Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(5): e1010150, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35536868

RESUMEN

Most of our understanding of the ecology and evolution of avian influenza A virus (AIV) in wild birds is derived from studies conducted in the northern hemisphere on waterfowl, with a substantial bias towards dabbling ducks. However, relevant environmental conditions and patterns of avian migration and reproduction are substantially different in the southern hemisphere. Through the sequencing and analysis of 333 unique AIV genomes collected from wild birds collected over 15 years we show that Australia is a global sink for AIV diversity and not integrally linked with the Eurasian gene pool. Rather, AIV are infrequently introduced to Australia, followed by decades of isolated circulation and eventual extinction. The number of co-circulating viral lineages varies per subtype. AIV haemagglutinin (HA) subtypes that are rarely identified at duck-centric study sites (H8-12) had more detected introductions and contemporary co-circulating lineages in Australia. Combined with a lack of duck migration beyond the Australian-Papuan region, these findings suggest introductions by long-distance migratory shorebirds. In addition, on the available data we found no evidence of directional or consistent patterns in virus movement across the Australian continent. This feature corresponds to patterns of bird movement, whereby waterfowl have nomadic and erratic rainfall-dependant distributions rather than consistent intra-continental migratory routes. Finally, we detected high levels of virus gene segment reassortment, with a high diversity of AIV genome constellations across years and locations. These data, in addition to those from other studies in Africa and South America, clearly show that patterns of AIV dynamics in the Southern Hemisphere are distinct from those in the temperate north.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Australia/epidemiología , Aves , Patos , Variación Genética , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Filogenia
2.
Heredity (Edinb) ; 130(2): 99-108, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36539450

RESUMEN

Dispersal is a critical parameter for successful pest control measures as it determines the rate of movement across target control areas and influences the risk of human exposure. We used a fine-scale spatial population genomic approach to investigate the dispersal ecology and population structure of Aedes notoscriptus, an important disease transmitting mosquito at the Mornington Peninsula, Australia. We sampled and reared Ae. notoscriptus eggs at two time points from 170 traps up to 5 km apart and generated genomic data from 240 individuals. We also produced a draft genome assembly from a laboratory colony established from mosquitoes sampled near the study area. We found low genetic structure (Fst) and high coancestry throughout the study region. Using genetic data to identify close kin dyads, we found that mosquitoes had moved distances of >1 km within a generation, which is further than previously recorded. A spatial autocorrelation analysis of genetic distances indicated genetic similarity at >1 km separation, a tenfold higher distance than for a comparable population of Ae. aegypti, from Cairns, Australia. These findings point to high mobility of Ae. notoscriptus, highlighting challenges of localised intervention strategies. Further sampling within the same area 6 and 12 months after initial sampling showed that egg-counts were relatively consistent across time, and that spatial variation in egg-counts covaried with spatial variation in Wright's neighbourhood size (NS). As NS increases linearly with population density, egg-counts may be useful for estimating relative density in Ae. notoscriptus. The results highlight the importance of acquiring species-specific data when planning control measures.


Asunto(s)
Aedes , Animales , Humanos , Australia , Población Urbana , Genómica , Densidad de Población
3.
Parasitology ; 146(4): 462-471, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30269696

RESUMEN

Australian mosquito species significantly impact human health through nuisance biting and the transmission of endemic and exotic pathogens. Surveillance programmes designed to provide an early warning of mosquito-borne disease risk require reliable identification of mosquitoes. This study aimed to investigate the viability of Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) as a rapid and inexpensive approach to the identification of Australian mosquitoes and was validated using a three-step taxonomic approach. A total of 300 mosquitoes representing 21 species were collected from south-eastern New South Wales and morphologically identified. The legs from the mosquitoes were removed and subjected to MALDI-TOF MS analysis. Fifty-eight mosquitoes were sequenced at the cytochrome c oxidase subunit I (cox1) gene region and genetic relationships were analysed. We create the first MALDI-TOF MS spectra database of Australian mosquito species including 19 species. We clearly demonstrate the accuracy of MALDI-TOF MS for identification of Australian mosquitoes. It is especially useful for assessing gaps in the effectiveness of DNA barcoding by differentiating closely related taxa. Indeed, cox1 DNA barcoding was not able to differentiate members of the Culex pipiens group, Cx. quinquefasciatus and Cx. pipiens molestus, but these specimens were correctly identified using MALDI-TOF MS.


Asunto(s)
Culicidae/genética , Complejo IV de Transporte de Electrones/análisis , Proteínas de Insectos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Australia , Culicidae/clasificación
4.
Emerg Infect Dis ; 23(8): 1409-1410, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28726605

RESUMEN

The bacterial pathogen Elizabethkingia is known to exist in certain species of mosquito but was unknown in other arthropods. We report the detection and identification of Elizabethkingia in species of Culicoides biting midge in Australia, raising the possibility of bacterial transmission via this species.


Asunto(s)
Ceratopogonidae/microbiología , Flavobacteriaceae/aislamiento & purificación , Insectos Vectores/microbiología , Animales , Australia , Flavobacteriaceae/clasificación , Flavobacteriaceae/genética , ARN Ribosómico 16S
5.
Virol J ; 14(1): 108, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28599659

RESUMEN

BACKGROUND: Zika virus is an emerging pathogen of global importance. It has been responsible for recent outbreaks in the Americas and in the Pacific region. This study assessed five different mosquito species from the temperate climatic zone in Australia and included Aedes albopictus as a potentially invasive species. METHODS: Mosquitoes were orally challenged by membrane feeding with Zika virus strain of Cambodia 2010 origin, belonging to the Asian clade. Virus infection and dissemination were assessed by quantitative PCR on midgut and carcass after dissection. Transmission was assessed by determination of cytopathogenic effect of saliva (CPE) on Vero cells, followed by determination of 50% tissue culture infectious dose (TCID50) for CPE positive samples. Additionally, the presence of Wolbachia endosymbiont infection was assessed by qPCR and standard PCR. RESULTS: Culex mosquitoes were found unable to present Zika virus in saliva, as demonstrated by molecular as well as virological methods. Aedes aegypti, was used as a positive control for Zika infection and showed a high level of virus infection, dissemination and transmission. Local Aedes species, Ae. notoscriptus and, to a lesser degree, Ae. camptorhynchus were found to expel virus in their saliva and contained viral nucleic acid within the midgut. Molecular assessment identified low or no dissemination for these species, possibly due to low virus loads. Ae. albopictus from Torres Strait islands origin was shown as an efficient vector. Cx quinquefasciatus was shown to harbour Wolbachia endosymbionts at high prevalence, whilst no Wolbachia was found in Cx annulirostris. The Australian Ae. albopictus population was shown to harbour Wolbachia at high frequency. CONCLUSIONS: The risk of local Aedes species triggering large Zika epidemics in the southern parts of Australia is low. The potentially invasive Ae. albopictus showed high prevalence of virus in the saliva and constitutes a potential threat if this mosquito species becomes established in mainland Australia. Complete risk analysis of Zika transmission in the temperate zone would require an assessment of the impact of temperature on Zika virus replication within local and invasive mosquito species.


Asunto(s)
Tracto Gastrointestinal/virología , Mosquitos Vectores/virología , ARN Viral/análisis , Saliva/virología , Virus Zika/aislamiento & purificación , Animales , Australia , Clima , Transmisión de Enfermedad Infecciosa , Humanos , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Medición de Riesgo , Virus Zika/genética , Infección por el Virus Zika/transmisión
6.
Nat Microbiol ; 9(2): 377-389, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38263454

RESUMEN

Buruli ulcer, a chronic subcutaneous infection caused by Mycobacterium ulcerans, is increasing in prevalence in southeastern Australia. Possums are a local wildlife reservoir for M. ulcerans and, although mosquitoes have been implicated in transmission, it remains unclear how humans acquire infection. We conducted extensive field survey analyses of M. ulcerans prevalence among mosquitoes in the Mornington Peninsula region of southeastern Australia. PCR screening of trapped mosquitoes revealed a significant association between M. ulcerans and Aedes notoscriptus. Spatial scanning statistics revealed overlap between clusters of M. ulcerans-positive Ae. notoscriptus, M. ulcerans-positive possum excreta and Buruli ulcer cases, and metabarcoding analyses showed individual mosquitoes had fed on humans and possums. Bacterial genomic analysis confirmed shared single-nucleotide-polymorphism profiles for M. ulcerans detected in mosquitoes, possum excreta and humans. These findings indicate Ae. notoscriptus probably transmit M. ulcerans in southeastern Australia and highlight mosquito control as a Buruli ulcer prevention measure.


Asunto(s)
Aedes , Úlcera de Buruli , Mycobacterium ulcerans , Animales , Humanos , Úlcera de Buruli/epidemiología , Úlcera de Buruli/genética , Úlcera de Buruli/microbiología , Mycobacterium ulcerans/genética , Australia , Genoma Bacteriano , Aedes/genética
7.
BMC Vet Res ; 9: 208, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24125076

RESUMEN

BACKGROUND: Coccidiosis, caused by species of the apicomplexan parasite Eimeria, is a major disease of chickens. Eimeria species are present world-wide, and are ubiquitous under intensive farming methods. However, prevalence of Eimeria species is not uniform across production systems. In developing countries such as Ethiopia, a high proportion of chicken production occurs on rural smallholdings (i.e. 'village chicken production') where infectious diseases constrain productivity and surveillance is low. Coccidiosis is reported to be prevalent in these areas. However, a reliance on oocyst morphology to determine the infecting species may impede accurate diagnosis. Here, we used cross-sectional and longitudinal studies to investigate the prevalence of Eimeria oocyst shedding at two rural sites in the Ethiopian highlands. RESULTS: Faecal samples were collected from 767 randomly selected chickens in May or October 2011. In addition, 110 chickens were sampled in both May and October. Eimeria oocysts were detected microscopically in 427 (56%, 95% confidence interval (95% CI) 52-59%) of the 767 faecal samples tested. Moderate clustering of positive birds was detected within households, perhaps suggesting common risk factors or exposure pathways. Seven species of Eimeria were detected by real time PCR in a subset of samples further analysed, with the prevalence of some species varying by region. Co-infections were common; 64% (23/36, 95% CI 46-79%) of positive samples contained more than one Eimeria spp. Despite frequent infection and co-infection overt clinical disease was not reported. Eimeria oocysts were detected significantly more frequently in October (248/384, 65%, 95% CI 60-69%), following the main rainy season, compared to May (179/383, 47%, 95% CI 42-52%, p < 0.001). Eimeria oocyst positivity in May did not significantly affect the likelihood of detecting Eimeria oocyst five months later perhaps suggesting infection with different species or immunologically distinct strains. CONCLUSIONS: Eimeria spp oocysts may be frequently detected in faecal samples from village chickens in Ethiopia. Co-infection with multiple Eimeria spp was common and almost half of Eimeria positive birds had at least one highly pathogenic species detected. Despite this, all sampled birds were free of overt disease. Although there was no evidence of a difference in the prevalence of oocysts in faecal samples between study regions, there was evidence of variation in the prevalence of some species, perhaps suggesting regional differences in exposure to risk factors associated with the birds, their management and/or location-specific environmental and ecological factors.


Asunto(s)
Pollos , Coccidiosis/veterinaria , Eimeria/aislamiento & purificación , Enfermedades de las Aves de Corral/parasitología , Crianza de Animales Domésticos , Animales , Coccidiosis/epidemiología , Coccidiosis/parasitología , Eimeria/clasificación , Eimeria/genética , Etiopía/epidemiología , Heces/parasitología , Oocistos , Enfermedades de las Aves de Corral/epidemiología , Prevalencia , Especificidad de la Especie
8.
Trop Anim Health Prod ; 45(1): 75-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22639033

RESUMEN

The study was conducted in eight districts of Ethiopia with the objectives of determining the seroprevalence and associated risk factors of infectious bursal disease (IBD). From the total of 2,597 chicken serum samples examined using ELISA, 83.1 % were found positive. The highest seroprevalence was found at Mekele (90.3 %) while the lowest was recorded at Gondar district (69.8 %). These differences among the study areas were statistically significant (p < 0.05). Highest seroprevalence was found in crossbreed of chicken (91.4 %) while the lowest was recorded in indigenous breed of chicken (81.4 %). This difference was statistically significant (p < 0.05) among the three breeds of chickens, but sex was not statistically significant (p > 0.05). The seroprevalence of the disease was found high in young (≤ 8 weeks) age group (86.6 %) while the lowest prevalence was recorded in adults (>8 weeks) (72 %). This is also statistically significant (p < 0.05) between young and adult age groups. The prevalence of IBD in different production system indicated that higher seroprevalence was recorded in intensive production system (85.9 %) while the lowest was recorded in extensive production system (81.6 %). This difference is also statistically significant (p < 0.05).


Asunto(s)
Crianza de Animales Domésticos/métodos , Infecciones por Birnaviridae/veterinaria , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , Factores de Edad , Animales , Infecciones por Birnaviridae/epidemiología , Demografía , Ensayo de Inmunoadsorción Enzimática/veterinaria , Etiopía/epidemiología , Factores de Riesgo , Estudios Seroepidemiológicos , Especificidad de la Especie , Encuestas y Cuestionarios
9.
Parasit Vectors ; 16(1): 186, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280650

RESUMEN

BACKGROUND: Ross River virus (RRV) is Australia's most common and widespread mosquito-transmitted arbovirus and is of significant public health concern. With increasing anthropogenic impacts on wildlife and mosquito populations, it is important that we understand how RRV circulates in its endemic hotspots to determine where public health efforts should be directed. Current surveillance methods are effective in locating the virus but do not provide data on the circulation of the virus and its strains within the environment. This study examined the ability to identify single nucleotide polymorphisms (SNPs) within the variable E2/E3 region by generating full-length haplotypes from a range of mosquito trap-derived samples. METHODS: A novel tiled primer amplification workflow for amplifying RRV was developed with analysis using Oxford Nanopore Technology's MinION and a custom ARTIC/InterARTIC bioinformatic protocol. By creating a range of amplicons across the whole genome, fine-scale SNP analysis was enabled by specifically targeting the variable region that was amplified as a single fragment and established haplotypes that informed spatial-temporal variation of RRV in the study site in Victoria. RESULTS: A bioinformatic and laboratory pipeline was successfully designed and implemented on mosquito whole trap homogenates. Resulting data showed that genotyping could be conducted in real time and that whole trap consensus of the viruses (with major SNPs) could be determined in a timely manner. Minor variants were successfully detected from the variable E2/E3 region of RRV, which allowed haplotype determination within complex mosquito homogenate samples. CONCLUSIONS: The novel bioinformatic and wet laboratory methods developed here will enable fast detection and characterisation of RRV isolates. The concepts presented in this body of work are transferable to other viruses that exist as quasispecies in samples. The ability to detect minor SNPs, and thus haplotype strains, is critically important for understanding the epidemiology of viruses their natural environment.


Asunto(s)
Infecciones por Alphavirus , Culicidae , Secuenciación de Nanoporos , Animales , Humanos , Virus del Río Ross/genética , Genómica
10.
Viruses ; 14(12)2022 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-36560765

RESUMEN

Surveillance programs are essential for the prevention and control of mosquito-borne arboviruses that cause serious human and animal diseases. Viral metatranscriptomic sequencing can enhance surveillance by enabling untargeted, high-throughput arbovirus detection. We used metatranscriptomic sequencing to screen field-collected mosquitoes for arboviruses to better understand how metatranscriptomics can be utilised in routine surveillance. Following a significant flood event in 2016, more than 56,000 mosquitoes were collected over seven weeks from field traps set up in Victoria, Australia. The traps were split into samples of 1000 mosquitoes or less and sequenced on the Illumina HiSeq. Five arboviruses relevant to public health (Ross River virus, Sindbis virus, Trubanaman virus, Umatilla virus, and Wongorr virus) were detected a total of 33 times in the metatranscriptomic data, with 94% confirmed using reverse transcription quantitative PCR (RT-qPCR). Analysis of metatranscriptomic cytochrome oxidase I (COI) sequences enabled the detection of 12 mosquito and two biting midge species. Screening of the same traps by an established public health arbovirus surveillance program corroborated the metatranscriptomic arbovirus and mosquito species detections. Assembly of genome sequences from the metatranscriptomic data also led to the detection of 51 insect-specific viruses, both known and previously undescribed, and allowed phylogenetic comparison to past strains. We have demonstrated how metatranscriptomics can enhance surveillance by enabling untargeted arbovirus detection, providing genomic epidemiological data, and simultaneously identifying vector species from large, unsorted mosquito traps.


Asunto(s)
Infecciones por Arbovirus , Arbovirus , Culicidae , Animales , Humanos , Arbovirus/genética , Filogenia , Mosquitos Vectores , Victoria
11.
Sci Rep ; 12(1): 11886, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831457

RESUMEN

Outbreaks of avian influenza virus (AIV) from wild waterfowl into the poultry industry is of upmost significance and is an ongoing and constant threat to the industry. Accurate surveillance of AIV in wild waterfowl is critical in understanding viral diversity in the natural reservoir. Current surveillance methods for AIV involve collection of samples and transportation to a laboratory for molecular diagnostics. Processing of samples using this approach takes more than three days and may limit testing locations to those with practical access to laboratories. In potential outbreak situations, response times are critical, and delays have implications in terms of the spread of the virus that leads to increased economic cost. This study used nanopore sequencing technology for in-field sequencing and subtype characterisation of AIV strains collected from wild bird faeces and poultry. A custom in-field virus screening and sequencing protocol, including a targeted offline bioinformatic pipeline, was developed to accurately subtype AIV. Due to the lack of optimal diagnostic MinION packages for Australian AIV strains the bioinformatic pipeline was specifically targeted to confidently subtype local strains. The method presented eliminates the transportation of samples, dependence on internet access and delivers critical diagnostic information in a timely manner.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Comportamiento del Uso de la Herramienta , Animales , Australia , Hemaglutininas , Virus de la Influenza A/genética , Aves de Corral , Tecnología
12.
PLoS One ; 17(9): e0274627, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36099259

RESUMEN

In recent years reported cases of Buruli ulcer, caused by Mycobacterium ulcerans, have increased substantially in Victoria, Australia, with the epidemic also expanding geographically. To develop an understanding of how M. ulcerans circulates in the environment and transmits to humans we analyzed environmental samples collected from 115 properties of recent Buruli ulcer cases and from 115 postcode-matched control properties, for the presence of M. ulcerans. Environmental factors associated with increased odds of M. ulcerans presence at a property included certain native plant species and native vegetation in general, more alkaline soil, lower altitude, the presence of common ringtail possums (Pseudocheirus peregrinus) and overhead powerlines. However, only overhead powerlines and the absence of the native plant Melaleuca lanceolata were associated with Buruli ulcer case properties. Samples positive for M. ulcerans were more likely to be found at case properties and were associated with detections of M. ulcerans in ringtail possum feces, supporting the hypothesis that M. ulcerans is zoonotic, with ringtail possums the strongest reservoir host candidate. However, the disparity in environmental risk factors associated with M. ulcerans positive properties versus case properties indicates the involvement of human behavior or the influence of other environmental factors in disease acquisition that requires further study.


Asunto(s)
Úlcera de Buruli , Microbiología Ambiental , Mycobacterium ulcerans , Animales , Humanos , Úlcera de Buruli/epidemiología , Marsupiales/microbiología , Mycobacterium ulcerans/aislamiento & purificación , Factores de Riesgo , Victoria/epidemiología
13.
Parasit Vectors ; 14(1): 434, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454606

RESUMEN

BACKGROUND: Aedes vigilax is one of the most significant arbovirus vector and pest species in Australia's coastal regions. Occurring in multiple countries, this mosquito species occurs as a species complex which has been separated into three clades with two detected in Australia. Until recently, Ae. vigilax has largely been absent from Victoria, only occasionally caught over the years, with no reported detections from 2010 to 2016. Complicating the detection of Ae. vigilax is the shared sympatric distribution to the morphologically similar Ae. camptorhynchus, which can exceed 10,000 mosquitoes in a single trap night in Victoria. Currently, there are no molecular assays available for the detection of Ae. vigilax. We aim to develop a quantitative PCR (qPCR) for the detection of Ae. vigilax, with the specificity and sensitivity of this assay assessed as well as a method to process whole mosquito traps. METHODS: Trapping was performed during the 2017-2020 mosquito season in Victoria in two coastal areas across these 3 consecutive years. A qPCR assay was designed to allow rapid identification of Ae. vigilax as well as a whole mosquito trap homogenizing and processing methodology. Phylogenetic analysis was performed to determine which clade Ae. vigilax from Victoria was closest to. RESULTS: Aedes vigilax was successfully detected each year across two coastal areas of Victoria, confirming the presence of this species. The qPCR assay was proven to be sensitive and specific to Ae. vigilax, with trap sizes up to 1000 mosquitoes showing no inhibition in detection sensitivity. Phylogenetic analysis revealed that Ae. vigilax from Victoria is associated with clade III, showing high sequence similarity to those previously collected in New South Wales, Queensland and Western Australia. CONCLUSIONS: Aedes vigilax is a significant vector species that shares an overlapping distribution to the morphologically similar Ae. camptorhynchus, making detection difficult. Here, we have outlined the implementation of a specific and sensitive molecular screening assay coupled with a method to process samples for detection of Ae. vigilax in collections with large numbers of non-target species.


Asunto(s)
Aedes/genética , Mosquitos Vectores/genética , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Aedes/clasificación , Animales , Control de Mosquitos , Ochlerotatus/genética , Estaciones del Año , Victoria
14.
Front Vet Sci ; 8: 672048, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34235203

RESUMEN

African Swine Fever (ASF) has been spreading in numerous southeast Asian countries since a major incursion in mainland China in 2018. Timor-Leste confirmed an outbreak of ASF in September 2019 which resulted in high mortalities in affected pigs. Pigs in Timor-Leste are the second most common type of livestock kept by villagers and represent a traditionally important source of income and prestige for householders. In order to understand the extent of ASF infected villages in Timor-Leste a prevalence survey was designed and conducted in November-December 2019. Timor-Leste has limited laboratory facilities and access to qPCR diagnostic tests. Therefore, a loop mediated isothermal amplification (LAMP) assay was used to detect ASF positive blood samples collected during the prevalence survey. The LAMP assay was proven to be a robust, highly specific and sensitive laboratory test for ASF suitable for use in the field and where there are limited laboratory facilities. The results of the prevalence survey allowed the extent of the ASF incursion to be delineated and the introduction of a disease response strategy to limit the spread of ASF and assist in the recovery of the pig population in Timor-Leste.

15.
J Equine Vet Sci ; 93: 103143, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32972681

RESUMEN

Ross River virus (RRV) is a mosquito-borne arbovirus of the genus Alphavirus that causes disease in humans and horses in Australia. A temporal association of RRV infection in horses with clinical signs including pyrexia, malaise, and polyarthralgia has been reported, along with reduced athletic performance, often for extended periods. Despite these reports, disease due to RRV remains somewhat controversial as experimental infection of horses has resulted in obvious viraemia yet minimal signs of clinical disease. The relatively high viraemia demonstrated by horses infected with RRV has led to speculation that they could act as an important reservoir host of the virus, although this remains unclear. This review sought to appraise the existing literature relating to RRV infection of horses and to summarize the ecological and clinical consequences of RRV of relevance to the equine industry and to public health more broadly.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Culicidae , Enfermedades de los Caballos , Infecciones por Alphavirus/diagnóstico , Infecciones por Alphavirus/veterinaria , Animales , Australia , Enfermedades de los Caballos/epidemiología , Caballos , Virus del Río Ross
16.
Microbiol Resour Announc ; 9(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919150

RESUMEN

Here, we report the detection of a novel alphavirus in Australian mosquitoes, provisionally named Yada Yada virus (YYV). Phylogenetic analysis indicated that YYV belongs to the mosquito-specific alphavirus complex. The assembled genome is 11,612 nucleotides in length and encodes two open reading frames.

17.
PLoS One ; 15(8): e0237091, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32750064

RESUMEN

Wobbly possum disease virus (WPDV) is an arterivirus that was originally identified in common brushtail possums (Trichosurus vulpecula) in New Zealand, where it causes severe neurological disease. In this study, serum samples (n = 188) from Australian common brushtail, mountain brushtail (Trichosurus cunninghami) and common ringtail (Pseudocheirus peregrinus) possums were tested for antibodies to WPDV using ELISA. Antibodies to WPDV were detected in possums from all three species that were sampled in the states of Victoria and South Australia. Overall, 16% (30/188; 95% CI 11.0-22.0) of possums were seropositive for WPDV and 11.7% (22/188; 95% CI 7.5-17.2) were equivocal. The frequency of WPDV antibody detection was the highest in possums from the two brushtail species. This is the first reported serological evidence of infection with WPDV, or an antigenically similar virus, in Australian possums, and the first study to find antibodies in species other than common brushtail possums. Attempts to detect viral RNA in spleens by PCR were unsuccessful. Further research is needed to characterise the virus in Australian possums and to determine its impact on the ecology of Australian marsupials.


Asunto(s)
Infecciones por Arterivirus/epidemiología , Arterivirus/patogenicidad , Trichosurus/virología , Animales , Anticuerpos Antivirales/sangre , Arterivirus/inmunología , Infecciones por Arterivirus/sangre , Infecciones por Arterivirus/virología , Australia , Pruebas Serológicas , Trichosurus/inmunología
18.
Viruses ; 12(12)2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33334037

RESUMEN

Recent outbreaks of African swine fever virus (ASFV) have seen the movement of this virus into multiple new regions with devastating impact. Many of these outbreaks are occurring in remote, or resource-limited areas, that do not have access to molecular laboratories. Loop-mediated isothermal amplification (LAMP) is a rapid point of care test that can overcome a range of inhibitors. We outline further development of a real-time ASFV LAMP, including field verification during an outbreak in Timor-Leste. To increase field applicability, the extraction step was removed and an internal amplification control (IAC) was implemented. Assay performance was assessed in six different sample matrices and verified for a range of clinical samples. A LAMP detection limit of 400 copies/rxn was determined based on synthetic positive control spikes. A colourmetric LAMP assay was also assessed on serum samples. Comparison of the LAMP assay to a quantitative polymerase chain reaction (qPCR) was performed on clinical ASFV samples, using both serum and oral/rectal swabs, with a substantial level of agreement observed. The further verification of the ASFV LAMP assay, removal of extraction step, implementation of an IAC and the assessment of a range of sample matrix, further support the use of this assay for rapid in-field detection of ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/virología , Brotes de Enfermedades , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Fiebre Porcina Africana/diagnóstico , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Animales , Femenino , Masculino , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/normas , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Porcinos , Viremia
19.
Sci Rep ; 9(1): 19398, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852942

RESUMEN

The ability to identify all the viruses within a sample makes metatranscriptomic sequencing an attractive tool to screen mosquitoes for arboviruses. Practical application of this technique, however, requires a clear understanding of its analytical sensitivity and specificity. To assess this, five dilutions (1:1, 1:20, 1:400, 1:8,000 and 1:160,000) of Ross River virus (RRV) and Umatilla virus (UMAV) isolates were spiked into subsamples of a pool of 100 Culex australicus mosquitoes. The 1:1 dilution represented the viral load of one RRV-infected mosquito in a pool of 100 mosquitoes. The subsamples underwent nucleic acid extraction, mosquito-specific ribosomal RNA depletion, and Illumina HiSeq sequencing. The viral load of the subsamples was also measured using reverse transcription droplet digital PCR (RT-ddPCR) and quantitative PCR (RT-qPCR). Metatranscriptomic sequencing detected both RRV and UMAV in the 1:1, 1:20 and 1:400 subsamples. A high specificity was achieved, with 100% of RRV and 99.6% of UMAV assembled contigs correctly identified. Metatranscriptomic sequencing was not as sensitive as RT-qPCR or RT-ddPCR; however, it recovered whole genome information and detected 19 other viruses, including four first detections for Australia. These findings will assist arbovirus surveillance programs in utilising metatranscriptomics in routine surveillance activities to enhance arbovirus detection.


Asunto(s)
Arbovirus/genética , Culicidae/virología , Metagenoma/genética , Transcriptoma/genética , Animales , Arbovirus/aislamiento & purificación , Australia/epidemiología , Culex/genética , Culex/virología , Culicidae/genética , Humanos , Mosquitos Vectores/genética , Mosquitos Vectores/virología , ARN Viral/genética , ARN Viral/aislamiento & purificación , Virus del Río Ross/genética , Virus del Río Ross/aislamiento & purificación , Sensibilidad y Especificidad
20.
Artículo en Inglés | MEDLINE | ID: mdl-30982295

RESUMEN

This report describes the epidemiology of mosquito-borne diseases of public health importance in Australia during the 2014­15 season (1 July 2014 to 30 June 2015) and includes data from human notifications, sentinel chicken, vector and virus surveillance programs. The National Notifiable Diseases Surveillance System received notifications for 12,849 cases of disease transmitted by mosquitoes during the 2014­15 season. The Australasian alphaviruses Barmah Forest virus and Ross River virus accounted for 83% (n=10,723) of notifications. However, over-diagnosis and possible false positive diagnostic test results for these two infections mean that the true burden of infection is likely overestimated, and as a consequence, revised case definitions were implemented from 1 January 2016. There were 151 notifications of imported chikungunya virus infection. There were 74 notifications of dengue virus infection acquired in Australia and 1,592 cases acquired overseas, with an additional 34 cases for which the place of acquisition was unknown. Imported cases of dengue were most frequently acquired in Indonesia (66%). There were 7 notifications of Zika virus infection. No cases of locally-acquired malaria were notified during the 2014­15 season, though there were 259 notifications of overseas-acquired malaria and one notification for which no information on the place of acquisition was supplied. Imported cases of malaria were most frequently acquired in southern and eastern Africa (23%) and Pacific Island countries (20%). In 2014­15, arbovirus and mosquito surveillance programs were conducted in most of the states and territories. Surveillance for exotic mosquitoes at international ports of entry continues to be a vital part of preventing the establishment of vectors of mosquito-borne diseases such as dengue to new areas of Australia. In 2014-15, there was a sharp increase in the number of exotic mosquitoes detected at the Australian border, with 36 separate exotic mosquito detections made, representing a 280% increase from the 2013-14 period where there were 13 exotic mosquito detections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA