Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(23): 4317-4332.e15, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36302380

RESUMEN

Therapeutic cancer vaccines are designed to increase tumor-specific T cell immunity. However, suppressive mechanisms within the tumor microenvironment (TME) may limit T cell function. Here, we assessed how the route of vaccination alters intratumoral myeloid cells. Using a self-assembling nanoparticle vaccine that links tumor antigen peptides to a Toll-like receptor 7/8 agonist (SNP-7/8a), we treated tumor-bearing mice subcutaneously (SNP-SC) or intravenously (SNP-IV). Both routes generated antigen-specific CD8+ T cells that infiltrated tumors. However, only SNP-IV mediated tumor regression, dependent on systemic type I interferon at the time of boost. Single-cell RNA-sequencing revealed that intratumoral monocytes expressing an immunoregulatory gene signature (Chil3, Anxa2, Wfdc17) were reduced after SNP-IV boost. In humans, the Chil3+ monocyte gene signature is enriched in CD16- monocytes and associated with worse outcomes. Our results show that the generation of tumor-specific CD8+ T cells combined with remodeling of the TME is a promising approach for tumor immunotherapy.


Asunto(s)
Vacunas contra el Cáncer , Microambiente Tumoral , Humanos , Ratones , Animales , Linfocitos T CD8-positivos , Línea Celular Tumoral , Inmunoterapia/métodos , Antígenos de Neoplasias , Vacunación/métodos , Adyuvantes Inmunológicos
2.
Cell ; 184(11): 2955-2972.e25, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34019795

RESUMEN

Natural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (VH) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization. Here, we describe HIV-1 Env Fab-dimerized glycan (FDG)-reactive bnAbs without VH-swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques. FDG Abs also recognized cell-surface glycans on diverse pathogens, including yeast and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike. FDG precursors were expanded by glycan-bearing immunogens in macaques and were abundant in HIV-1-naive humans. Moreover, FDG precursors were predominately mutated IgM+IgD+CD27+, thus suggesting that they originated from a pool of antigen-experienced IgM+ or marginal zone B cells.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , VIH-1/inmunología , Fragmentos Fab de Inmunoglobulinas/inmunología , Polisacáridos/inmunología , SARS-CoV-2/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/inmunología , Dimerización , Epítopos/inmunología , Glicosilación , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Macaca mulatta , Polisacáridos/química , Receptores de Antígenos de Linfocitos B/química , Virus de la Inmunodeficiencia de los Simios/genética , Vacunas/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
3.
Nat Immunol ; 22(1): 41-52, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33139915

RESUMEN

Personalized cancer vaccines are a promising approach for inducing T cell immunity to tumor neoantigens. Using a self-assembling nanoparticle vaccine that links neoantigen peptides to a Toll-like receptor 7/8 agonist (SNP-7/8a), we show how the route and dose alter the magnitude and quality of neoantigen-specific CD8+ T cells. Intravenous vaccination (SNP-IV) induced a higher proportion of TCF1+PD-1+CD8+ T cells as compared to subcutaneous immunization (SNP-SC). Single-cell RNA sequencing showed that SNP-IV induced stem-like genes (Tcf7, Slamf6, Xcl1) whereas SNP-SC enriched for effector genes (Gzmb, Klrg1, Cx3cr1). Stem-like cells generated by SNP-IV proliferated and differentiated into effector cells upon checkpoint blockade, leading to superior antitumor response as compared to SNP-SC in a therapeutic model. The duration of antigen presentation by dendritic cells controlled the magnitude and quality of CD8+ T cells. These data demonstrate how to optimize antitumor immunity by modulating vaccine parameters for specific generation of effector or stem-like CD8+ T cells.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/administración & dosificación , Factor Nuclear 1-alfa del Hepatocito/análisis , Nanopartículas , Animales , Presentación de Antígeno , Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Femenino , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Vacunación
4.
Infect Immun ; 91(11): e0028223, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37846980

RESUMEN

Ticks are hematophagous arthropods that use a complex mixture of salivary proteins to evade host defenses while taking a blood meal. Little is known about the immunological and physiological consequences of tick feeding on humans. Here, we performed the first bulk and single-nucleus RNA sequencing (snRNA-seq) of skin and blood of four persons presenting with naturally acquired, attached Ixodes scapularis ticks. Pathways and individual genes associated with innate and adaptive immunity were identified based on bulk RNA sequencing, including interleukin-17 signaling and platelet activation pathways at the site of tick attachment or in peripheral blood. snRNA-seq further revealed that the Hippo signaling, cell adhesion, and axon guidance pathways were involved in the response to an I. scapularis bite in humans. Features of the host response in these individuals also overlapped with that of laboratory guinea pigs exposed to I. scapularis and which acquired resistance to ticks. These findings offer novel insights for the development of new biomarkers for I. scapularis exposure and anti-tick vaccines for human use.


Asunto(s)
Ixodes , Mordeduras de Garrapatas , Humanos , Animales , Cobayas , Ixodes/genética , Secuencia de Bases , Conducta Alimentaria/fisiología , ARN Nuclear Pequeño
5.
Exp Appl Acarol ; 89(3-4): 447-460, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37052726

RESUMEN

The cattle fever tick, Rhipicephalus (Boophilus) microplus, is the most economically important tick worldwide. Infestations with this tick can lead to direct damage and cattle mortality due to the transmission of potentially deadly pathogens. Management of this tick species has been focused on the use of synthetical acaricides; however, the emergence of acaricide resistance to single or multiple active ingredients has resulted in a need for novel acaricide compounds. Among potential avenues for the discovery of novel acaricides are plant-derived compounds. The efficacy of five organic compounds (nootkatone, Stop the Bites®, BioUD®, lavender oil, and cedarwood oil) was evaluated using larval immersion tests (LITs), repellency assays, and adult immersion tests (AITs). The results from the LITs indicate that three of the organic compounds (NootkaShield™, Stop the Bites, BioUD) led to significant mortalities at low concentrations (0.2, 0.02, and 0.08%, respectively). By comparison, lavender and cedar oil led to around 90% mortality at 10 and 1% concentrations, respectively. Similarly, NootkaShield, Stop the Bites, and BioUD had strong repellent properties with over 90% repellency at the two highest concentrations tested. Using the FAO 2004 guidelines, we evaluated the effectiveness of these organic compounds at reducing the fecundity of R. (B.) microplus and show that Nootkatone, Stop the Bites, and BioUD may significantly decrease tick populations (Drummond's index > 90% at concentrations of 5%), highlighting their potential as alternatives to synthetic acaricides for the control of cattle fever ticks.


Asunto(s)
Acaricidas , Enfermedades de los Bovinos , Ixodidae , Rhipicephalus , Infestaciones por Garrapatas , Bovinos , Animales , Acaricidas/farmacología , Infestaciones por Garrapatas/veterinaria , Larva , Enfermedades de los Bovinos/prevención & control
6.
PLoS Biol ; 17(6): e3000328, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31206510

RESUMEN

Peptide immunogens provide an approach to focus antibody responses to specific neutralizing sites on the HIV envelope protein (Env) trimer or on other pathogens. However, the physical characteristics of peptide immunogens can limit their pharmacokinetic and immunological properties. Here, we have designed synthetic "star" nanoparticles based on biocompatible N-[(2-hydroxypropyl)methacrylamide] (HPMA)-based polymer arms extending from a poly(amidoamine) (PAMAM) dendrimer core. In mice, these star nanoparticles trafficked to lymph nodes (LNs) by 4 hours following vaccination, where they were taken up by subcapsular macrophages and then resident dendritic cells (DCs). Immunogenicity optimization studies revealed a correlation of immunogen density with antibody titers. Furthermore, the co-delivery of Env variable loop 3 (V3) and T-helper peptides induced titers that were 2 logs higher than if the peptides were given in separate nanoparticles. Finally, we performed a nonhuman primate (NHP) study using a V3 glycopeptide minimal immunogen that was structurally optimized to be recognized by Env V3/glycan broadly neutralizing antibodies (bnAbs). When administered with a potent Toll-like receptor (TLR) 7/8 agonist adjuvant, these nanoparticles elicited high antibody binding titers to the V3 site. Similar to human V3/glycan bnAbs, certain monoclonal antibodies (mAbs) elicited by this vaccine were glycan dependent or targeted the GDIR peptide motif. To improve affinity to native Env trimer affinity, nonhuman primates (NHPs) were boosted with various SOSIP Env proteins; however, significant neutralization was not observed. Taken together, this study provides a new vaccine platform for administration of glycopeptide immunogens for focusing immune responses to specific bnAb epitopes.


Asunto(s)
Vacunas contra el SIDA/inmunología , VIH-1/inmunología , Nanopartículas/uso terapéutico , Animales , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos/inmunología , Epítopos/inmunología , Femenino , Proteína gp120 de Envoltorio del VIH/química , Infecciones por VIH/inmunología , Seropositividad para VIH/inmunología , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Péptidos , Primates
7.
Parasite Immunol ; 43(5): e12808, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33187012

RESUMEN

Acquired tick resistance is a phenomenon wherein the host elicits an immune response against tick salivary components upon repeated tick infestations. The immune responses, potentially directed against critical salivary components, thwart tick feeding, and the animal becomes resistant to subsequent tick infestations. The development of tick resistance is frequently observed when ticks feed on non-natural hosts, but not on natural hosts. The molecular mechanisms that lead to the development of tick resistance are not fully understood, and both host and tick factors are invoked in this phenomenon. Advances in molecular tools to address the host and the tick are beginning to reveal new insights into this phenomenon and to uncover a deeper understanding of the fundamental biology of tick-host interactions. This review will focus on the expanding understanding of acquired tick resistance and highlight the impact of this understanding on anti-tick vaccine development efforts.


Asunto(s)
Proteoma/fisiología , Infestaciones por Garrapatas/inmunología , Garrapatas/fisiología , Animales , Modelos Animales de Enfermedad , Resistencia a la Enfermedad , Interacciones Huésped-Parásitos/inmunología , Humanos
8.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31076433

RESUMEN

Ehrlichia muris subsp. eauclairensis is recognized as the etiological agent of human ehrlichiosis in Minnesota and Wisconsin. We describe the culture isolation of this organism from a field-collected tick and detail its relationship to other species of Ehrlichia The isolate could be grown in a variety of cultured cell lines and was effectively transmitted between Ixodes scapularis ticks and rodents, with PCR and microscopy demonstrating a broad pattern of dissemination in arthropod and mammalian tissues. Conversely, Amblyomma americanum ticks were not susceptible to infection by the Ehrlichia Histologic sections further revealed that the wild-type isolate was highly virulent for mice and hamsters, causing severe systemic disease that was frequently lethal. A Himar1 transposase system was used to create mCherry- and mKate-expressing EmCRT mutants, which retained the ability to infect rodents and ticks.IMPORTANCE Ehrlichioses are zoonotic diseases caused by intracellular bacteria that are transmitted by ixodid ticks. Here we report the culture isolation of bacteria which are closely related to, or the same as the Ehrlichia muris subsp. eauclairensis, a recently recognized human pathogen. EmCRT, obtained from a tick removed from deer at Camp Ripley, MN, is the second isolate of this subspecies described and is distinctive in that it was cultured directly from a field-collected tick. The isolate's cellular tropism, pathogenic changes caused in rodent tissues, and tick transmission to and from rodents are detailed in this study. We also describe the genetic mutants created from the EmCRT isolate, which are valuable tools for the further study of this intracellular pathogen.


Asunto(s)
Ehrlichia/aislamiento & purificación , Ixodes/microbiología , Transformación Genética , Animales , Cricetinae/microbiología , Ciervos/microbiología , Ehrlichia/genética , Ehrlichia/fisiología , Ehrlichia/ultraestructura , Femenino , Masculino , Ratones/microbiología , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión/veterinaria , Minnesota
9.
Trends Immunol ; 37(12): 813-815, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27838188

RESUMEN

Immunology is an increasingly interdisciplinary field. Here we describe a new model for interinstitutional graduate training as partnerships between complementary laboratories. This collaborative model reduces time to graduation without compromising productivity or alumni outcomes. We offer our experience with one such program and thoughts on the ingredients for their success. Despite tremendous recent advances in technology, communications, and the translation of basic scientific discoveries into new diagnostics and therapies for human diseases, graduate training in immunology and other areas of biomedical research in the United States has remained remarkably unchanged since the early 20th century, with coursework and laboratory rotations taking up much of the first 2 years, and a single mentor shepherding the student through a research project over 3 or more subsequent years. The time to graduation still averages more than 6 years in the biomedical sciences field (http://www.nsf.gov/statistics/2016/nsf16300/), with uncertain benefit of this extended time to research productivity and career advancement.


Asunto(s)
Alergia e Inmunología/educación , Educación de Postgrado , Modelos Educacionales , Investigación Biomédica , Movilidad Laboral , Humanos , Comunicación Interdisciplinaria , National Institutes of Health (U.S.) , Estados Unidos , Universidades
10.
Biomacromolecules ; 20(2): 854-870, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30608149

RESUMEN

Small molecule Toll-like receptor-7 and -8 agonists (TLR-7/8a) can be used as vaccine adjuvants to induce CD8 T cell immunity but require formulations that prevent systemic toxicity and focus adjuvant activity in lymphoid tissues. Here, we covalently attached TLR-7/8a to polymers of varying composition, chain architecture and hydrodynamic behavior (∼300 nm submicrometer particles, ∼10 nm micelles and ∼4 nm flexible random coils) and evaluated how these parameters of polymer-TLR-7/8a conjugates impact adjuvant activity in vivo. Attachment of TLR-7/8a to any of the polymer compositions resulted in a nearly 10-fold reduction in systemic cytokines (toxicity). Moreover, both lymph node cytokine production and the magnitude of CD8 T cells induced against protein antigen increased with increasing polymer-TLR-7/8a hydrodynamic radius, with the submicrometer particle inducing the highest magnitude responses. Notably, CD8 T cell responses induced by polymer-TLR-7/8a were dependent on CCR2+ monocytes and IL-12, whereas responses by a small molecule TLR-7/8a that unexpectedly persisted in vaccine-site draining lymph nodes (T1/2 = 15 h) had less dependence on monocytes and IL-12 but required Type I IFNs. This study shows how modular properties of synthetic adjuvants can be chemically programmed to alter immunity in vivo through distinct immunological mechanisms.


Asunto(s)
Adyuvantes Inmunológicos/química , Linfocitos T CD8-positivos/efectos de los fármacos , Activación de Linfocitos , Micelas , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular , Células Cultivadas , Citocinas/metabolismo , Femenino , Hidrodinámica , Ratones , Ratones Endogámicos C57BL , Unión Proteica
11.
Bioconjug Chem ; 27(10): 2372-2385, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27583777

RESUMEN

Structure-based vaccine design has been used to develop immunogens that display conserved neutralization sites on pathogens such as HIV-1, respiratory syncytial virus (RSV), and influenza. Improving the immunogenicity of these designed immunogens with adjuvants will require formulations that do not alter protein antigenicity. Here, we show that nanoparticle-forming thermoresponsive polymers (TRP) allow for co-delivery of RSV fusion (F) protein trimers with Toll-like receptor 7 and 8 agonists (TLR-7/8a) to enhance protective immunity. Although primary amine conjugation of TLR-7/8a to F trimers severely disrupted the recognition of critical neutralizing epitopes, F trimers site-selectively coupled to TRP nanoparticles retained appropriate antigenicity and elicited high titers of prefusion-specific, TH1 isotype anti-RSV F antibodies following vaccination. Moreover, coupling F trimers to TRP delivering TLR-7/8a resulted in ∼3-fold higher binding and neutralizing antibody titers than soluble F trimers admixed with TLR-7/8a and conferred protection from intranasal RSV challenge. Overall, these data show that TRP nanoparticles may provide a broadly applicable platform for eliciting neutralizing antibodies to structure-dependent epitopes on RSV, influenza, HIV-1, or other pathogens.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Nanopartículas/administración & dosificación , Polímeros/química , Vacunas contra Virus Sincitial Respiratorio/farmacología , Proteínas Virales de Fusión/administración & dosificación , Animales , Anticuerpos Neutralizantes , Técnicas de Química Sintética , Sistemas de Liberación de Medicamentos/métodos , Femenino , Ratones Endogámicos , Nanopartículas/química , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/inmunología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/química , Proteínas Virales de Fusión/química
12.
J Med Entomol ; 53(2): 409-15, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26721866

RESUMEN

A reduction in the use of animals in infectious disease research is desirable for animal welfare as well as for simplification and standardization of experiments. An artificial silicone-based membrane-feeding system was adapted for complete engorgement of adult and nymphal Ixodes scapularis Say (Acari: Ixodidae), and for infecting nymphs with pathogenic, tick-borne bacteria. Six wild-type and genetically transformed strains of four species of bacteria were inoculated into sterile bovine blood and fed to ticks. Pathogens were consistently detected in replete nymphs by polymerase chain reaction. Adult ticks that ingested bacteria as nymphs were evaluated for transstadial transmission. Borrelia burgdorferi and Ehrlichia muris-like agent showed high rates of transstadial transmission to adult ticks, whereas Anaplasma phagocytophilum and Rickettsia monacensis demonstrated low rates of transstadial transmission/maintenance. Artificial membrane feeding can be used to routinely maintain nymphal and adult I. scapularis, and infect nymphs with tick-borne pathogens.


Asunto(s)
Entomología/métodos , Ixodes/microbiología , Anaplasma phagocytophilum , Animales , Borrelia burgdorferi , Entomología/instrumentación , Conducta Alimentaria , Femenino , Rickettsia
13.
Nat Commun ; 15(1): 2140, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459027

RESUMEN

T cell receptors (TCR) are pivotal in mediating tumour cell cytolysis via recognition of mutation-derived tumour neoantigens (neoAgs) presented by major histocompatibility class-I (MHC-I). Understanding the factors governing the emergence of neoAg from somatic mutations is a major focus of current research. However, the structural and cellular determinants controlling TCR recognition of neoAgs remain poorly understood. This study describes the multi-level analysis of a model neoAg from the B16F10 murine melanoma, H2-Db/Hsf2 p.K72N68-76, as well as its cognate TCR 47BE7. Through cellular, molecular and structural studies we demonstrate that the p.K72N mutation enhances H2-Db binding, thereby improving cell surface presentation and stabilizing the TCR 47BE7 epitope. Furthermore, TCR 47BE7 exhibited high functional avidity and selectivity, attributable to a broad, stringent, binding interface enabling recognition of native B16F10 despite low antigen density. Our findings provide insight into the generation of anchor-residue modified neoAg, and emphasize the value of molecular and structural investigations of neoAg in diverse MHC-I contexts for advancing the understanding of neoAg immunogenicity.


Asunto(s)
Melanoma , Receptores de Antígenos de Linfocitos T , Animales , Ratones , Receptores de Antígenos de Linfocitos T/metabolismo , Melanoma/genética , Mutación , Epítopos de Linfocito T
14.
Sci Rep ; 14(1): 496, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177212

RESUMEN

19ISP is a nucleoside-modified mRNA-lipid nanoparticle vaccine that targets 19 Ixodes scapularis proteins. We demonstrate that adult I. scapularis have impaired fecundity when allowed to engorge on 19ISP-immunized rabbits. 19ISP, therefore, has the potential to interrupt the tick reproductive cycle, without triggering some of the other effects associated with acquired tick resistance. This may lead to the development of new strategies to reduce I. scapularis populations in endemic areas.


Asunto(s)
Ixodes , Animales , Conejos , Ixodes/genética , ARN Mensajero/genética , Vacunación , Fertilidad
15.
Mol Cancer Ther ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710101

RESUMEN

PURPOSE: Oncolytic virotherapy or immunovirotherapy is a strategy that utilizes viruses to selectively infect and kill tumor cells while also stimulating an immune response against the tumor. Early clinical trials in both pediatric and adult patients using oncolytic herpes simplex viruses (oHSVs) have demonstrated safety and promising efficacy; however, combinatorial strategies designed to enhance oncolysis while also promoting durable T cell responses for sustaining disease remission are likely required. We hypothesized that combining the direct tumor cell killing and innate immune stimulation by oHSV with a vaccine that promotes T cell mediated immunity may lead to more durable tumor regression. EXPERIMENTAL DESIGN: To this end, we investigated the preclinical efficacy and potential synergy of combining oHSV with a self-assembling nanoparticle vaccine co-delivering peptide antigens and Toll-like receptor-7 and -8 agonists (TLR-7/8a) (referred to as SNAPvax™), that induces robust tumor specific T cell immunity. We then assessed how timing of the treatments (i.e., vaccine before or after oHSV) impacts T cell responses, viral replication, and preclinical efficacy. RESULTS: The sequence of treatments was critical, as survival was significantly enhanced when the SNAPvax™ vaccine was given prior to oHSV. Increased clinical efficacy was associated with reduced tumour volume and increases in virus replication and tumor antigen specific CD8+ T cells. CONCLUSIONS: These findings substantiate the criticality of combination immunotherapy timing and provide preclinical support for combining SNAPvax with oHSV as a promising treatment approach for both pediatric and adult tumors.

16.
Res Sq ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36778273

RESUMEN

Physical interactions between T cell receptors (TCRs) and mutation-derived tumour neoantigens (neoAg) presented by major histocompatibility class-I (MHC-I) enable sensitive and specific cytolysis of tumour cells. Adoptive transfer of neoAg-reactive T cells in patients is correlated with response to immunotherapy; however, the structural and cellular mechanisms of neoAg recognition remain poorly understood. We have identified multiple cognate neoAg:TCRs from B16F10, a common murine implantable tumour model of melanoma. We identified a high affinity TCR targeting H2-Db-restricted Hsf2K72N that conferred specific recognition of B16F10 in vitro and in vivo. Structural characterization of the peptide-MHC (pMHC) binary and pMHC:TCR ternary complexes yielded high-resolution crystal structures, revealing the formation of a solvent-exposed hydrophobic arch in H2-Db that enables multiple intermolecular contacts between pMHC and the TCR. These features of structural stability strikingly mimic that of a previously published influenza peptide-H2-Db complex and its corresponding TCR, suggesting that there are shared structural motifs between neoantigens and viral peptides that explain their shared immunogenicity.

17.
Cell Rep ; 42(6): 112599, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37279110

RESUMEN

Therapeutic neoantigen cancer vaccines have limited clinical efficacy to date. Here, we identify a heterologous prime-boost vaccination strategy using a self-assembling peptide nanoparticle TLR-7/8 agonist (SNP) vaccine prime and a chimp adenovirus (ChAdOx1) vaccine boost that elicits potent CD8 T cells and tumor regression. ChAdOx1 administered intravenously (i.v.) had 4-fold higher antigen-specific CD8 T cell responses than mice boosted by the intramuscular (i.m.) route. In the therapeutic MC38 tumor model, i.v. heterologous prime-boost vaccination enhances regression compared with ChAdOx1 alone. Remarkably, i.v. boosting with a ChAdOx1 vector encoding an irrelevant antigen also mediates tumor regression, which is dependent on type I IFN signaling. Single-cell RNA sequencing of the tumor myeloid compartment shows that i.v. ChAdOx1 reduces the frequency of immunosuppressive Chil3 monocytes and activates cross-presenting type 1 conventional dendritic cells (cDC1s). The dual effect of i.v. ChAdOx1 vaccination enhancing CD8 T cells and modulating the TME represents a translatable paradigm for enhancing anti-tumor immunity in humans.


Asunto(s)
Linfocitos T CD8-positivos , Vacunación , Humanos , Ratones , Animales , Inmunidad Adaptativa , Vectores Genéticos , Adyuvantes Inmunológicos
18.
Ticks Tick Borne Dis ; 13(5): 102003, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35858517

RESUMEN

Borrelia miyamotoi is a relapsing fever spirochete carried by Ixodes spp. ticks throughout the northern hemisphere. The pathogen is acquired either transovarially (vertically) or horizontally through blood-feeding and passed transtadially across life stages. Despite these complementary modes of transmission, infection prevalence of ticks with B. miyamotoi is typically low (<5%) in natural settings and the relative contributions of the two transmission modes have not been studied extensively. Horizontal transmission of B. miyamotoi (strain CT13-2396 or wild type strain) was initiated using infected Ixodes scapularis larvae or nymphs to expose rodents, which included both the immunocompetent CD-1 laboratory mouse (Mus musculus) and a natural reservoir host, the white-footed mouse (Peromyscus. leucopus), to simulate natural enzootic transmission. Transovarial transmission was evaluated using I. scapularis exposed to B. miyamotoi as either larvae or nymphs feeding on immunocompromised SCID mice (M. musculus) and subsequently fed as females on New Zealand white rabbits. Larvae from infected females were qPCR-tested individually to assess transovarial transmission rates. Tissue tropism of B. miyamotoi in infected ticks was demonstrated using in situ hybridization. Between 1 and 12% of ticks were positive (post-molt) for B. miyamotoi after feeding on groups of CD-1 mice or P. leucopus with evidence of infection, indicating that horizontal transmission was inefficient, regardless of whether infected larvae or nymphs were used to challenge the mice. Transovarial transmission occurred in 7 of 10 egg clutches from infected females. Filial infection prevalence in larvae ranged from 3 to 100% (median 71%). Both larval infection prevalence and spirochete load were highly correlated with maternal spirochete load. Spirochetes were disseminated throughout the tissues of all three stages of unfed ticks, including the salivary glands and female ovarian tissue. The results indicate that while multiple transmission routes contribute to enzootic maintenance of B. miyamotoi, transovarial transmission is likely to be the primary source of infected ticks and therefore risk assessment and tick control strategies should target adult female ticks.


Asunto(s)
Borrelia , Ixodes , Enfermedad de Lyme , Fiebre Recurrente , Animales , Femenino , Larva , Ratones , Ratones SCID , Ninfa , Peromyscus , Conejos , Fiebre Recurrente/epidemiología
19.
Ticks Tick Borne Dis ; 13(6): 102017, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35963188

RESUMEN

As hematophagous parasites, many tick species are important vectors of medical and veterinary disease agents. Proteins found in tick saliva and midgut have been used with some success in immunizations of animal hosts against feeding ticks, and whole saliva has been used effectively in this capacity against Ixodes scapularis, the primary vector of tickborne pathogens in the United States. Tick saliva is a complex substance containing hundreds of proteins, and the identification of specific protective antigens is ongoing. We performed a series of experiments immunizing guinea pigs with extracts prepared from midgut or attachment cement collected from adult female I. scapularis followed by challenge with nymphs of the same species. Midgut extract did not induce protective immunity, while immunization with cement extract resulted in partial protection of hosts as evidenced by premature tick detachment and 34-41% reduction in tick engorgement weights. Proteomic characterization of I. scapularis cement was performed, demonstrating that the cement extract was compositionally different from tick saliva, and vitellogenin-like lipoproteins were the most abundant proteins in cement extract (>40%). Cement was also heavily enriched with lysozymes and defensins, including those originating from both the mammalian host as well as ticks. These results demonstrate that I. scapularis cement contains immunogenic components capable of stimulating host resistance against tick feeding. Because the cement is present at the tick-host interface for an extended period of time during the feeding process, these antigens present auspicious candidates for further evaluation and potential inclusion in an anti-tick vaccine.

20.
mBio ; 13(5): e0116122, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36036625

RESUMEN

Relapsing fever, caused by diverse Borrelia spirochetes, is prevalent in many parts of the world and causes significant morbidity and mortality. To investigate the pathoetiology of relapsing fever, we performed a high-throughput screen of Borrelia-binding host factors using a library of human extracellular and secretory proteins and identified CD55 as a novel host binding partner of Borrelia crocidurae and Borrelia persica, two agents of relapsing fever in Africa and Eurasia. CD55 is present on the surface of erythrocytes, carries the Cromer blood group antigens, and protects cells from complement-mediated lysis. Using flow cytometry, we confirmed that both human and murine CD55 bound to B. crocidurae and B. persica. Given the expression of CD55 on erythrocytes, we investigated the role of CD55 in pathological B. crocidurae-induced erythrocyte aggregation (rosettes), which enables spirochete immune evasion. We showed that rosette formation was partially dependent on host cell CD55 expression. Pharmacologically, soluble recombinant CD55 inhibited erythrocyte rosette formation. Finally, CD55-deficient mice infected with B. crocidurae had a lower pathogen load and elevated proinflammatory cytokine and complement factor C5a levels. In summary, our results indicate that CD55 is a host factor that is manipulated by the causative agents of relapsing fever for immune evasion. IMPORTANCE Borrelia species are causative agents of Lyme disease and relapsing fever infections in humans. B. crocidurae causes one of the most prevalent relapsing fever infections in parts of West Africa. In the endemic regions, B. crocidurae is present in ~17% of the ticks and ~11% of the rodents that serve as reservoirs. In Senegal, ~7% of patients with acute febrile illness were found to be infected with B. crocidurae. There is little information on host-pathogen interactions and how B. crocidurae manipulates host immunity. In this study, we used a high-throughput screen to identify host proteins that interact with relapsing fever-causing Borrelia species. We identified CD55 as one of the host proteins that bind to B. crocidurae and B. persica, the two causes of relapsing fever in Africa and Eurasia. We show that the interaction of B. crocidurae with CD55, present on the surface of erythrocytes, is key to immune evasion and successful infection in vivo. Our study further shows the role of CD55 in complement regulation, regulation of inflammatory cytokine levels, and innate immunity during relapsing fever infection. Overall, this study sheds light on host-pathogen interactions during relapsing fever infection in vivo.


Asunto(s)
Antígenos de Grupos Sanguíneos , Borrelia , Fiebre Recurrente , Humanos , Animales , Ratones , Fiebre Recurrente/epidemiología , Evasión Inmune , Borrelia/fisiología , Roedores , Citocinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA