Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Am Chem Soc ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842580

RESUMEN

Nonribosomal cyclic peptides (NRcPs) are structurally complex natural products and a vital pool of therapeutics, particularly antibiotics. Their structural diversity arises from the ability of the multidomain enzyme assembly lines, nonribosomal peptide synthetases (NRPSs), to utilize bespoke nonproteinogenic amino acids, modify the linear peptide during elongation, and catalyze an array of cyclization modes, e.g., head to tail, side chain to tail. The study and drug development of NRcPs are often limited by a lack of easy synthetic access to NRcPs and their analogues, with selective macrolactamization being a major bottleneck. Herein, we report a generally applicable chemical macrocyclization method of unprecedented speed and selectivity. Inspired by biosynthetic cyclization, it combines the deprotected linear biosynthetic precursor peptide sequence with a highly reactive C-terminus to produce NRcPs and analogues in minutes. The method was applied to several NRcPs of varying sequences, ring sizes, and cyclization modes including rufomycin, colistin, and gramicidin S with comparable success. We thus demonstrate that the linear order of modules in NRPS enzymes that determines peptide sequence encodes the key structural information to produce peptides conformationally biased toward macrocyclization. To fully exploit this conformational bias synthetically, a highly reactive C-terminal acyl azide is also required, alongside carefully balanced pH and solvent conditions. This allows for consistent, facile cyclization of exceptional speed, selectivity, and atom efficiency. This exciting macrolactamization method represents a new enabling technology for the biosynthetic study of NRcPs and their development as therapeutics.

2.
Adv Funct Mater ; 34(21)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38779415

RESUMEN

Matrix remodeling plays central roles in a range of physiological and pathological processes and is driven predominantly by the activity of matrix metalloproteinases (MMPs), which degrade extracellular matrix (ECM) proteins. Our understanding of how MMPs regulate cell and tissue dynamics is often incomplete as in vivo approaches are lacking and many in vitro strategies cannot provide high-resolution, quantitative measures of enzyme activity in situ within tissue-like 3D microenvironments. Here, we incorporate a Förster resonance energy transfer (FRET) sensor of MMP activity into fully synthetic hydrogels that mimic many properties of the native ECM. We then use fluorescence lifetime imaging to provide a real-time, fluorophore concentration-independent quantification of MMP activity, establishing a highly accurate, readily adaptable platform for studying MMP dynamics in situ. MCF7 human breast cancer cells encapsulated within hydrogels highlight the detection of MMP activity both locally, at the sub-micron level, and within the bulk hydrogel. Our versatile platform may find use in a range of biological studies to explore questions in the dynamics of cancer metastasis, development, and tissue repair by providing high-resolution, quantitative and in situ readouts of local MMP activity within native tissue-like environments.

3.
Angew Chem Int Ed Engl ; 63(1): e202312104, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37955592

RESUMEN

S-adenosylmethionine-dependent methyltransferases are involved in countless biological processes, including signal transduction, epigenetics, natural product biosynthesis, and detoxification. Only a handful of carboxylate methyltransferases have evolved to participate in amide bond formation. In this report we show that enzyme-catalyzed F-methylation of carboxylate substrates produces F-methyl esters that readily react with N- or S-nucleophiles under physiological conditions. We demonstrate the applicability of this approach to the synthesis of small amides, hydroxamates, and thioesters, as well as to site-specific protein modification and native chemical ligation.


Asunto(s)
Amidas , Metiltransferasas , Metiltransferasas/metabolismo , Metilación , Amidas/química , S-Adenosilmetionina/química , Ácidos Carboxílicos , Adenosina Trifosfato/metabolismo , Biocatálisis
4.
Chemistry ; 29(16): e202202503, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36534955

RESUMEN

The site-selective modification of peptides and proteins facilitates the preparation of targeted therapeutic agents and tools to interrogate biochemical pathways. Among the numerous bioconjugation techniques developed to install groups of interest, those that generate C(sp3 )-C(sp3 ) bonds are significantly underrepresented despite affording proteolytically stable, biogenic linkages. Herein, a visible-light-mediated reaction is described that enables the site-selective modification of peptides and proteins via desulfurative C(sp3 )-C(sp3 ) bond formation. The reaction is rapid and high yielding in peptide systems, with comparable translation to proteins. Using this chemistry, a range of moieties is installed into model systems and an effective PTM-mimic is successfully integrated into a recombinantly expressed histone.


Asunto(s)
Cisteína , Proteínas , Cisteína/química , Proteínas/química , Péptidos/química
5.
Nature ; 548(7669): 607-611, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28767641

RESUMEN

ATP-dependent chromatin remodellers regulate access to genetic information by controlling nucleosome positions in vivo. However, the mechanism by which remodellers discriminate between different nucleosome substrates is poorly understood. Many chromatin remodelling proteins possess conserved protein domains that interact with nucleosomal features. Here we used a quantitative high-throughput approach, based on the use of a DNA-barcoded mononucleosome library, to profile the biochemical activity of human ISWI family remodellers in response to a diverse set of nucleosome modifications. We show that accessory (non-ATPase) subunits of ISWI remodellers can distinguish between differentially modified nucleosomes, directing remodelling activity towards specific nucleosome substrates according to their modification state. Unexpectedly, we show that the nucleosome acidic patch is necessary for maximum activity of all ISWI remodellers evaluated. This dependence also extends to CHD and SWI/SNF family remodellers, suggesting that the acidic patch may be generally required for chromatin remodelling. Critically, remodelling activity can be regulated by modifications neighbouring the acidic patch, signifying that it may act as a tunable interaction hotspot for ATP-dependent chromatin remodellers and, by extension, many other chromatin effectors that engage this region of the nucleosome surface.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina , Nucleosomas/química , Nucleosomas/metabolismo , Especificidad por Sustrato , Factores de Transcripción/metabolismo , Código de Barras del ADN Taxonómico , Histonas/metabolismo , Humanos , Modelos Moleculares , Nucleosomas/genética , Subunidades de Proteína/metabolismo
6.
Angew Chem Int Ed Engl ; 62(36): e202305326, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37218617

RESUMEN

We report the first NMR and X-ray diffraction (XRD) structures of an unusual 13/11-helix (alternating i, i+1 {NH-O=C} and i, i+3 {C=O-H-N} H-bonds) formed by a heteromeric 1 : 1 sequence of α- and δ-amino acids, and demonstrate the application of this framework towards catalysis. Whilst intramolecular hydrogen bonds (IMHBs) are the clear driver of helix formation in this system, we also observe an apolar interaction between the ethyl residue of one δ-amino acid and the cyclohexyl group of the next δ-residue in the sequence that seems to stabilize one type of helix over another. To the best of our knowledge this type of additional stabilization leading to a specific helical preference has not been observed before. Critically, the helix type realized places the α-residue functionalities in positions proximal enough to engage in bifunctional catalysis as demonstrated in the application of our system as a minimalist aldolase mimic.


Asunto(s)
Fructosa-Bifosfato Aldolasa , Péptidos , Modelos Moleculares , Péptidos/química , Aminoácidos/química , Aldehído-Liasas , Enlace de Hidrógeno
7.
Proc Natl Acad Sci U S A ; 116(17): 8295-8300, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30967505

RESUMEN

Enhancer of Zeste Homolog 2 (EZH2) is the catalytic subunit of Polycomb Repressor Complex 2 (PRC2), the enzyme that catalyzes monomethylation, dimethylation, and trimethylation of lysine 27 on histone H3 (H3K27). Trimethylation at H3K27 (H3K27me3) is associated with transcriptional silencing of developmentally important genes. Intriguingly, H3K27me3 is mutually exclusive with H3K36 trimethylation on the same histone tail. Disruptions in this cross-talk result in aberrant H3K27/H3K36 methylation patterns and altered transcriptional profiles that have been implicated in tumorigenesis and other disease states. Despite their importance, the molecular details of how PRC2 "senses" H3K36 methylation are unclear. We demonstrate that PRC2 is activated in cis by the unmodified side chain of H3K36, and that this activation results in a fivefold increase in the kcat of its enzymatic activity catalyzing H3K27 methylation compared with activity on a substrate methylated at H3K36. Using a photo-cross-linking MS strategy and histone methyltransferase activity assays on PRC2 mutants, we find that EZH2 contains a specific sensing pocket for the H3K36 methylation state that allows the complex to distinguish between modified and unmodified H3K36 residues, altering enzymatic activity accordingly to preferentially methylate the unmodified nucleosome substrate. We also present evidence that this process may be disrupted in some cases of Weaver syndrome.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Histonas , Sitios de Unión/genética , Proteína Potenciadora del Homólogo Zeste 2/química , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(5): E876-E885, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339483

RESUMEN

Mutations in CDCA7, the SNF2 family protein HELLS (LSH), or the DNA methyltransferase DNMT3b cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome. While it has been speculated that DNA methylation defects cause this disease, little is known about the molecular function of CDCA7 and its functional relationship to HELLS and DNMT3b. Systematic analysis of how the cell cycle, H3K9 methylation, and the mitotic kinase Aurora B affect proteomic profiles of chromatin in Xenopus egg extracts revealed that HELLS and CDCA7 form a stoichiometric complex on chromatin, in a manner sensitive to Aurora B. Although HELLS alone fails to remodel nucleosomes, we demonstrate that the HELLS-CDCA7 complex possesses nucleosome remodeling activity. Furthermore, CDCA7 is essential for loading HELLS onto chromatin, and CDCA7 harboring patient ICF mutations fails to recruit the complex to chromatin. Together, our study identifies a unique bipartite nucleosome remodeling complex where the functional remodeling activity is split between two proteins and thus delineates the defective pathway in ICF syndrome.


Asunto(s)
ADN Helicasas/metabolismo , Cara/anomalías , Síndromes de Inmunodeficiencia/genética , Mutación , Proteínas Nucleares/metabolismo , Animales , Aurora Quinasa B/metabolismo , Ciclo Celular , Cromatina/química , Análisis por Conglomerados , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Helicasas/genética , Metilación de ADN , Células HeLa , Histonas/metabolismo , Humanos , Proteínas Nucleares/genética , Nucleosomas/química , Óvulo/metabolismo , Péptidos/química , Enfermedades de Inmunodeficiencia Primaria , Unión Proteica , Dominios Proteicos , Proteómica , Interferencia de ARN , Xenopus laevis , ADN Metiltransferasa 3B
9.
Biochemistry ; 59(39): 3683-3695, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32930597

RESUMEN

Proteins are subject to spontaneous rearrangements of their backbones. Most prominently, asparagine and aspartate residues isomerize to their ß-linked isomer, isoaspartate (isoAsp), on time scales ranging from days to centuries. Such modifications are typically considered "molecular wear-and-tear", destroying protein function. However, the observation that some proteins, including the essential bacterial enzyme MurA, harbor stoichiometric amounts of isoAsp suggests that this modification can confer advantageous properties. Here, we demonstrate that nature exploits an isoAsp residue within a hairpin to stabilize MurA. We found that isoAsp formation in MurA is unusually rapid and critically dependent on folding status. Moreover, perturbation of the isoAsp-containing hairpin via site-directed mutagenesis causes aggregation of MurA variants. Structural mass spectrometry revealed that this effect is caused by local protein unfolding in MurA mutants. Our findings demonstrate that MurA evolved to "mature" via a spontaneous post-translational incorporation of a ß-amino acid, which raises the possibility that isoAsp-containing hairpins may serve as a structural motif of biological importance.


Asunto(s)
Transferasas Alquil y Aril/química , Proteínas Bacterianas/química , Enterobacter cloacae/enzimología , Ácido Isoaspártico/química , Enterobacter cloacae/química , Estabilidad de Enzimas , Isomerismo , Modelos Moleculares , Agregado de Proteínas , Conformación Proteica , Pliegue de Proteína
10.
J Am Chem Soc ; 141(38): 15029-15039, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31479253

RESUMEN

Polycomb Repressive Complex 2 (PRC2) catalyzes mono-, di-, and trimethylation of lysine 27 on histone H3 (H3K27me1-3) to control expression of genes important for differentiation and maintenance of cell identity. PRC2 activity is regulated by a number of different inputs, including allosteric activation by its product, H3K27me3. This positive feedback loop is thought to be important for the establishment of large domains of condensed heterochromatin. In addition to other chromatin modifications, ancillary subunits of PRC2, foremost JARID2, affect the rate of H3K27 methylation. Many gaps remain in our understanding of how PRC2 integrates these various signals to determine where and when to deposit H3K27 methyl marks. In this study, we utilize designer chromatin substrates to demonstrate that propagation of H3K27 methylation by the PRC2 core complex has geometrically defined preferences that are overridden by the presence of JARID2. Our studies also show that phosphorylation of JARID2 can partially regulate its ability to stimulate PRC2 activity. Collectively, these biochemical insights further our understanding of the mechanisms that govern PRC2 activity, and highlight a role for JARID2 in de novo deposition of H3K27me3-containing repressive domains.


Asunto(s)
Heterocromatina/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Biocatálisis , Heterocromatina/química , Humanos , Cinética , Complejo Represivo Polycomb 2/química
11.
Biochemistry ; 57(2): 177-185, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29064683

RESUMEN

Post-translational modifications (PTMs) dramatically enhance the capabilities of proteins. They introduce new functionalities and dynamically control protein activity by modulating intra- and intermolecular interactions. Traditionally, PTMs have been considered as reversible attachments to nucleophilic functional groups on amino acid side chains, whereas the polypeptide backbone is often thought to be inert. This paradigm is shifting as chemically and functionally diverse alterations of the protein backbone are discovered. Importantly, backbone PTMs can control protein structure and function just as side chain modifications do and operate through unique mechanisms to achieve these features. In this Perspective, I outline the various types of protein backbone modifications discovered so far and highlight their contributions to biology as well as the challenges in studying this versatile yet poorly characterized class of PTMs.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas/química , Proteínas Bacterianas/química , Productos Biológicos/química , Proteínas Fluorescentes Verdes/química , Imidazoles/química , Péptidos/química , Conformación Proteica , Dominios Proteicos , Relación Estructura-Actividad
12.
Genome Res ; 25(11): 1727-38, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26330564

RESUMEN

A conserved hallmark of eukaryotic chromatin architecture is the distinctive array of well-positioned nucleosomes downstream from transcription start sites (TSS). Recent studies indicate that trans-acting factors establish this stereotypical array. Here, we present the first genome-wide in vitro and in vivo nucleosome maps for the ciliate Tetrahymena thermophila. In contrast with previous studies in yeast, we find that the stereotypical nucleosome array is preserved in the in vitro reconstituted map, which is governed only by the DNA sequence preferences of nucleosomes. Remarkably, this average in vitro pattern arises from the presence of subsets of nucleosomes, rather than the whole array, in individual Tetrahymena genes. Variation in GC content contributes to the positioning of these sequence-directed nucleosomes and affects codon usage and amino acid composition in genes. Given that the AT-rich Tetrahymena genome is intrinsically unfavorable for nucleosome formation, we propose that these "seed" nucleosomes--together with trans-acting factors--may facilitate the establishment of nucleosome arrays within genes in vivo, while minimizing changes to the underlying coding sequences.


Asunto(s)
Genoma de Protozoos , Nucleosomas/genética , Sistemas de Lectura Abierta , Tetrahymena thermophila/genética , Mapeo Cromosómico , ADN Protozoario/genética , Estudios de Asociación Genética , Análisis de Secuencia de ADN , Transcripción Genética
13.
Nat Chem Biol ; 12(3): 188-93, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26807716

RESUMEN

Specialized chromatin domains contribute to nuclear organization and regulation of gene expression. Gene-poor regions are di- and trimethylated at lysine 9 of histone H3 (H3K9me2 and H3K9me3) by the histone methyltransferase Suv39h1. This enzyme harnesses a positive feedback loop to spread H3K9me2 and H3K9me3 over extended heterochromatic regions. However, little is known about how feedback loops operate on complex biopolymers such as chromatin, in part because of the difficulty in obtaining suitable substrates. Here we describe the synthesis of multidomain 'designer chromatin' templates and their application to dissecting the regulation of human Suv39h1. We uncovered a two-step activation switch where H3K9me3 recognition and subsequent anchoring of the enzyme to chromatin allosterically promotes methylation activity and confirmed that this mechanism contributes to chromatin recognition in cells. We propose that this mechanism serves as a paradigm in chromatin biochemistry, as it enables highly dynamic sampling of chromatin state combined with targeted modification of desired genomic regions.


Asunto(s)
Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Animales , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Activación Enzimática/fisiología , Retroalimentación Fisiológica , Variación Estructural del Genoma , Histonas/metabolismo , Humanos , Insectos , Metilación , Metiltransferasas/genética , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Represoras/genética
14.
Nat Methods ; 11(8): 834-40, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24997861

RESUMEN

Elucidating the molecular details of how chromatin-associated factors deposit, remove and recognize histone post-translational modification (PTM) signatures remains a daunting task in the epigenetics field. We introduce a versatile platform that greatly accelerates biochemical investigations into chromatin recognition and signaling. This technology is based on the streamlined semisynthesis of DNA-barcoded nucleosome libraries with distinct combinations of PTMs. Chromatin immunoprecipitation of these libraries, once they have been treated with purified chromatin effectors or the combined chromatin recognizing and modifying activities of the nuclear proteome, is followed by multiplexed DNA-barcode sequencing. This ultrasensitive workflow allowed us to collect thousands of biochemical data points revealing the binding preferences of various nuclear factors for PTM patterns and how preexisting PTMs, alone or synergistically, affect further PTM deposition via cross-talk mechanisms. We anticipate that the high throughput and sensitivity of the technology will help accelerate the decryption of the diverse molecular controls that operate at the level of chromatin.


Asunto(s)
Cromatina/química , Código de Barras del ADN Taxonómico , Inmunoprecipitación de Cromatina , Nucleosomas/química
15.
PLoS Genet ; 9(1): e1003187, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23300488

RESUMEN

The contemporary proteinogenic repertoire contains 20 amino acids with diverse functional groups and side chain geometries. Primordial proteins, in contrast, were presumably constructed from a subset of these building blocks. Subsequent expansion of the proteinogenic alphabet would have enhanced their capabilities, fostering the metabolic prowess and organismal fitness of early living systems. While the addition of amino acids bearing innovative functional groups directly enhances the chemical repertoire of proteomes, the inclusion of chemically redundant monomers is difficult to rationalize. Here, we studied how a simplified chorismate mutase evolves upon expanding its amino acid alphabet from nine to potentially 20 letters. Continuous evolution provided an enhanced enzyme variant that has only two point mutations, both of which extend the alphabet and jointly improve protein stability by >4 kcal/mol and catalytic activity tenfold. The same, seemingly innocuous substitutions (Ile→Thr, Leu→Val) occurred in several independent evolutionary trajectories. The increase in fitness they confer indicates that building blocks with very similar side chain structures are highly beneficial for fine-tuning protein structure and function.


Asunto(s)
Aminoácidos , Evolución Molecular Dirigida , Código Genético , Proteínas/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Corismato Mutasa/química , Corismato Mutasa/genética , Methanococcales/genética , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutación Puntual , Conformación Proteica , Estabilidad Proteica , Relación Estructura-Actividad
16.
Angew Chem Int Ed Engl ; 54(22): 6457-61, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25873363

RESUMEN

Eukaryotic genomes are dynamically regulated through a host of epigenetic stimuli. The substrate for these epigenetic transactions, chromatin, is a polymer of nucleosome building blocks. In native chromatin, each nucleosome can differ from its neighbors as a result of covalent modifications to both the DNA and the histone packaging proteins. The heterotypic nature of chromatin presents a formidable obstacle to biochemical studies seeking to understand the role of context on epigenetic regulation. A chemical approach to the production of heterotypic chromatin that can be used in such studies is introduced. This method involves the attachment of a user-defined modified histone peptide to a designated nucleosome within the polymer by using a peptide nucleic acid (PNA) targeting compound. This strategy was applied to dissect the effect of chromatin context on the activity of the histone methyltransferase PRC2. The results show that PRC2 can be stimulated to produce histone H3 methylation from a defined nucleation site.


Asunto(s)
Cromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , ADN/química , ADN/metabolismo , Epigenómica , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/química , Histonas/química , Metilación , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/metabolismo , Péptidos/química , Péptidos/metabolismo
17.
J Am Chem Soc ; 136(39): 13498-501, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25180930

RESUMEN

The histone methyltransferase PRC2 plays a central role in genomic stability and cellular development. Consequently, its misregulation has been implicated in several cancers. Recent work has shown that a histone H3 mutant, where the PRC2 substrate residue Lys27 is replaced by methionine, is also associated with cancer phenotypes and functions as an inhibitor of PRC2. Here we investigate the mechanism of this PRC2 inhibition through kinetic studies and photo-cross-linking. Efficient inhibition is dependent on (1) hydrophobic lysine isosteres blocking the active site, (2) proximal residues, and (3) the H3 tail forming extensive contacts with the EZH2 subunit of PRC2. We further show that naturally occurring post-translational modifications of the same H3 tail, both proximal and distal to K27M, can greatly diminish the inhibition of PRC2. These results suggest that this potent gain of function mutation may be "detoxified" by modulating alternate chromatin modification pathways.


Asunto(s)
Histonas/genética , Histonas/metabolismo , Mutación/genética , Neoplasias/genética , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Células HeLa , Histonas/química , Humanos , Cinética , Modelos Moleculares , Neoplasias/metabolismo , Complejo Represivo Polycomb 2/antagonistas & inhibidores
18.
Angew Chem Int Ed Engl ; 53(27): 6978-81, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24828837

RESUMEN

Foldamers are non-natural oligomers that adopt stable conformations reminiscent of those found in proteins. To evaluate the potential of foldameric subunits for catalysis, semisynthetic enzymes containing foldamer fragments constructed from α- and ß-amino acid residues were designed and characterized. Systematic variation of the αâ†’ß substitution pattern and types of ß-residue afforded highly proficient hybrid catalysts, thus demonstrating the feasibility of expanding the enzyme-engineering toolkit with non-natural backbones.


Asunto(s)
Enzimas/química , Corismato Mutasa/química , Corismato Mutasa/metabolismo , Enzimas/metabolismo , Cinética , Methanocaldococcus/enzimología , Ingeniería de Proteínas , Estructura Secundaria de Proteína
19.
Angew Chem Weinheim Bergstr Ger ; 136(1): e202312104, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38516647

RESUMEN

S-adenosylmethionine-dependent methyltransferases are involved in countless biological processes, including signal transduction, epigenetics, natural product biosynthesis, and detoxification. Only a handful of carboxylate methyltransferases have evolved to participate in amide bond formation. In this report we show that enzyme-catalyzed F-methylation of carboxylate substrates produces F-methyl esters that readily react with N- or S-nucleophiles under physiological conditions. We demonstrate the applicability of this approach to the synthesis of small amides, hydroxamates, and thioesters, as well as to site-specific protein modification and native chemical ligation.

20.
Chem Sci ; 14(14): 3881-3892, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37035694

RESUMEN

Apoptin is a small viral protein capable of inducing cell death selectively in cancer cells. Despite its potential as an anticancer agent, relatively little is known about its mechanism of toxicity and cancer-selectivity. Previous experiments suggest that cancer-selective phosphorylation modulates apoptin toxicity, although a lack of chemical tools has hampered the dissection of underlying mechanisms. Here, we describe structure-function studies with site-specifically phosphorylated apoptin (apoptin-T108ph) in living cells which revealed that Thr108 phosphorylation is the selectivity switch for apoptin toxicity. Mechanistic investigations link T108ph to actin binding, cytoskeletal disruption and downstream inhibition of anoikis-resistance as well as cancer cell invasion. These results establish apoptin as a protein pro-drug, selectively activated in cancer cells by phosphorylation, which disrupts the cytoskeleton and promotes cell death. We anticipate that this mechanism provides a framework for the design of next generation anticancer proteins with enhanced selectivity and potency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA