Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(4): 601-617, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35395208

RESUMEN

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Trastornos del Neurodesarrollo , Ubiquitinación , Proteína 7 que Contiene Repeticiones F-Box-WD/química , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Células Germinativas , Mutación de Línea Germinal , Humanos , Trastornos del Neurodesarrollo/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Am J Hum Genet ; 108(6): 1083-1094, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34022131

RESUMEN

Clinical genetic testing of protein-coding regions identifies a likely causative variant in only around half of developmental disorder (DD) cases. The contribution of regulatory variation in non-coding regions to rare disease, including DD, remains very poorly understood. We screened 9,858 probands from the Deciphering Developmental Disorders (DDD) study for de novo mutations in the 5' untranslated regions (5' UTRs) of genes within which variants have previously been shown to cause DD through a dominant haploinsufficient mechanism. We identified four single-nucleotide variants and two copy-number variants upstream of MEF2C in a total of ten individual probands. We developed multiple bespoke and orthogonal experimental approaches to demonstrate that these variants cause DD through three distinct loss-of-function mechanisms, disrupting transcription, translation, and/or protein function. These non-coding region variants represent 23% of likely diagnoses identified in MEF2C in the DDD cohort, but these would all be missed in standard clinical genetics approaches. Nonetheless, these variants are readily detectable in exome sequence data, with 30.7% of 5' UTR bases across all genes well covered in the DDD dataset. Our analyses show that non-coding variants upstream of genes within which coding variants are known to cause DD are an important cause of severe disease and demonstrate that analyzing 5' UTRs can increase diagnostic yield. We also show how non-coding variants can help inform both the disease-causing mechanism underlying protein-coding variants and dosage tolerance of the gene.


Asunto(s)
Regiones no Traducidas 5' , Discapacidades del Desarrollo/etiología , Predisposición Genética a la Enfermedad , Mutación con Pérdida de Función , Niño , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/patología , Humanos , Factores de Transcripción MEF2/genética , Secuenciación del Exoma
3.
Clin Genet ; 104(2): 186-197, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37165752

RESUMEN

POU3F3 variants cause developmental delay, behavioral problems, hypotonia and dysmorphic features. We investigated the phenotypic and genetic landscape, and genotype-phenotype correlations in individuals with POU3F3-related disorders. We recruited unpublished individuals with POU3F3 variants through international collaborations and obtained updated clinical data on previously published individuals. Trio exome sequencing or single exome sequencing followed by segregation analysis were performed in the novel cohort. Functional effects of missense variants were investigated with 3D protein modeling. We included 28 individuals (5 previously published) from 26 families carrying POU3F3 variants; 23 de novo and one inherited from an affected parent. Median age at study inclusion was 7.4 years. All had developmental delay mainly affecting speech, behavioral difficulties, psychiatric comorbidities and dysmorphisms. Additional features included gastrointestinal comorbidities, hearing loss, ophthalmological anomalies, epilepsy, sleep disturbances and joint hypermobility. Autism, hearing and eye comorbidities, dysmorphisms were more common in individuals with truncating variants, whereas epilepsy was only associated with missense variants. In silico structural modeling predicted that all (likely) pathogenic variants destabilize the DNA-binding region of POU3F3. Our study refined the phenotypic and genetic landscape of POU3F3-related disorders, it reports the functional properties of the identified pathogenic variants, and delineates some genotype-phenotype correlations.


Asunto(s)
Trastorno Autístico , Epilepsia , Discapacidad Intelectual , Humanos , Niño , Discapacidad Intelectual/genética , Trastorno Autístico/genética , Fenotipo , Epilepsia/genética , Mutación Missense/genética , Discapacidades del Desarrollo/genética , Factores del Dominio POU/genética
4.
Hum Mutat ; 43(4): 461-470, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35094443

RESUMEN

PAX5 is a transcription factor associated with abnormal posterior midbrain and cerebellum development in mice. PAX5 is highly loss-of-function intolerant and missense constrained, and has been identified as a candidate gene for autism spectrum disorder (ASD). We describe 16 individuals from 12 families who carry deletions involving PAX5 and surrounding genes, de novo frameshift variants that are likely to trigger nonsense-mediated mRNA decay, a rare stop-gain variant, or missense variants that affect conserved amino acid residues. Four of these individuals were published previously but without detailed clinical descriptions. All these individuals have been diagnosed with one or more neurodevelopmental phenotypes including delayed developmental milestones (DD), intellectual disability (ID), and/or ASD. Seizures were documented in four individuals. No recurrent patterns of brain magnetic resonance imaging (MRI) findings, structural birth defects, or dysmorphic features were observed. Our findings suggest that PAX5 haploinsufficiency causes a neurodevelopmental disorder whose cardinal features include DD, variable ID, and/or ASD.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Animales , Trastorno del Espectro Autista/genética , Haploinsuficiencia , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Ratones , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Factor de Transcripción PAX5 , Fenotipo
5.
Genet Med ; 24(10): 2051-2064, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35833929

RESUMEN

PURPOSE: Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. METHODS: We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. RESULTS: We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. CONCLUSION: Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Discapacidad Intelectual , Proteínas Represoras , Anomalías Dentarias , Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/etiología , Enfermedades del Desarrollo Óseo/genética , Deleción Cromosómica , Facies , Humanos , Discapacidad Intelectual/genética , Mutación Missense , Fenotipo , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Represoras/genética , Anomalías Dentarias/diagnóstico , Factores de Transcripción/genética
6.
Dev Med Child Neurol ; 64(6): 780-788, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35092693

RESUMEN

AIM: To estimate the prevalence, and evaluate presentation, treatment response, treatment side effects, and long-term seizure outcomes in all known cases of children with Down syndrome and infantile spasms on the island of Ireland. METHOD: This was a 10-year retrospective multicentre review of clinical records and investigations, focusing on treatment response, side effects, and long-term outcomes. RESULTS: The prevalence of infantile spasms in Down syndrome was 3.0% during the study period. Fifty-four infants were identified with median age of spasm onset at 201 days (interquartile range [IQR] 156-242). Spasm cessation was achieved in 88% (n=46) at a median of 110 days (IQR 5-66). The most common first-line medications were prednisolone (n=20, 37%), vigabatrin (n=18, 33.3%), and sodium valproate (n=9, 16.7%). At follow-up (median age 23.7mo; IQR 13.4-40.6), 25% had ongoing seizures and 85% had developmental concerns. Treatment within 60 days did not correlate with spasm cessation. Seventeen children (31%) experienced medication side effects, with vigabatrin accounting for 52%. INTERPRETATION: Prednisolone is an effective and well-tolerated medication for treating infantile spasms in Down syndrome. Despite the high percentage of spasm cessation, developmental concerns and ongoing seizures were common.


Asunto(s)
Síndrome de Down , Espasmos Infantiles , Adulto , Anticonvulsivantes/uso terapéutico , Niño , Síndrome de Down/complicaciones , Humanos , Lactante , Prednisolona/uso terapéutico , Convulsiones/tratamiento farmacológico , Espasmo/inducido químicamente , Espasmo/tratamiento farmacológico , Espasmos Infantiles/tratamiento farmacológico , Espasmos Infantiles/epidemiología , Resultado del Tratamiento , Vigabatrin/uso terapéutico , Adulto Joven
7.
BMC Neurosci ; 22(1): 56, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34525970

RESUMEN

BACKGROUND: NRXN1 deletions are identified as one of major rare risk factors for autism spectrum disorder (ASD) and other neurodevelopmental disorders. ASD has 30% co-morbidity with epilepsy, and the latter is associated with excessive neuronal firing. NRXN1 encodes hundreds of presynaptic neuro-adhesion proteins categorized as NRXN1α/ß/γ. Previous studies on cultured cells show that the short NRXN1ß primarily exerts excitation effect, whereas the long NRXN1α which is more commonly deleted in patients involves in both excitation and inhibition. However, patient-derived models are essential for understanding functional consequences of NRXN1α deletions in human neurons. We recently derived induced pluripotent stem cells (iPSCs) from five controls and three ASD patients carrying NRXN1α+/- and showed increased calcium transients in patient neurons. METHODS: In this study we investigated the electrophysiological properties of iPSC-derived cortical neurons in control and ASD patients carrying NRXN1α+/- using patch clamping. Whole genome RNA sequencing was carried out to further understand the potential underlying molecular mechanism. RESULTS: NRXN1α+/- cortical neurons were shown to display larger sodium currents, higher AP amplitude and accelerated depolarization time. RNASeq analyses revealed transcriptomic changes with significant upregulation glutamatergic synapse and ion channels/transporter activity including voltage-gated potassium channels (GRIN1, GRIN3B, SLC17A6, CACNG3, CACNA1A, SHANK1), which are likely to couple with the increased excitability in NRXN1α+/- cortical neurons. CONCLUSIONS: Together with recent evidence of increased calcium transients, our results showed that human NRXN1α+/- isoform deletions altered neuronal excitability and non-synaptic function, and NRXN1α+/- patient iPSCs may be used as an ASD model for therapeutic development with calcium transients and excitability as readouts.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas de Unión al Calcio/genética , Redes Reguladoras de Genes/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Moléculas de Adhesión de Célula Nerviosa/genética , Neuronas/fisiología , Adolescente , Trastorno del Espectro Autista/metabolismo , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Células Cultivadas , Niño , Preescolar , Femenino , Humanos , Masculino , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Adulto Joven
8.
Am J Hum Genet ; 100(6): 907-925, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575647

RESUMEN

Yin and yang 1 (YY1) is a well-known zinc-finger transcription factor with crucial roles in normal development and malignancy. YY1 acts both as a repressor and as an activator of gene expression. We have identified 23 individuals with de novo mutations or deletions of YY1 and phenotypic features that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth restriction, feeding problems, and various congenital malformations. Our combined clinical and molecular data define "YY1 syndrome" as a haploinsufficiency syndrome. Through immunoprecipitation of YY1-bound chromatin from affected individuals' cells with antibodies recognizing both ends of the protein, we show that YY1 deletions and missense mutations lead to a global loss of YY1 binding with a preferential retention at high-occupancy sites. Finally, we uncover a widespread loss of H3K27 acetylation in particular on the YY1-bound enhancers, underscoring a crucial role for YY1 in enhancer regulation. Collectively, these results define a clinical syndrome caused by haploinsufficiency of YY1 through dysregulation of key transcriptional regulators.


Asunto(s)
Cromatina/metabolismo , Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Transcripción Genética , Factor de Transcripción YY1/genética , Acetilación , Adolescente , Secuencia de Bases , Preescolar , Inmunoprecipitación de Cromatina , Estudios de Cohortes , Elementos de Facilitación Genéticos/genética , Femenino , Ontología de Genes , Haplotipos/genética , Hemicigoto , Histonas/metabolismo , Humanos , Linfocitos/metabolismo , Masculino , Metilación , Modelos Moleculares , Mutación Missense/genética , Unión Proteica/genética , Dominios Proteicos , Factor de Transcripción YY1/química
9.
Am J Med Genet A ; 182(7): 1637-1654, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32319732

RESUMEN

With advances in genetic testing and improved access to such advances, whole exome sequencing is becoming a first-line investigation in clinical work-up of children with developmental delay/intellectual disability (ID). As a result, the need to understand the importance of genetic variants and its effect on the clinical phenotype is increasing. Here, we report on the largest cohort of patients with HNRNPU variants. These 21 patients follow on from the previous study published by Yates et al. in 2017 from our group predominantly identified from the Deciphering Developmental Disorders study that reported seven patients with HNRNPU variants. All the probands reported here have a de novo loss-of-function variant. These probands have craniofacial dysmorphic features, in the majority including widely spaced teeth, microcephaly, high arched eyebrows, and palpebral fissure abnormalities. Many of the patients in the group also have moderate to severe ID and seizures that tend to start in early childhood. This series has allowed us to define a novel neurodevelopmental syndrome, with a likely mechanism of haploinsufficiency, and expand substantially on already published literature on HNRNPU-related neurodevelopmental syndrome.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo U/genética , Trastornos del Neurodesarrollo/etiología , Adolescente , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Anomalías Craneofaciales/etiología , Femenino , Haploinsuficiencia/genética , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Microcefalia/etiología , Trastornos del Neurodesarrollo/genética , Embarazo , Convulsiones/genética , Síndrome
10.
Am J Hum Genet ; 97(2): 343-52, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26235985

RESUMEN

Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations.


Asunto(s)
ARN Helicasas DEAD-box/genética , Discapacidad Intelectual/genética , Mutación Missense/genética , Fenotipo , Caracteres Sexuales , Vía de Señalización Wnt/genética , Sustitución de Aminoácidos/genética , Animales , Secuencia de Bases , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Exoma/genética , Femenino , Dosificación de Gen/genética , Humanos , Discapacidad Intelectual/patología , Masculino , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Pez Cebra
12.
Am J Med Genet A ; 176(5): 1180-1183, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29427337

RESUMEN

Congenital anomalies of the upper limbs are rare and etiologically heterogeneous. Herein, we report a male infant with non-syndromic bilateral Type Vb ulnar longitudinal dysplasia with radiohumeral synostosis (apparent humeral bifurcation), and bilateral oligo-ectro-syndactyly who was born following an uncomplicated pregnancy, with no maternal use of prescription or illicit medication. Array CGH (60,000 probes) and chromosomal breakage analysis (DEB) were normal. Similar appearances have been reported in children exposed to thalidomide or cocaine, but sporadic patients have also been reported without a prior history of exposure to known teratogens.


Asunto(s)
Fenotipo , Deformidades Congénitas de las Extremidades Superiores/diagnóstico , Rotura Cromosómica , Hibridación Genómica Comparativa , Humanos , Lactante , Masculino , Radiografía
13.
Am J Med Genet A ; 173(3): 678-683, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28157260

RESUMEN

Described as the commonest single gene cause of learning disability internationally, the incidence of Fragile X syndrome (FXS) has never previously been determined in Ireland. The aim of this work was to determine the observed incidence of FXS in the island of Ireland; the Republic of Ireland (ROI) and Northern Ireland (NI) separately and combined. Ascertainment was achieved for a cross-sectional study by a retrospective, clinical and laboratory database review of positive FXS cases, born in either ROI or NI, between years 2000-2009 inclusive. The observed incidence of FXS per 10,000 live births in the island of Ireland in males was 0.94 (95%CI: 0.75-1.13) or ∼1:10,600 and in females was 0.23 (95%CI: 0.14-0.32) or ∼1:43,000. Comparable testing rates for FXS are present in ROI and NI, with on average 1.48% (1.30% in ROI, 1.96% in NI) of live male births and 0.4% (0.35% in ROI, 0.55% in NI) of live female births undergoing analysis which is comparable to other centres internationally. This study demonstrates the observed incidence of FXS in the island of Ireland is (i) approximately half the estimated worldwide incidence in males and is not explained by low levels of testing, and (ii) approximately one quarter the estimated worldwide incidence in females which may be explained by low levels of testing. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Síndrome del Cromosoma X Frágil/epidemiología , Niño , Preescolar , Estudios Transversales , Femenino , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Pruebas Genéticas , Humanos , Incidencia , Lactante , Irlanda/epidemiología , Masculino , Mutación , Irlanda del Norte/epidemiología , Fenotipo , Vigilancia de la Población , Estudios Retrospectivos
14.
Am J Med Genet A ; 173(1): 274-279, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27774767

RESUMEN

We report the case of a developmentally appropriate infant male with a de novo unbalanced chromosome translocation involving bands 2q32.1 and 7p21.3. The child was noted to have metopic and bicoronal craniosynostosis with closely spaced eyes, turricephaly, and flattening of the forehead. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Cromosomas Humanos Par 2 , Cromosomas Humanos Par 7 , Craneosinostosis/diagnóstico , Craneosinostosis/genética , Estudios de Asociación Genética , Fenotipo , Translocación Genética , Bandeo Cromosómico , Hibridación Genómica Comparativa , Facies , Humanos , Recién Nacido , Masculino , Análisis de Secuencia de ADN , Cráneo/anomalías , Tomografía Computarizada Espiral
15.
J Hum Genet ; 61(8): 761-4, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27193218

RESUMEN

SLC1A4 deficiency is a recently described neurodevelopmental disorder associated with microcephaly, global developmental delay, abnormal myelination, thin corpus callosum and seizures. It has been mainly reported in the Ashkenazi-Jewish population with affected individuals homozygous for the p.Glu256Lys variant. Exome sequencing performed in an Irish proband identified a novel homozygous nonsense SLC1A4 variant [p.Trp453*], confirming a second case of SLC1A4-associated infantile spasms. As this is the first European identified, population ancestry analysis of the Exome Aggregation Consortium database was performed to determine the wider ethnic background of SLC1A4 deficiency carriers. p.Glu256Lys was found in Hispanic and South Asian populations. Other potential disease-causing variants were also identified. Investigation for SLC1A4 deficiency should be performed regardless of ethnicity and extend to include unexplained early-onset epileptic encephalopathy.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/genética , Variación Genética , Genética de Población , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/genética , Población Blanca/genética , Encéfalo/patología , Consanguinidad , Electroencefalografía , Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino
16.
Epilepsia ; 57(1): e12-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26648591

RESUMEN

Early onset epileptic encephalopathies (EOEEs) represent a significant diagnostic challenge. Newer genomic approaches have begun to elucidate an increasing number of responsible single genes as well as emerging diagnostic strategies. In this single-center study, we aimed to investigate a cohort of children with unexplained EOEE. We performed whole-exome sequencing (WES), targeting a list of 137 epilepsy-associated genes on 50 children with unexplained EOEE. We characterized all phenotypes in detail and classified children according to known electroclinical syndromes where possible. Infants with previous genetic diagnoses, causative brain malformations, or inborn errors of metabolism were excluded. We identified disease-causing variants in 11 children (22%) in the following genes: STXBP1 (n = 3), KCNB1 (n = 2), KCNT1, SCN1A, SCN2A, GRIN2A, DNM1, and KCNA2. We also identified two further variants (in GRIA3 and CPA6) in two children requiring further investigation. Eleven variants were de novo, and in one paternal testing was not possible. Phenotypes were broadened for some variants identified. This study demonstrates that WES is a clinically useful screening tool for previously investigated unexplained EOEE and allows for reanalysis of data as new genes are being discovered. Detailed phenotyping allows for expansion of specific gene disorders leading to epileptic encephalopathy and emerging sub-phenotypes.


Asunto(s)
Exoma/fisiología , Predisposición Genética a la Enfermedad/genética , Mutación/genética , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/genética , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Fenotipo , Estudios Retrospectivos
17.
Epilepsia ; 55(9): e99-105, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25052858

RESUMEN

Mutations in KCNQ2 and KCNQ3 were originally described in infants with benign familial neonatal seizures (BFNS). Recently, KCNQ2 mutations have also been shown to cause epileptic encephalopathy. This report describes three infants carrying abnormalities of KCNQ2 and one infant with a KCNQ3 mutation. The different KCNQ2 abnormalities led to different phenotypes and included a novel intragenic duplication, c.419_430dup, in an infant with BFNS, a 0.761Mb 20q13.3 contiguous gene deletion in an infant with seizures at 3 months, and a recurrent de novo missense mutation c.881C>T in a neonate with "KCNQ2-encephalopathy." The mutation in KCNQ3, c.989G>A, was novel and occurred in an infant with BFNS. KCNQ-related seizures often present with tonic/clonic manifestations, cyanosis, or apnea. Certain genotype-phenotype correlations help predict outcome. Similarly affected family members suggests benign familial "KCNQ-related" epilepsy, whereas neonatal seizures with unexplained multifocal epileptiform discharges or burst suppression on electroencephalography, and acute abnormalities of the basal ganglia/thalami are suggestive of KCNQ2-encephalopathy, which is often sporadic. 20q13.33 contiguous gene deletion encompassing KCNQ2 may harbor atypical features depending on deletion size. Although the phenotype often guides direct targeted gene testing in these conditions, array CGH should also be considered in suspected sporadic or atypical familial cases to diagnose 20q13.33 deletion.


Asunto(s)
Epilepsia/genética , Canales de Potasio KCNQ/genética , Mutación/genética , Ganglios Basales/patología , Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Electroencefalografía , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Fenotipo , Tálamo/patología
18.
Epilepsia ; 55(6): 858-65, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24828792

RESUMEN

OBJECTIVE: To establish the genetic basis of Landau-Kleffner syndrome (LKS) in a cohort of two discordant monozygotic (MZ) twin pairs and 11 isolated cases. METHODS: We used a multifaceted approach to identify genetic risk factors for LKS. Array comparative genomic hybridization (CGH) was performed using the Agilent 180K array. Whole genome methylation profiling was undertaken in the two discordant twin pairs, three isolated LKS cases, and 12 control samples using the Illumina 27K array. Exome sequencing was undertaken in 13 patients with LKS including two sets of discordant MZ twins. Data were analyzed with respect to novel and rare variants, overlapping genes, variants in reported epilepsy genes, and pathway enrichment. RESULTS: A variant (cG1553A) was found in a single patient in the GRIN2A gene, causing an arginine to histidine change at site 518, a predicted glutamate binding site. Following copy number variation (CNV), methylation, and exome sequencing analysis, no single candidate gene was identified to cause LKS in the remaining cohort. However, a number of interesting additional candidate variants were identified including variants in RELN, BSN, EPHB2, and NID2. SIGNIFICANCE: A single mutation was identified in the GRIN2A gene. This study has identified a number of additional candidate genes including RELN, BSN, EPHB2, and NID2. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.


Asunto(s)
Síndrome de Landau-Kleffner/genética , Adolescente , Adulto , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular Neuronal/genética , Niño , Hibridación Genómica Comparativa , Proteínas de la Matriz Extracelular/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple/genética , Receptor EphB2/genética , Receptores de N-Metil-D-Aspartato/genética , Proteína Reelina , Serina Endopeptidasas/genética , Gemelos Monocigóticos/genética , Adulto Joven
19.
Nat Genet ; 36(4): 400-4, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15052268

RESUMEN

ARC syndrome (OMIM 208085) is an autosomal recessive multisystem disorder characterized by neurogenic arthrogryposis multiplex congenita, renal tubular dysfunction and neonatal cholestasis with bile duct hypoplasia and low gamma glutamyl transpeptidase (gGT) activity. Platelet dysfunction is common. Affected infants do not thrive and usually die in the first year of life. To elucidate the molecular basis of ARC, we mapped the disease to a 7-cM interval on 15q26.1 and then identified germline mutations in the gene VPS33B in 14 kindreds with ARC. VPS33B encodes a homolog of the class C yeast vacuolar protein sorting gene, Vps33, that contains a Sec1-like domain important in the regulation of vesicle-to-target SNARE complex formation and subsequent membrane fusion.


Asunto(s)
Artrogriposis/genética , Colestasis/genética , Enfermedades Renales/genética , Fusión de Membrana/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Mutación , Proteínas/genética , Proteínas de Transporte Vesicular , Western Blotting , Línea Celular , Cromosomas Humanos Par 15 , Electroforesis en Gel de Poliacrilamida , Femenino , Humanos , Masculino , Fusión de Membrana/genética , Proteínas de la Membrana/química , Plásmidos , Proteínas/química , Proteínas SNARE , Síndrome
20.
Eur J Hum Genet ; 31(9): 1040-1047, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37407733

RESUMEN

HNRNPU encodes a multifunctional RNA-binding protein that plays critical roles in regulating pre-mRNA splicing, mRNA stability, and translation. Aberrant expression and dysregulation of HNRNPU have been implicated in various human diseases, including cancers and neurological disorders. We applied a next generation sequencing based assay (EPIC-NGS) to investigate genome-wide methylation profiling for >2 M CpGs for 7 individuals with a neurodevelopmental disorder associated with HNRNPU germline pathogenic loss-of-function variants. Compared to healthy individuals, 227 HNRNPU-associated differentially methylated positions were detected. Both hyper- and hypomethylation alterations were identified but the former predominated. The identification of a methylation episignature for HNRNPU-associated neurodevelopmental disorder (NDD) implicates HNPRNPU-related chromatin alterations in the aetiopathogenesis of this disorder and suggests that episignature profiling should have clinical utility as a predictor for the pathogenicity of HNRNPU variants of uncertain significance. The detection of a methylation episignaure for HNRNPU-associated NDD is consistent with a recent report of a methylation episignature for HNRNPK-associated NDD.


Asunto(s)
Epigenoma , Trastornos del Neurodesarrollo , Humanos , Metilación de ADN , Células Germinativas , Mutación de Línea Germinal , Trastornos del Neurodesarrollo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA