Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(20): 6124-6130, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717388

RESUMEN

The identification of nanoparticles within heterogeneous mixtures poses significant challenges due to the similarity in physical properties among different nanomaterials. Here, we present electrochemically assisted high-resolution plasmonic scattering interferometric microscopy (HR-PSIM). This technique allows for the high-throughput identification of nanoparticles by accurately measuring the refractive index of individual nanoparticles without interference from background signals. Through elimination of parabolic scattering interference and employing electrochemical modulation, HR-PSIM demonstrates high spatial resolution and stability against background noise, enabling the differentiation of nanoparticles with closely matched refractive indices, such as Au and Ag nanoparticles. The efficacy of this method is demonstrated through its application in real-time, label-free imaging of nanoparticle electrochemical activity, providing a platform for the precise and high-throughput characterization of nanomaterials. The robustness of our approach against electrochemical interference and its high spatial resolution mark a significant advancement in the field of nanomaterial analysis, promising wide-ranging applications in nanoparticle research and beyond.

2.
Nano Lett ; 23(2): 558-566, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36594792

RESUMEN

Measurement of electron transfer at the single-particle or -cell level is crucial to the in situ study of basic chemical and biological processes. However, it remains challenging to directly probe the microbial extracellular electron transfer process due to the weakness of signals and the lack of techniques. Here, we present a label-free and noninvasive imaging method that is able to measure the electron transfer in microbial cells. We measured the extracellular electron transfer processes by imaging the redox reaction of c-type outer membrane cytochromes in microbial cells using a plasmonic imaging technique, and obtained the electrochemical activity parameters (formal potential and number of electrons transferred) of multiple individual microbial cells, allowing for unveiling ample heterogeneities in electron transfer at the single-cell level. We anticipate that this method will contribute to the study of electron transfer in various biological and chemical processes.


Asunto(s)
Electrones , Imagen Óptica , Transporte de Electrón , Oxidación-Reducción
3.
Proc Natl Acad Sci U S A ; 117(44): 27148-27153, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33060295

RESUMEN

Probing the binding between a microbe and surface is critical for understanding biofilm formation processes, developing biosensors, and designing biomaterials, but it remains a challenge. Here, we demonstrate a method to measure the interfacial forces of bacteria attached to the surface. We tracked the intrinsic fluctuations of individual bacterial cells using an interferometric plasmonic imaging technique. Unlike the existing methods, this approach determined the potential energy profile and quantified the adhesion strength of single cells by analyzing the fluctuations. This method provides insights into biofilm formation and can also serve as a promising platform for investigating biological entity/surface interactions, such as pathogenicity, microbial cell capture and detection, and antimicrobial interface screening.


Asunto(s)
Adhesión Bacteriana/fisiología , Análisis de la Célula Individual/métodos , Resonancia por Plasmón de Superficie/métodos , Biopelículas , Fenómenos Biofísicos , Técnicas Biosensibles , Microscopía de Fuerza Atómica , Fenómenos Físicos , Propiedades de Superficie
4.
Nano Lett ; 22(11): 4383-4391, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35549482

RESUMEN

Real-time probing of the compositional evolution of single nanoparticles during an electrochemical reaction is crucial for understanding the structure-performance relationship and rationally designing nanomaterials for desirable applications; however, it is consistently challenging to achieve high-throughput real-time tracking. Here, we present an optical imaging method, termed plasmonic scattering interferometry microscopy (PSIM), which is capable of imaging the compositional evolution of single nanoparticles during an aqueous electrochemical reaction in real time. By quantifying the plasmonic scattering interferometric pattern of nanoparticles, we establish the relationship between the pattern and composition of single nanoparticles. Using PSIM, we have successfully probed the compositional transformation dynamics of multiple individual nanoparticles during electrochemical reactions. PSIM could be used as a universal platform for exploring the compositional evolution of nanomaterials at the single-nanoparticle level and offers great potentials for addressing the extensive fundamental questions in nanoscience and nanotechnology.


Asunto(s)
Nanopartículas , Interferometría , Microscopía , Nanopartículas/química , Nanotecnología , Imagen Óptica
5.
Anal Chem ; 93(22): 7965-7969, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34029055

RESUMEN

Probing molecular interactions is critical for screening drugs, detecting pollutants, and understanding biological processes at the molecular level, but these interactions are difficult to detect, especially for small molecules. A label-free optical imaging technology that can detect molecule binding kinetics is presented, in which free-moving particles are driven into oscillations with an alternating electrical field and the interferometric scattering patterns of the particles are imaged via an optical imaging method. By tracking the charge-sensitive variations in the oscillation amplitude with sub-nanometer precision, the small molecules and metal ions binding to the surface as well as protein-protein binding kinetics were measured. The capability of the label-free measurement of molecular interactions can provide a promising platform for screening small-molecule drugs, probing conformational changes in proteins, and detecting environmental pollutants.


Asunto(s)
Diagnóstico por Imagen , Proteínas , Fenómenos Biofísicos , Cinética , Unión Proteica
6.
ACS Nano ; 18(13): 9704-9712, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38512797

RESUMEN

Label-free probing of the material composition of (bio)nano-objects directly in solution at the single-particle level is crucial in various fields, including colloid analysis and medical diagnostics. However, it remains challenging to decipher the constituents of heterogeneous mixtures of nano-objects with high sensitivity and resolution. Here, we present deep-learning plasmonic scattering interferometric microscopy, which is capable of identifying the composition of nanoparticles automatically with high throughput at the single-particle level. By employing deep learning to decode the quantitative relationship between the interferometric scattering patterns of nanoparticles and their intrinsic material properties, this technique is capable of high-throughput, label-free identification of diverse nanoparticle types. We demonstrate its versatility in analyzing dynamic surface chemical reactions on single nanoparticles, revealing its potential as a universal platform for nanoparticle imaging and reaction analysis. This technique not only streamlines the process of nanoparticle characterization, but also proposes a methodology for a deeper understanding of nanoscale dynamics, holding great potential for addressing extensive fundamental questions in nanoscience and nanotechnology.

7.
Nat Commun ; 14(1): 4194, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443367

RESUMEN

Direct visualization of surface chemical dynamics in solution is essential for understanding the mechanisms involved in nanocatalysis and electrochemistry; however, it is challenging to achieve high spatial and temporal resolution. Here, we present an azimuth-modulated plasmonic imaging technique capable of imaging dynamic interfacial changes. The method avoids strong interference from reflected light and consequently eliminates the parabolic-like interferometric patterns in the images, allowing for a 67-fold increase in the spatial resolution of plasmonic imaging. We demonstrate that this optical imaging approach enables comprehensive analyses of surface chemical dynamics and identification of previously unknown surface reaction heterogeneity by investigating electrochemical redox reactions over single silver nanowires as an example. This work provides a general strategy for high-resolution plasmonic imaging of surface electrochemical dynamics and other interfacial chemical reactions, complementing existing surface characterization methods.


Asunto(s)
Nanocables , Nanocables/química , Electroquímica/métodos , Plata/química , Interferometría , Programas Informáticos
8.
ACS Appl Mater Interfaces ; 15(24): 29561-29567, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37294740

RESUMEN

Imaging nanoscale objects at interfaces is essential for revealing surface-tuned mechanisms in chemistry, physics, and life science. Plasmonic-based imaging, a label-free and surface-sensitive technique, has been widely used for studying the chemical and biological behavior of nanoscale objects at interfaces. However, direct imaging of surface-bonded nanoscale objects remains challenging due to uneven image backgrounds. Here, we present a new surface-bonded nanoscale object detection microscopy that eliminates strong background interference by reconstructing accurate scattering patterns at different positions. Our method effectively functions at low signal-to-background ratios, allowing for optical scattering detection of surface-bonded polystyrene nanoparticles and severe acute respiratory syndrome coronavirus 2 pseudovirus. It is also compatible with other imaging configurations, such as bright-field imaging. This technique complements existing methods for dynamic scattering imaging and broadens the applications of plasmonic imaging techniques for high-throughput sensing of surface-bonded nanoscale objects, enhancing our understanding of the properties, composition, and morphology of nanoparticles and surfaces at the nanoscale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA