Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Biol (Stuttg) ; 22(2): 191-202, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31639249

RESUMEN

Crop wild relatives are fundamental genetic resources for crop improvement. Wheat wild relatives often produce heteromorphic seeds that differ in morphological and physiological traits. Several Aegilops and Triticum species possess, within the same spikelet, a dimorphic seed pair, with one seed being larger than the other. A comprehensive analysis is needed to understand which traits are involved in seed dimorphism and if these aspects of variation in dimorphic pairs are functionally related. To this end, dispersal units of Triticum urartu and five Aegilops species were X-rayed and the different seed morphs weighed. Germination tests were carried out on seeds, both dehulled and left in their dispersal units. Controlled ageing tests were performed to detect differences in seed longevity among seed morphs, and the antioxidant profile was assessed in terms of antioxidant compounds equipment and expression of selected antioxidant genes. We used PCA to group seed morphs sharing similar patterns of germination traits, longevity estimates and antioxidant profile. Different seed morphs differed significantly in terms of mass, final germination, germination timing, longevity estimates and antioxidant profile in most of the tested species. Small seeds germinated slower, had lower germination when left in their dispersal units, a higher antioxidant potential and were longer-lived than large seeds. The antioxidant gene expression varied between morphs, with different patterns across species but not clearly reflecting the phenotypic observations. The results highlight different trait trade-offs in dimorphic seeds of Aegilops and T. urartu, affecting their germination phenology and longevity, thereby resulting in recruitment niche differentiation.


Asunto(s)
Germinación , Semillas , Triticum , Ecosistema , Semillas/crecimiento & desarrollo
2.
Plant Biol (Stuttg) ; 19(2): 165-171, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27917571

RESUMEN

Crop Wild Relatives are often used to improve crop quality and yields because they contain genetically important traits that can contribute to stress resistance and adaptation. Seed germination of different populations of Aegilops geniculata Roth collected along a latitudinal gradient was studied under different drought stress in order to find populations suitable for improving drought tolerance in wheat. Different accessions of Aegilops neglecta Req. ex Bertol., Triticum aestivum L. and T. durum Desf. were used as comparison. Under full hydration, germination was high in all populations, but increasing drought stress led to reduced and delayed germination. Significant differences in final germination and mean time to germinate were detected among populations. Wheat, durum wheat and the southern population of Ae. geniculata were not significantly affected by drought stress, germinating similarly under all treatments. However, seed germination of the northern populations of Ae. geniculata was significantly reduced under high water stress treatment. Differences between populations of the same species could not be explained by annual rainfall across populations' distributions, but by rainfall during seed development and maturation. Differences in the germination responses to drought found here highlight the importance of source populations as criteria for genotype selection for pre-breeders.


Asunto(s)
Germinación , Poaceae/fisiología , Triticum/fisiología , Agua/fisiología , Adaptación Fisiológica , Productos Agrícolas , Sequías , Genotipo , Poaceae/genética , Semillas/genética , Semillas/fisiología , Estrés Fisiológico , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA