Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Genet Sel Evol ; 56(1): 49, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926647

RESUMEN

BACKGROUND: Multi-population genomic prediction can rapidly expand the size of the reference population and improve genomic prediction ability. Machine learning (ML) algorithms have shown advantages in single-population genomic prediction of phenotypes. However, few studies have explored the effectiveness of ML methods for multi-population genomic prediction. RESULTS: In this study, 3720 Yorkshire pigs from Austria and four breeding farms in China were used, and single-trait genomic best linear unbiased prediction (ST-GBLUP), multitrait GBLUP (MT-GBLUP), Bayesian Horseshoe (BayesHE), and three ML methods (support vector regression (SVR), kernel ridge regression (KRR) and AdaBoost.R2) were compared to explore the optimal method for joint genomic prediction of phenotypes of Chinese and Austrian pigs through 10 replicates of fivefold cross-validation. In this study, we tested the performance of different methods in two scenarios: (i) including only one Austrian population and one Chinese pig population that were genetically linked based on principal component analysis (PCA) (designated as the "two-population scenario") and (ii) adding reference populations that are unrelated based on PCA to the above two populations (designated as the "multi-population scenario"). Our results show that, the use of MT-GBLUP in the two-population scenario resulted in an improvement of 7.1% in predictive ability compared to ST-GBLUP, while the use of SVR and KKR yielded improvements in predictive ability of 4.5 and 5.3%, respectively, compared to MT-GBLUP. SVR and KRR also yielded lower mean square errors (MSE) in most population and trait combinations. In the multi-population scenario, improvements in predictive ability of 29.7, 24.4 and 11.1% were obtained compared to ST-GBLUP when using, respectively, SVR, KRR, and AdaBoost.R2. However, compared to MT-GBLUP, the potential of ML methods to improve predictive ability was not demonstrated. CONCLUSIONS: Our study demonstrates that ML algorithms can achieve better prediction performance than multitrait GBLUP models in multi-population genomic prediction of phenotypes when the populations have similar genetic backgrounds; however, when reference populations that are unrelated based on PCA are added, the ML methods did not show a benefit. When the number of populations increased, only MT-GBLUP improved predictive ability in both validation populations, while the other methods showed improvement in only one population.


Asunto(s)
Fenotipo , Animales , Austria , Porcinos/genética , Reproducción/genética , Genómica/métodos , Cruzamiento/métodos , China , Modelos Genéticos , Aprendizaje Automático , Teorema de Bayes , Carácter Cuantitativo Heredable
2.
J Anim Breed Genet ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682760

RESUMEN

Genetic improvement of udder health in dairy cows is of high relevance as mastitis is one of the most prevalent diseases. Since it is known that the heritability of mastitis is low and direct data on mastitis cases are often not available in large numbers, auxiliary traits, such as somatic cell count (SCC) are used for the genetic evaluation of udder health. In previous studies, models to predict clinical mastitis based on mid-infrared (MIR) spectral data and a somatic cell count-derived score (SCS) were developed. Those models can provide a probability of mastitis for each cow at every test-day, which is potentially useful as an additional auxiliary trait for the genetic evaluation of udder health. Furthermore, MIR spectral data were used to estimate contents of lactoferrin, a glycoprotein positively associated with immune response. The present study aimed to estimate heritabilities (h2) and genetic correlations (ra) for clinical mastitis diagnosis (CM), SCS, MIR-predicted mastitis probability (MIRprob), MIR + SCS-predicted mastitis probability (MIRSCSprob) and lactoferrin estimates (LF). Data for this study were collected within the routine milk recording and health monitoring system of Austria from 2014 to 2021 and included records of approximately 54,000 Fleckvieh cows. Analyses were performed in two datasets, including test-day records from 5 to 150 or 5 to 305 days in milk. Prediction models were applied to obtain MIR- and SCS-based phenotypes (MIRprob, MIRSCSprob, LF). To estimate heritabilities and genetic correlations bivariate linear animal models were applied for all traits. A lactation model was used for CM, defined as a binary trait, and a test-day model for all other continuous traits. In addition to the random animal genetic effect, the fixed effects year-season of calving and parity-age at calving and the random permanent environmental effect were considered in all models. For CM the random herd-year effect, for continuous traits the random herd-test day effect and the covariate days in milk (linear and quadratic) were additionally fitted. The obtained genetic parameters were similar in both datasets. The heritability found for CM was expectedly low (h2 = 0.02). For SCS and MIRSCSprob, heritability estimates ranged from 0.23 to 0.25, and for MIRprob and LF from 0.15 to 0.17. CM was highly correlated with SCS and MIRSCSprob (ra = 0.85 to 0.88). Genetic correlations of CM were moderate with MIRprob (ra = 0.26 and 0.37) during 150 and 305 days in milk, respectively and low with LF (h2 = 0.10 and 0.11). However, basic selection index calculations indicate that the added value of the new MIR-predicted phenotypes is limited for genetic evaluation of udder health.

3.
J Evol Biol ; 36(6): 935-944, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37259484

RESUMEN

The adult sex ratio (ASR, the proportion of males in the adult population) is an emerging predictor of reproductive behaviour, and recent studies in birds and humans suggest it is a major driver of social mating systems and parental care. ASR may also influence genetic mating systems. For instance male-skewed ASRs are expected to increase the frequency of multiple paternity (defined here as a clutch or litter sired by two or more males) due to higher rates of coercive copulations by males, and/or due to females exploiting the opportunity of copulation with multiple males to increase genetic diversity of their offspring. Here, we evaluate this hypothesis in reptiles that often exhibit high frequency of multiple paternity although its ecological and life-history predictors have remained controversial. Using a comprehensive dataset of 81 species representing all four non-avian reptile orders, we show that increased frequency of multiple paternity is predicted by more male-skewed ASR, and this relationship is robust to simultaneous effects of several life-history predictors. Additionally, we show that the frequency of multiple paternity varies with the sex determination system: species with female heterogamety (ZZ/ZW sex chromosomes) exhibit higher levels of multiple paternity than species with male heterogamety (XY/XX) or temperature-dependent sex determination. Thus, our across-species comparative study provides the first evidence that genetic mating system depends on ASR in reptiles. We call for further investigations to uncover the complex evolutionary associations between mating systems, sex determination systems and ASR.


Asunto(s)
Razón de Masculinidad , Conducta Sexual Animal , Humanos , Animales , Masculino , Femenino , Copulación , Reproducción , Aves , Paternidad
4.
Anim Genet ; 54(3): 239-253, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36737525

RESUMEN

We used genome-wide SNP data from 18 local cattle breeds from six countries of the Alpine region to characterize population structure and identify genomic regions underlying positive selection. The geographically close breeds Evolèner, Eringer, Valdostana Pezzata Nera, and Valdostana Castana were found to differ from all other Alpine breeds. In addition, three breeds, Simmental, and Original Braunvieh from Switzerland and Pinzgauer from Austria built three separate clusters. Of the 18 breeds studied, the intra-alpine Swiss breed Evolèner had the highest average inbreeding based on runs of homozygosity (FROH ) and the highest average genomic relationship within the breed. In contrast, Slovenian Cika cattle had the lowest average genomic inbreeding and the lowest average genomic relationship within the breed. We found selection signatures on chromosome 6 near known genes such as KIT and LCORL explaining variation in coat color and body size in cattle. The most prominent selection signatures were similar regardless of marker density and the breeds in the data set. In addition, using available high-density SNP data from 14 of the breeds we identified 47 genome regions as ROH islands. The proportion of homozygous animals was higher in all studied animals of local breeds than in Holstein and Brown Swiss cattle, the two most important commercial breeds in the Alpine region. We report ROH islands near genes related to thermoregulation, coat color, production, and stature. The results of this study serve as a basis for the search for causal variants underlying adaptation to the alpine environment and other specific characteristics selected during the evolution of local Alpine cattle breeds.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Bovinos , Animales , Genotipo , Endogamia , Homocigoto , Genómica/métodos
5.
J Anim Breed Genet ; 140(6): 653-662, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37409752

RESUMEN

In most cases, inbreeding is expected to have unfavourable effects on traits in livestock. The consequences of inbreeding depression could be substantial, primarily in reproductive and sperm quality traits, and thus lead to decreased fertility. Therefore, the objectives of this study were (i) to compute inbreeding coefficients using pedigree (FPED ) and genomic data based on runs of homozygosity (ROH) in the genome (FROH ) of Austrian Pietrain pigs, and (ii) to assess inbreeding depression on four sperm quality traits. In total, 74,734 ejaculate records from 1034 Pietrain boars were used for inbreeding depression analyses. Traits were regressed on inbreeding coefficients using repeatability animal models. Pedigree-based inbreeding coefficients were lower than ROH-based inbreeding values. The correlations between pedigree and ROH-based inbreeding coefficients ranged from 0.186 to 0.357. Pedigree-based inbreeding affected only sperm motility while ROH-based inbreeding affected semen volume, number of spermatozoa, and motility. For example, a 1% increase in pedigree inbreeding considering 10 ancestor generations (FPED10 ) was significantly (p < 0.05) associated with a 0.231% decrease in sperm motility. Almost all estimated effects of inbreeding on the traits studied were unfavourable. It is advisable to properly manage the level of inbreeding to avoid high inbreeding depression in the future. Further, analysis of effects of inbreeding depression for other traits, including growth and litter size for the Austrian Pietrain population is strongly advised.

6.
BMC Genomics ; 22(1): 108, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33557747

RESUMEN

BACKGROUND: In evolutionary theory, divergence and speciation can arise from long periods of reproductive isolation, genetic mutation, selection and environmental adaptation. After divergence, alleles can either persist in their initial state (ancestral allele - AA), co-exist or be replaced by a mutated state (derived alleles -DA). In this study, we aligned whole genome sequences of individuals from the Bovinae subfamily to the cattle reference genome (ARS.UCD-1.2) for defining ancestral alleles necessary for selection signatures study. RESULTS: Accommodating independent divergent of each lineage from the initial ancestral state, AA were defined based on fixed alleles on at least two groups of yak, bison and gayal-gaur-banteng resulting in ~ 32.4 million variants. Using non-overlapping scanning windows of 10 Kb, we counted the AA observed within taurine and zebu cattle. We focused on the extreme points, regions with top 0. 1% (high count) and regions without any occurrence of AA (null count). High count regions preserved gene functions from ancestral states that are still beneficial in the current condition, while null counts regions were linked to mutated ones. For both cattle, high count regions were associated with basal lipid metabolism, essential for survival of various environmental pressures. Mutated regions were associated to productive traits in taurine, i.e. higher metabolism, cell development and behaviors and in immune response domain for zebu. CONCLUSIONS: Our findings suggest that retaining and losing AA in some regions are varied and made it species-specific with possibility of overlapping as it depends on the selective pressure they had to experience.


Asunto(s)
Bison , Rumiantes , Alelos , Animales , Evolución Biológica , Bison/genética , Bovinos/genética , Fenotipo , Rumiantes/genética
7.
BMC Genomics ; 22(1): 398, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051743

RESUMEN

BACKGROUND: Copy number variations (CNV) are a significant source of variation in the genome and are therefore essential to the understanding of genetic characterization. The aim of this study was to develop a fine-scaled copy number variation map for African goats. We used sequence data from multiple breeds and from multiple African countries. RESULTS: A total of 253,553 CNV (244,876 deletions and 8677 duplications) were identified, corresponding to an overall average of 1393 CNV per animal. The mean CNV length was 3.3 kb, with a median of 1.3 kb. There was substantial differentiation between the populations for some CNV, suggestive of the effect of population-specific selective pressures. A total of 6231 global CNV regions (CNVR) were found across all animals, representing 59.2 Mb (2.4%) of the goat genome. About 1.6% of the CNVR were present in all 34 breeds and 28.7% were present in all 5 geographical areas across Africa, where animals had been sampled. The CNVR had genes that were highly enriched in important biological functions, molecular functions, and cellular components including retrograde endocannabinoid signaling, glutamatergic synapse and circadian entrainment. CONCLUSIONS: This study presents the first fine CNV map of African goat based on WGS data and adds to the growing body of knowledge on the genetic characterization of goats.


Asunto(s)
Variaciones en el Número de Copia de ADN , Cabras , África , Animales , Genoma , Cabras/genética
8.
Genet Sel Evol ; 53(1): 96, 2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34922445

RESUMEN

BACKGROUND: Reference genomes are essential in the analysis of genomic data. As the cost of sequencing decreases, multiple reference genomes are being produced within species to alleviate problems such as low mapping accuracy and reference allele bias in variant calling that can be associated with the alignment of divergent samples to a single reference individual. The latest reference sequence adopted by the scientific community for the analysis of cattle data is ARS_UCD1.2, built from the DNA of a Hereford cow (Bos taurus taurus-B. taurus). A complementary genome assembly, UOA_Brahman_1, was recently built to represent the other cattle subspecies (Bos taurus indicus-B. indicus) from a Brahman cow haplotype to further support analysis of B. indicus data. In this study, we aligned the sequence data of 15 B. taurus and B. indicus breeds to each of these references. RESULTS: The alignment of B. taurus individuals against UOA_Brahman_1 detected up to five million more single-nucleotide variants (SNVs) compared to that against ARS_UCD1.2. Similarly, the alignment of B. indicus individuals against ARS_UCD1.2 resulted in one and a half million more SNVs than that against UOA_Brahman_1. The number of SNVs with nearly fixed alternative alleles also increased in the alignments with cross-subspecies. Interestingly, the alignment of B. taurus cattle against UOA_Brahman_1 revealed regions with a smaller than expected number of counts of SNVs with nearly fixed alternative alleles. Since B. taurus introgression represents on average 10% of the genome of Brahman cattle, we suggest that these regions comprise taurine DNA as opposed to indicine DNA in the UOA_Brahman_1 reference genome. Principal component and admixture analyses using genotypes inferred from this region support these taurine-introgressed loci. Overall, the flagged taurine segments represent 13.7% of the UOA_Brahman_1 assembly. The genes located within these segments were previously reported to be under positive selection in Brahman cattle, and include functional candidate genes implicated in feed efficiency, development and immunity. CONCLUSIONS: We report a list of taurine segments that are in the UOA_Brahman_1 assembly, which will be useful for the interpretation of interesting genomic features (e.g., signatures of selection, runs of homozygosity, increased mutation rate, etc.) that could appear in future re-sequencing analysis of indicine cattle.


Asunto(s)
Genotipo , Animales , Bovinos/genética , Femenino
9.
J Anim Breed Genet ; 138(3): 379-388, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33609004

RESUMEN

High-throughput genomic markers provide an opportunity to assess important indicators of genetic diversity for populations managed in livestock breeding programs. While well-structured breeding programs are common in developed countries, in developing country situations, especially in West Africa, on-farm performance and pedigree recordings are rare, and thus, genomic markers provide insights to the levels of genetic diversity, inbreeding and introgression by other breeds. In this study, we analysed key population parameters such as population structure, admixture and levels of inbreeding in three neighbouring populations of African taurine and taurine × Zebu crosses managed by community-based breeding programs in the South-West of Burkina Faso. The three populations were pure Baoulé (called Lobi locally) in sedentary production systems, Baoulé x Zebu crossbreds in sedentary systems and Zebu × Baoulé crossbreds in transhumant production systems, respectively. The total sample analysed included 631 animals and 38,207 single nucleotide polymorphisms after quality control. Results of principal component and admixture analyses confirmed the genetic background of two distinct ancestral populations (taurine and zebuine) and levels of admixture in all three breeding populations, including the presumably pure Baoulé group of animals. Inbreeding levels were moderate, compared to European dairy and beef cattle populations and higher than those of Brazilian Nellore cattle. Very few animals with inbreeding levels indicating parent-offspring or full sib mating were observed, and inbreeding levels indicating half sib mating were also rare. For the management of breeding populations, farmers were advised to exchange best young bulls. The crossbreeding levels of presumably pure Baoulé animals are of concern to the breeding program due to the high level of endangerment of pure African taurine cattle populations across West Africa. Future rounds of bull selection in the community-based breeding program will make use of genomic information about admixture levels.


Asunto(s)
Endogamia , Animales , Brasil , Burkina Faso , Bovinos , Genoma , Ganado , Masculino
10.
Angew Chem Int Ed Engl ; 60(9): 4732-4739, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33205862

RESUMEN

Environmental control of single-molecule junction evolution and conductance was demonstrated for expanded pyridinium molecules by scanning tunneling microscopy break junction method and interpreted by quantum transport calculations including solvent molecules explicitly. Fully extended and highly conducting molecular junctions prevail in water environment as opposed to short and less conducting junctions formed in non-solvating mesitylene. A theoretical approach correctly models single-molecule conductance values considering the experimental junction length. Most pronounced difference in the molecular junction formation and conductance was identified for a molecule with the highest stabilization energy on the gold substrate confirming the importance of molecule-electrode interactions. Presented concept of tuning conductance through molecule-electrode interactions in the solvent-driven junctions can be used in the development of new molecular electronic devices.

11.
Nat Mater ; 18(4): 364-369, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30742083

RESUMEN

Controlling the electrical conductance and in particular the occurrence of quantum interference in single-molecule junctions through gating effects has potential for the realization of high-performance functional molecular devices. In this work we used an electrochemically gated, mechanically controllable break junction technique to tune the electronic behaviour of thiophene-based molecular junctions that show destructive quantum interference features. By varying the voltage applied to the electrochemical gate at room temperature, we reached a conductance minimum that provides direct evidence of charge transport controlled by an anti-resonance arising from destructive quantum interference. Our molecular system enables conductance tuning close to two orders of magnitude within the non-faradaic potential region, which is significantly higher than that achieved with molecules not showing destructive quantum interference. Our experimental results, interpreted using quantum transport theory, demonstrate that electrochemical gating is a promising strategy for obtaining improved in situ control over the electrical performance of interference-based molecular devices.


Asunto(s)
Teoría Cuántica , Conductividad Eléctrica , Electroquímica , Líquidos Iónicos/química , Modelos Moleculares , Conformación Molecular
12.
BMC Bioinformatics ; 20(1): 167, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940067

RESUMEN

BACKGROUND: Genome-wide prediction has become the method of choice in animal and plant breeding. Prediction of breeding values and phenotypes are routinely performed using large genomic data sets with number of markers on the order of several thousands to millions. The number of evaluated individuals is usually smaller which results in problems where model sparsity is of major concern. The LASSO technique has proven to be very well-suited for sparse problems often providing excellent prediction accuracy. Several computationally efficient LASSO algorithms have been developed, but optimization of hyper-parameters can be demanding. RESULTS: We have developed a novel automatic adaptive LASSO (AUTALASSO) based on the alternating direction method of multipliers (ADMM) optimization algorithm. The two major hyper-parameters of ADMM are the learning rate and the regularization factor. The learning rate is automatically tuned with line search and the regularization factor optimized using Golden section search. Results show that AUTALASSO provides superior prediction accuracy when evaluated on simulated and real bull data compared to the adaptive LASSO, LASSO and ridge regression implemented in the popular glmnet software. CONCLUSIONS: The AUTALASSO provides a very flexible and computationally efficient approach to GWP, especially when it is important to obtain high prediction accuracy and genetic gain. The AUTALASSO also has the capability to perform GWAS of both additive and dominance effects with smaller prediction error than the ordinary LASSO.


Asunto(s)
Algoritmos , Genómica/métodos , Animales , Cruzamiento , Bovinos , Genoma , Programas Informáticos
13.
Heredity (Edinb) ; 122(5): 636-646, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30401973

RESUMEN

Goats (Capra hircus) are an important farm animal species. Copy number variation (CNV) represents a major source of genomic structural variation. We investigated the diversity of CNV distribution in goats using CaprineSNP50 genotyping data generated by the ADAPTmap Project. We identified 6286 putative CNVs in 1023 samples from 50 goat breeds using PennCNV. These CNVs were merged into 978 CNV regions, spanning ~262 Mb of total length and corresponding to ~8.96% of the goat genome. We then divided the samples into six subgroups per geographic distribution and constructed a comparative CNV map. Our results revealed a population differentiation in CNV across different geographical areas, including Western Asia, Eastern Mediterranean, Alpine & Northern Europe, Madagascar, Northwestern Africa, and Southeastern Africa groups. The results of a cluster heatmap analysis based on the CNV count per individual across different groups was generally consistent with the one generated from the SNP data, likely reflecting the population history of different goat breeds. We sought to determine the gene content of these CNV events and found several important CNV-overlapping genes (e.g. EDNRA, ADAMTS20, ASIP, KDM5B, ADAM8, DGAT1, CHRNB1, CLCN7, and EXOSC4), which are involved in local adaptations such as coat color, muscle development, metabolic processes, osteopetrosis, and embryonic development. Therefore, this research generated an extensive CNV map in the worldwide population of goat, which offers novel insight into the goat genome and its functional annotation.


Asunto(s)
Variaciones en el Número de Copia de ADN , Variación Genética , Cabras/genética , Animales , Cruzamiento , Análisis por Conglomerados , Evolución Molecular , Genética de Población , Genoma/genética
14.
J Dairy Sci ; 102(11): 10088-10099, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31447150

RESUMEN

Lactose is a sugar uniquely found in mammals' milk and it is the major milk solid in bovines. Lactose yield (LY, kg/d) is responsible for milk volume, whereas lactose percentage (LP) is thought to be more related to epithelial integrity and thus to udder health. There is a paucity of studies that have investigated lactose at the genomic level in dairy cows. This paper aimed to improve our knowledge on LP and LY, providing new insights into the significant genomic regions affecting these traits. A genome-wide association study for LP and LY was carried out in Fleckvieh cattle by using bulls' deregressed estimated breeding values of first lactation as pseudo-phenotypes. Heritabilities of first-lactation test-day LP and LY estimated using linear animal models were 0.38 and 0.25, respectively. A total of 2,854 bulls genotyped with a 54K SNP chip were available for the genome-wide association study; a linear mixed model approach was adopted for the analysis. The significant SNP of LP were scattered across the whole genome, with signals on chromosomes 1, 2, 3, 7, 12, 16, 18, 19, 20, 28, and 29; the top 4 significant SNP explained 4.90% of the LP genetic variance. The signals were mostly in regions or genes with involvement in molecular intra- or extracellular transport; for example, CDH5, RASGEF1C, ABCA6, and SLC35F3. A significant region within chromosome 20 was previously shown to affect mastitis or somatic cell score in cattle. As regards LY, the significant SNP were concentrated in fewer regions (chromosomes 6 and 14), related to mastitis/somatic cell score, immune response, and transport mechanisms. The 5 most significant SNP for LY explained 8.45% of genetic variance and more than one-quarter of this value has to be attributed to the variant within ADGRB1. Significant peaks in target regions remained even after adjustment for the 2 most significant variants previously detected on BTA6 and BTA14. The present study is a prelude for deeper investigations into the biological role of lactose for milk secretion and volume determination, stressing the connection with genes regulating intra- or extracellular trafficking and immune and inflammatory responses in dairy cows. Also, these results improve the knowledge on the relationship between lactose and udder health; they support the idea that LP and its derived traits are potential candidates as indicators of udder health in breeding programs aimed to enhance cows' resistance to mastitis.


Asunto(s)
Bovinos/fisiología , Estudio de Asociación del Genoma Completo/veterinaria , Genoma/genética , Lactosa/metabolismo , Leche/química , Polimorfismo de Nucleótido Simple/genética , Animales , Cruzamiento , Bovinos/genética , Femenino , Genotipo , Lactancia , Glándulas Mamarias Animales/química , Fenotipo
15.
Genet Sel Evol ; 50(1): 43, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30134820

RESUMEN

BACKGROUND: Runs of homozygosity (ROH) islands are stretches of homozygous sequence in the genome of a large proportion of individuals in a population. Algorithms for the detection of ROH depend on the similarity of haplotypes. Coverage gaps and copy number variants (CNV) may result in incorrect identification of such similarity, leading to the detection of ROH islands where none exists. Misidentified hemizygous regions will also appear as homozygous based on sequence variation alone. Our aim was to identify ROH islands influenced by marker coverage gaps or CNV, using Illumina BovineHD BeadChip (777 K) single nucleotide polymorphism (SNP) data for Austrian Brown Swiss, Tyrol Grey and Pinzgauer cattle. METHODS: ROH were detected using clustering, and ROH islands were determined from population inbreeding levels for each marker. CNV were detected using a multivariate copy number analysis method and a hidden Markov model. SNP coverage gaps were defined as genomic regions with intermarker distances on average longer than 9.24 kb. ROH islands that overlapped CNV regions (CNVR) or SNP coverage gaps were considered as potential artefacts. Permutation tests were used to determine if overlaps between CNVR with copy losses and ROH islands were due to chance. Diversity of the haplotypes in the ROH islands was assessed by haplotype analyses. RESULTS: In Brown Swiss, Tyrol Grey and Pinzgauer, we identified 13, 22, and 24 ROH islands covering 26.6, 389.0 and 35.8 Mb, respectively, and we detected 30, 50 and 71 CNVR derived from CNV by using both algorithms, respectively. Overlaps between ROH islands, CNVR or coverage gaps occurred for 7, 14 and 16 ROH islands, respectively. About 37, 44 and 52% of the ROH islands coverage in Brown Swiss, Tyrol Grey and Pinzgauer, respectively, were affected by copy loss. Intersections between ROH islands and CNVR were small, but significantly larger compared to ROH islands at random locations across the genome, implying an association between ROH islands and CNVR. Haplotype diversity for reliable ROH islands was lower than for ROH islands that intersected with copy loss CNVR. CONCLUSIONS: Our findings show that a significant proportion of the ROH islands in the bovine genome are artefacts due to CNV or SNP coverage gaps.


Asunto(s)
Bovinos/genética , Variaciones en el Número de Copia de ADN , Técnicas de Genotipaje/normas , Homocigoto , Animales , Haplotipos , Polimorfismo de Nucleótido Simple
16.
Genet Mol Biol ; 40(2): 453-459, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28534927

RESUMEN

Genotypic and phenotypic data of 1,562 animals were analyzed to find genomic regions that potentially influence the birth weight (BW), weaning weight at seven months of age (WW) and yearling weight (YW) of Colombian Brahman cattle, with genotyping conducted using Illumina Bead chip array with 74,669 SNPs. A Single Step Genomic BLUP (ssGBLP), approach was used to estimate the proportion of variance explained by each marker. Multiple regions scattered across the genome were found to influence weights at different ages, also dependent on the trait component (direct or maternal). The most interesting regions were connected to previously identified QTLs and genes, such as ADAMTSL3, CAPN2, CAPN2, FABP6, ZEB2 influencing growth and weight traits. The identified regions will contribute to the development and refinement of genomic selection programs for Zebu Brahman cattle in Colombia.

17.
Chemistry ; 22(37): 13218-35, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27505302

RESUMEN

The efficient synthesis of tripodal platforms based on tetraphenylmethane with three acetyl-protected thiol groups in either meta or para positions relative to the central sp(3) carbon for deposition on Au (111) surfaces is reported. These platforms are intended to provide a vertical arrangement of the substituent in position 4 of the perpendicular phenyl ring and an electronic coupling to the gold substrate. The self-assembly features of both derivatives are analyzed on Au (111) surfaces by low-temperature ultra-high-vacuum STM, high-resolution X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and reductive voltammetric desorption studies. These experiments indicated that the meta derivative forms a well-ordered monolayer, with most of the anchoring groups bound to the surface, whereas the para derivative forms a multilayer film with physically adsorbed adlayers on the chemisorbed para monolayer. Single-molecule conductance values for both tripodal platforms are obtained through an STM break junction experiment.

18.
Genet Sel Evol ; 47: 31, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25928250

RESUMEN

BACKGROUND: Nelore and Gir are the two most important indicine cattle breeds for production of beef and milk in Brazil. Historical records state that these breeds were introduced in Brazil from the Indian subcontinent, crossed to local taurine cattle in order to quickly increase the population size, and then backcrossed to the original breeds to recover indicine adaptive and productive traits. Previous investigations based on sparse DNA markers detected taurine admixture in these breeds. High-density genome-wide analyses can provide high-resolution information on the genetic composition of current Nelore and Gir populations, estimate more precisely the levels and nature of taurine introgression, and shed light on their history and the strategies that were used to expand these breeds. RESULTS: We used the high-density Illumina BovineHD BeadChip with more than 777 K single nucleotide polymorphisms (SNPs) that were reduced to 697 115 after quality control filtering to investigate the structure of Nelore and Gir populations and seven other worldwide populations for comparison. Multidimensional scaling and model-based ancestry estimation clearly separated the indicine, European taurine and African taurine ancestries. The average level of taurine introgression in the autosomal genome of Nelore and Gir breeds was less than 1% but was 9% for the Brahman breed. Analyses based on the mitochondrial SNPs present in the Illumina BovineHD BeadChip did not clearly differentiate taurine and indicine haplotype groupings. CONCLUSIONS: The low level of taurine ancestry observed for both Nelore and Gir breeds confirms the historical records of crossbreeding and supports a strong directional selection against taurine haplotypes via backcrossing. Random sampling in production herds across the country and subsequent genotyping would be useful for a more complete view of the admixture levels in the commercial Nelore and Gir populations.


Asunto(s)
Bovinos/genética , Animales , Brasil , Cruzamiento , Genotipo , Haplotipos , Mitocondrias/genética , Polimorfismo de Nucleótido Simple
19.
Anim Genet ; 46(1): 65-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25515556

RESUMEN

Genomic regions associated with coat color and pigmented areas of the head were identified for Fleckvieh (dual-purpose Simmental), a red-spotted and white-headed cattle breed. Coat color was measured with a chromameter, implementing the CIELAB color space and resulting in numerical representation of lightness, color intensity, red/green and blue/yellow color components, rather than subjective classification. Single marker regression analyses with fixed effects of the sex and barn were applied, and significant regions were determined with the local false discovery rate methodology. The PMEL and ERBB3 genes on chromosome 5 were in the most significant region for the color measurements. In addition to the blue/yellow color component and color intensity, the AP3B2 gene on chromosome 21 was identified. Its function was confirmed for similar traits in a range of model species. The KIT gene on chromosome 6 was found to be strongly associated with the inhibition of circum-ocular pigmentation and pigmented spots on the cheek.


Asunto(s)
Cruzamiento , Bovinos/genética , Color del Cabello/genética , Animales , Mapeo Cromosómico/veterinaria , Color , Genotipo , Fenotipo , Pigmentación/genética , Polimorfismo de Nucleótido Simple
20.
Genet Sel Evol ; 46: 19, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24592996

RESUMEN

BACKGROUND: Signatures of selection are regions in the genome that have been preferentially increased in frequency and fixed in a population because of their functional importance in specific processes. These regions can be detected because of their lower genetic variability and specific regional linkage disequilibrium (LD) patterns. METHODS: By comparing the differences in regional LD variation between dairy and beef cattle types, and between indicine and taurine subspecies, we aim at finding signatures of selection for production and adaptation in cattle breeds. The VarLD method was applied to compare the LD variation in the autosomal genome between breeds, including Angus and Brown Swiss, representing taurine breeds, and Nelore and Gir, representing indicine breeds. Genomic regions containing the top 0.01 and 0.1 percentile of signals were characterized using the UMD3.1 Bos taurus genome assembly to identify genes in those regions and compared with previously reported selection signatures and regions with copy number variation. RESULTS: For all comparisons, the top 0.01 and 0.1 percentile included 26 and 165 signals and 17 and 125 genes, respectively, including TECRL, BT.23182 or FPPS, CAST, MYOM1, UVRAG and DNAJA1. CONCLUSIONS: The VarLD method is a powerful tool to identify differences in linkage disequilibrium between cattle populations and putative signatures of selection with potential adaptive and productive importance.


Asunto(s)
Bovinos/genética , Desequilibrio de Ligamiento , Selección Genética , Animales , Cruzamiento , Variaciones en el Número de Copia de ADN , Frecuencia de los Genes , Genoma , Genotipo , Haplotipos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA