicos C57BL , Regulación hacia Arriba
3.
iScience ; 26(10): 108079, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37860753

RESUMEN

Glucocorticoids (GCs) are potent anti-inflammatory agents and are broadly used in treating rheumatoid arthritis (RA) patients, albeit with adverse side effects associated with long-term usage. The negative consequences of GC therapy provide an impetus for research into gaining insights into the molecular mechanisms of GC action. We have previously reported that granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced CCL17 has a non-redundant role in inflammatory arthritis. Here, we provide molecular evidence that GCs can suppress GM-CSF-mediated upregulation of IRF4 and CCL17 expression via downregulating JMJD3 expression and activity. In mouse models of inflammatory arthritis, GC treatment inhibited CCL17 expression and ameliorated arthritic pain-like behavior and disease. Significantly, GC treatment of RA patient peripheral blood mononuclear cells ex vivo resulted in decreased CCL17 production. This delineated pathway potentially provides new therapeutic options for the treatment of many inflammatory conditions, where GCs are used as an anti-inflammatory drug but without the associated adverse side effects.

4.
Cell Rep ; 39(3): 110719, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35443173

RESUMEN

Metabolic adaptations can directly influence the scope and scale of macrophage activation and polarization. Here we explore the impact of type I interferon (IFNß) on macrophage metabolism and its broader impact on cytokine signaling pathways. We find that IFNß simultaneously increased the expression of immune-responsive gene 1 and itaconate production while inhibiting isocitrate dehydrogenase activity and restricting α-ketoglutarate accumulation. IFNß also increased the flux of glutamine-derived carbon into the tricarboxylic acid cycle to boost succinate levels. Combined, we identify that IFNß controls the cellular α-ketoglutarate/succinate ratio. We show that by lowering the α-ketoglutarate/succinate ratio, IFNß potently blocks the JMJD3-IRF4-dependent pathway in GM-CSF and IL-4 activated macrophages. The suppressive effects of IFNß on JMJD3-IRF4-dependent responses, including M2 polarization and GM-CSF-induced inflammatory pain, were reversed by supplementation with α-ketoglutarate. These results reveal that IFNß modulates macrophage activation and polarization through control of the cellular α-ketoglutarate/succinate ratio.


Asunto(s)
Interferón Tipo I , Activación de Macrófagos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacología , Ácido Succínico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA