Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(6): 2944-2955, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38306690

RESUMEN

The estuary is an energetic area connecting the inland, river, and ocean. The migration of microplastics (MPs) in this highly complex area is tied to the entire ecosystem. In this study, the effects of cohesive SPM (clay) and noncohesive SPM (sand) on the vertical migration of positively buoyant MPs, polyethylene (PE), and negatively buoyant MPs, polytetrafluoroethylene (PTFE), in the estuarine environment under hydrodynamic disturbances were investigated. The settling of positively buoyant MPs was more reliant on the cohesive SPM compared to the settling of negatively buoyant MPs. Moreover, MPs interacting with the SPM mixture at a clay-to-sand ratio of 1:9 settled more efficiently than those interacting with clay alone. A significant positive correlation was observed between MP settling percentage and the salinity level. MP settling percentage was significantly negatively correlated with fluid shear stress for both types of MPs, meanwhile, negatively buoyant MPs were able to resist greater hydraulic disturbances. In the low-energy mixing state, for both types of MPs, the settling percentage reached about 50% in only 10 min. The resuspension process of MPs under hydrodynamic disturbances was also uncovered. Additionally, the migration and potential sites of MPs were described in the context of prevalent environmental phenomena in estuaries.


Asunto(s)
Material Particulado , Contaminantes Químicos del Agua , Material Particulado/análisis , Microplásticos , Plásticos , Salinidad , Arena , Hidrodinámica , Arcilla , Ecosistema , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Estuarios
2.
Environ Sci Technol ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031076

RESUMEN

Ice can serve as a significant temporary repository and conveyance mechanism for microplastics (MPs). MPs present in the water column can become entrapped within developing ice formations, subsequently being sequestered and transported by ice floes. With changing temperatures, MPs stored in ice can be released back into the environment, while freezing conditions can alter the properties of MPs, ultimately affecting the fate of MPs in the environment. Freezing of MPs in freshwater ice results in the aggregation of MP particles due to physical compression, leading to an increase in particle size once the MPs are released from the ice. The freezing-induced aggregation enhances buoyancy effects, accelerating the settling/rising velocity of MPs in water. Additionally, freezing can lead to enhanced surface wetting alterations, thus improving the dispersion of hydrophobic MPs. The presence of salt in the water can mitigate the effect of freezing on MPs due to the formation of a brine network within the ice structure, which reduces the pressure on MPs entrapped by ice. In cold regions, numerous MPs undergo freezing and thawing, re-entering the water column.

3.
Environ Syst Res (Heidelb) ; 13(1): 22, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911061

RESUMEN

The unprecedented surge in the demand for personal protective equipment (PPE) worldwide during the covid pandemic resulted in a significant increase in PPE consumption and subsequent waste generation. Despite the importance of PPE, its widespread usage and disposal have sparked worries about the environmental impact and its long-term sustainability. The increasing awareness of environmental challenges, resource scarcity, and the urgent need to mitigate climate change necessitates a paradigm shift in the product design, manufacturing process, and waste management of PPE. To address these challenges and have a sustainable PPE future, the development of degradable polymers and natural fibers offers a promising alternative to traditional plastics. Additionally, recycling and upcycling methods can convert the waste into valuable alternate products or energy sources, thereby reducing their environmental impact. Better waste management systems, comprehensive policy frameworks, and international collaborations are essential for the effective PPE waste management and the promotion of sustainable practices. Despite the challenges, collaborative efforts across governments, manufacturers, research institutions, and waste management authorities are crucial for transitioning to a more sustainable PPE industry and a circular economy, ultimately benefiting both the environment and society.

4.
Bioengineering (Basel) ; 11(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38927790

RESUMEN

Farm leftovers, particularly crop residues, are a key source of renewable energy in Canada. The nation's robust agricultural industry provides ample biomass, derived from forestry and agriculture resources, for energy generation. Crop residues, such as straws and husks, play a crucial role in this biomass reservoir, contributing to biofuel production and greenhouse gas mitigation efforts. Focusing on supply chains, waste management, and emission reduction, this study evaluates the sustainability of wheat straw, an agricultural biomass by-product. The environmental issues of various approaches to managing agricultural biomass were explored. Following an evaluation of biomass features, conversion methods, and economic and environmental advantages, the results show anaerobic digestion to be the most sustainable approach. Four metrics were examined in relation to social elements, and numerous aspects were considered as inputs in the evaluation of transportation costs. The use of electric trucks versus fuel-based trucks resulted in an 18% reduction in total operating costs and a 58% reduction in consumption costs. This study examined CO2 emissions over four different transportation distances. The data indicate that a significant reduction of 36% in kg CO2 equivalent emissions occurred when the distance was lowered from 100 km to 25 km. These findings offer insights for creating practical plans that should increase the sustainability of agricultural biomass leftovers.

5.
J Hazard Mater ; 469: 134040, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38503206

RESUMEN

Coastal waters are complex and dynamic areas with unique environmental attributes that complicate the vertical migration of microplastics (MPs). The MPs that enter coastal waters from diverse sources, including terrestrial, riverine, oceanic, and shoreline inputs undergo various aging pathways. In this study, the variations in the physiochemical characteristics of MPs undergoing various aging pathways and their vertical migration under dynamic conditions subjected to the effects of different MP characteristics and coastal environmental features were comprehensively explored. Opposite effects of aging on the vertical migration of hydrophobic and hydrophilic MPs were observed, with aging appearing to promote the dispersion of hydrophobic MPs but enhance the vertical migration of hydrophilic ones. The positive role of salinity and the negative role of humic acid (HA) concentrations on MP vertical migration were identified, and the mechanisms driving these effects were analyzed. Notably, intense turbulence not only promoted the floating of positively buoyant MPs but also reversed the migration direction of negatively buoyant MPs from downward to upward. Aging-induced changes in MP characteristics had a limited effect on MP vertical migration. The inherent characteristics of MPs and the surrounding environmental features, however, played major roles in their vertical migration dynamics. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) have emerged as a significant global environmental concern and the coastal zones are the hotspots for MP pollution due to their high population density. This study comprehensively investigated the variations in the physiochemical characteristics of MPs undergoing various aging pathways. Their vertical migration patterns under dynamic conditions subjected to the effects of different MP characteristics and coastal environmental features were revealed. The roles of turbulence and MP density in their migration were identified. The findings of this study have important implications for understanding the transport and determining the ecological risks of MPs in coastal waters.

6.
Sci Total Environ ; 905: 167137, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37734618

RESUMEN

Mask waste can affect the natural environment and human health. In this study, the life cycle assessment (LCA) of two types of face masks (Polylactic acid (PLA) and Polypropylene (PP)) was first performed to evaluate the environmental impacts from production to end-of-life, and then, greenhouse gas (GHG) emissions were estimated for each life stage. The GHG emissions for one functional unit of PP and PLA face masks were estimated to be 6.27E+07 and 5.06E+07 kg CO2 eq, respectively. Explicitly, PLA mask production emissions are 37 % lower as compared to those for PP masks. Packaging has been recognized as a major GHG source throughout the product's life cycle. This study may provide a new insight into the environmental benefits of reducing GHG emissions within PLA face mask life cycles. Biodegradable and environmentally friendly materials can be used in the manufacturing and packaging of face masks.


Asunto(s)
Máscaras , Polipropilenos , Humanos , Ambiente , Poliésteres , Efecto Invernadero
7.
Mar Pollut Bull ; 193: 115234, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37399736

RESUMEN

Oil deposited on shoreline substrates has serious adverse effects on the coastal environment and can persist for a long time. In this study, a green and effective microemulsion (ME) derived from vegetable oil was developed as a washing fluid to remove stranded oil from beach sand. The pseudo-ternary phase diagrams of the castor oil/water (without or without NaCl)/Triton X-100/ethanol were constructed to determine ME regions, and they also demonstrated that the phase behaviors of ME systems were almost independent of salinity. ME-A and ME-B exhibited high oil removal performance, low surfactant residues, and economic benefits, which were determined to be the W/O microstructure. Under optimal operation conditions, the oil removal efficiencies for both ME systems were 84.3 % and 86.8 %, respectively. Moreover, the reusability evaluation showed that the ME system still had over 70 % oil removal rates, even though it was used six times, implying its sustainability and reliability.


Asunto(s)
Arena , Tensoactivos , Reproducibilidad de los Resultados , Emulsiones/química , Tensoactivos/química , Octoxinol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA