Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
2.
Circ Res ; 133(10): 842-857, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37800327

RESUMEN

BACKGROUND: Advanced age is unequivocally linked to the development of cardiovascular disease; however, the mechanisms resulting in reduced endothelial cell regeneration remain poorly understood. Here, we investigated novel mechanisms involved in endothelial cell senescence that impact endothelial cell transcription and vascular repair after injury. METHODS: Native endothelial cells were isolated from young (20±3.4 years) and aged (80±2.3 years) individuals and subjected to molecular analyses to assess global transcriptional and metabolic changes. In vitro studies were conducted using primary human and murine endothelial cells. A murine aortic re-endothelialization model was used to examine endothelial cell regenerative capacity in vivo. RESULTS: RNA sequencing of native endothelial cells revealed that aging resulted in p53-mediated reprogramming to express senescence-associated genes and suppress glycolysis. Reduced glucose uptake and ATP contributed to attenuated assembly of the telomerase complex, which was required for endothelial cell proliferation. Enhanced p53 activity in aging was linked to its acetylation on K120 due to enhanced activity of the acetyltransferase MOZ (monocytic leukemic zinc finger). Mechanistically, p53 acetylation and translocation were, at least partially, attributed to the loss of the vasoprotective enzyme, CSE (cystathionine γ-lyase). CSE physically anchored p53 in the cytosol to prevent its nuclear translocation and CSE absence inhibited AKT (Protein kinase B)-mediated MOZ phosphorylation, which in turn increased MOZ activity and subsequently p53 acetylation. In mice, the endothelial cell-specific deletion of CSE activated p53, induced premature endothelial senescence, and arrested vascular repair after injury. In contrast, the adeno-associated virus 9-mediated re-expression of an active CSE mutant retained p53 in the cytosol, maintained endothelial glucose metabolism and proliferation, and prevented endothelial cell senescence. Adenoviral overexpression of CSE in native endothelial cells from aged individuals maintained low p53 activity and reactivated telomerase to revert endothelial cell senescence. CONCLUSIONS: Aging-associated impairment of vascular repair is partly determined by the vasoprotective enzyme CSE.


Asunto(s)
Sulfuro de Hidrógeno , Telomerasa , Animales , Humanos , Ratones , Senescencia Celular , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Células Endoteliales/metabolismo , Sulfuro de Hidrógeno/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
Circ Res ; 130(1): 27-44, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34814703

RESUMEN

BACKGROUND: The sarcoplasmic reticulum (SR) Ca2+-ATPase 2 (SERCA2) mediates Ca2+ reuptake into SR and thereby promotes cardiomyocyte relaxation, whereas the ryanodine receptor (RYR) mediates Ca2+ release from SR and triggers contraction. Ca2+/CaMKII (CaM [calmodulin]-dependent protein kinase II) regulates activities of SERCA2 through phosphorylation of PLN (phospholamban) and RYR through direct phosphorylation. However, the mechanisms for CaMKIIδ anchoring to SERCA2-PLN and RYR and its regulation by local Ca2+ signals remain elusive. The objective of this study was to investigate CaMKIIδ anchoring and regulation at SERCA2-PLN and RYR. METHODS: A role for AKAP18δ (A-kinase anchoring protein 18δ) in CaMKIIδ anchoring and regulation was analyzed by bioinformatics, peptide arrays, cell-permeant peptide technology, immunoprecipitations, pull downs, transfections, immunoblotting, proximity ligation, FRET-based CaMKII activity and ELISA-based assays, whole cell and SR vesicle fluorescence imaging, high-resolution microscopy, adenovirus transduction, adenoassociated virus injection, structural modeling, surface plasmon resonance, and alpha screen technology. RESULTS: Our results show that AKAP18δ anchors and directly regulates CaMKIIδ activity at SERCA2-PLN and RYR, via 2 distinct AKAP18δ regions. An N-terminal region (AKAP18δ-N) inhibited CaMKIIδ through binding of a region homologous to the natural CaMKII inhibitor peptide and the Thr17-PLN region. AKAP18δ-N also bound CaM, introducing a second level of control. Conversely, AKAP18δ-C, which shares homology to neuronal CaMKIIα activator peptide (N2B-s), activated CaMKIIδ by lowering the apparent Ca2+ threshold for kinase activation and inducing CaM trapping. While AKAP18δ-C facilitated faster Ca2+ reuptake by SERCA2 and Ca2+ release through RYR, AKAP18δ-N had opposite effects. We propose a model where the 2 unique AKAP18δ regions fine-tune Ca2+-frequency-dependent activation of CaMKIIδ at SERCA2-PLN and RYR. CONCLUSIONS: AKAP18δ anchors and functionally regulates CaMKII activity at PLN-SERCA2 and RYR, indicating a crucial role of AKAP18δ in regulation of the heartbeat. To our knowledge, this is the first protein shown to enhance CaMKII activity in heart and also the first AKAP (A-kinase anchoring protein) reported to anchor a CaMKII isoform, defining AKAP18δ also as a CaM-KAP.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Animales , Sitios de Unión , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Células Cultivadas , Células HEK293 , Humanos , Miocitos Cardíacos/metabolismo , Unión Proteica , Ratas , Ratas Wistar
4.
Nature ; 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323891
5.
Nature ; 552(7684): 248-252, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29211719

RESUMEN

Diabetic retinopathy is an important cause of blindness in adults, and is characterized by progressive loss of vascular cells and slow dissolution of inter-vascular junctions, which result in vascular leakage and retinal oedema. Later stages of the disease are characterized by inflammatory cell infiltration, tissue destruction and neovascularization. Here we identify soluble epoxide hydrolase (sEH) as a key enzyme that initiates pericyte loss and breakdown of endothelial barrier function by generating the diol 19,20-dihydroxydocosapentaenoic acid, derived from docosahexaenoic acid. The expression of sEH and the accumulation of 19,20-dihydroxydocosapentaenoic acid were increased in diabetic mouse retinas and in the retinas and vitreous humour of patients with diabetes. Mechanistically, the diol targeted the cell membrane to alter the localization of cholesterol-binding proteins, and prevented the association of presenilin 1 with N-cadherin and VE-cadherin, thereby compromising pericyte-endothelial cell interactions and inter-endothelial cell junctions. Treating diabetic mice with a specific sEH inhibitor prevented the pericyte loss and vascular permeability that are characteristic of non-proliferative diabetic retinopathy. Conversely, overexpression of sEH in the retinal Müller glial cells of non-diabetic mice resulted in similar vessel abnormalities to those seen in diabetic mice with retinopathy. Thus, increased expression of sEH is a key determinant in the pathogenesis of diabetic retinopathy, and inhibition of sEH can prevent progression of the disease.


Asunto(s)
Retinopatía Diabética/enzimología , Retinopatía Diabética/prevención & control , Epóxido Hidrolasas/antagonistas & inhibidores , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Proteínas Portadoras/metabolismo , Membrana Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Ependimogliales , Ácidos Grasos Insaturados/metabolismo , Femenino , Humanos , Uniones Intercelulares/efectos de los fármacos , Uniones Intercelulares/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Elastasa Pancreática/metabolismo , Pericitos/efectos de los fármacos , Pericitos/patología , Presenilina-1/metabolismo , Retina/efectos de los fármacos , Retina/enzimología , Retina/metabolismo , Retina/patología , Solubilidad , Cuerpo Vítreo/metabolismo
6.
Vasa ; 52(2): 81-85, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36734252

RESUMEN

Tobacco consumption is one of the most important risk factors for cardiovascular disease. Despite all efforts to curb any form of smoking, the number of e-cigarette users is still rising more than tabacco smoking decreases. E-cigarettes are often advertised as less harmful than regular cigarettes and helpful for smoking cessation. But e-cigarettes are not risk-free and their use causes vascular damage. There is concern about long-term health risks of e-cigarettes or when non-smokers use them as first nicotine contact. Furthermore, their use for smoking cessation is discussed controversially. To optimize treatment and medical counselling of current smokers and e-cigarette users, we present an evidence-based overview of the most important issues of e-cigarette use from a vascular medicine point of view. The key messages are presented as a position statement of the German Society of Vascular Medicine and endorsed by the European Society of Vascular Medicine.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Cese del Hábito de Fumar , Humanos , Fumar/efectos adversos , Factores de Riesgo
7.
Vasa ; 52(4): 224-229, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37114353

RESUMEN

Background: To determine the physician's perspective and perception on walking exercise as well as barriers in guideline-directed best medical treatment of patients with lower extremity peripheral arterial disease (PAD). Patients and methods: All members of the German Society for Vascular Surgery and Vascular Medicine and of the German Society for Angiology - Society for Vascular Medicine with valid email address were invited to participate in an electronic survey on walking exercise for treatment of intermittent claudication that was developed by the authors. Results: Amongst 3910 invited participants, 743 (19%) provided valid responses (33% females, 84% vascular surgery, 15% angiology). Thereof, 65% were employed by non-university hospitals, 16% by university institutions, and 18% by outpatient facilities. A mean of 14 minutes were spent per patient to counsel and educate, while only 53% responded they had enough time in everyday clinical practice. While 98% were aware of the beneficial impact of structured exercise training (SET) on pain free walking distance and 90% advise their patients to adhere to SET, only 44% provided useful guidance to patients to find local SET programmes and merely 42% knew how to prescribe SET as service that can be reimbursed by medical insurances. Approximately 35% knew a local SET programme and appropriate contact person. Health-related quality of life was assessed in a structured way by only 11%. Forty-seven percent responded that medical insurances should be responsible to implement and maintain SET programmes, while only 4% held hospital physicians responsible to achieve this task. Conclusions: This nationwide survey study amongst vascular specialists illustrates the current insufficient utilisation of SET as an evidence-based therapeutic cornerstone in patients with lower extremity PAD in Germany. The study also identified several barriers and flaws from the physician's perspectives which should be addressed collectively by all health care providers aiming to increase the SET use and eventually its' impact on patients with PAD.


Asunto(s)
Enfermedad Arterial Periférica , Cirujanos , Femenino , Humanos , Masculino , Calidad de Vida , Terapia por Ejercicio/efectos adversos , Enfermedad Arterial Periférica/diagnóstico , Enfermedad Arterial Periférica/terapia , Claudicación Intermitente/diagnóstico , Claudicación Intermitente/terapia , Ejercicio Físico , Caminata
8.
Vasa ; 52(3): 147-159, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36924047

RESUMEN

Together with colleagues from different disciplines, including cardiologists, interventional radiologists and vascular surgeons, committee members of the of the German Society of Angiology (Deutsche Gesellschaft für Angiologie [DGA]), developed a novel algorithm for the endovascular treatment of peripheral chronic total occlusive lesions (CTOs). Our aim is to improve patient and limb related outcomes, by increasing the success rate of endovascular procedures. This can be achieved by adherence to the proposed crossing algorithm, aiding the standardization of endovascular procedures. The following steps are proposed: (i) APPLY Duplex sonography and if required 3D techniques such as computed tomography or magnetic resonance angiography. This will help you to select the optimal access site. (ii) EVALUATE the CTO cap morphology and distal vessel refilling sites during diagnostic angiography, which are potential targets for a retrograde access. (iii) START with antegrade wiring strategies including guidewire (GW) and support catheter technology. Use GW escalation strategies to penetrate the proximal cap of the CTO, which may usually be fibrotic and calcified. (iv) STOP the antegrade attempt depending on patient specific parameters and the presence of retrograde options, as evaluated by pre-procedural imaging and during angiography. (v) In case of FAILURE, consider advanced bidirectional techniques and reentry devices. (vi) In case of SUCCESS, externalize the GW and treat the CTO. Manage the retrograde access at the end of the endovascular procedure. (vii) STOP the procedure if no progress can be obtained within 3 hours, in case of specific complications or when reaching maximum contrast administration based on individual patient's renal function. Consider radiation exposure both for patients and operators. In this manuscript we systematically follow and explain each of the steps (i)-(vi) based on practical examples from our daily routine. We strongly believe that the integration of this algorithm in the daily practice of endovascular specialists, can improve vessel and patient specific outcomes.


Asunto(s)
Procedimientos Endovasculares , Enfermedad Arterial Periférica , Humanos , Enfermedad Arterial Periférica/diagnóstico por imagen , Enfermedad Arterial Periférica/terapia , Procedimientos Endovasculares/efectos adversos , Angiografía , Cateterismo , Resultado del Tratamiento , Enfermedad Crónica
9.
Vasa ; 52(3): 141-146, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36935626

RESUMEN

Endovascular arterial revascularisations for the treatment of symptomatic peripheral arterial disease are constantly increasing in importance and number due to the changing age structure and high numbers of comorbidities in the German population. Patients with peripheral artery disease are often at increased risk for peri- and post-procedural complications including severe cardiovascular events. Due to limited financial and human resources and considerable risks of hospitalization, endovascular interventions that were previously reserved for hospitalized patients are now progressively considered to be performed as day case procedures. More than one third of these procedures are performed in Germany by internists with a specialization in angiology. In the current position paper the German Society of Angiology endorsed by the European Society of Vascular Medicine, summarizes the requirements and risk factors to be considered for the planning, safe performance and post procedural care of endovascular revascularizations in outpatients. The performance of endovascular procedures for peripheral artery disease both in hospitalised and outpatients should be accompanied by a mandatory quality assurance process that should not only capture procedural data, but also require documentation of complications and longterm outcome.


Asunto(s)
Procedimientos Endovasculares , Enfermedad Arterial Periférica , Humanos , Resultado del Tratamiento , Procedimientos Endovasculares/efectos adversos , Hospitalización , Atención Ambulatoria , Enfermedad Arterial Periférica/diagnóstico por imagen , Enfermedad Arterial Periférica/terapia , Factores de Riesgo
10.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139185

RESUMEN

Transcatheter pulmonary valve replacement is a minimally-invasive alternative treatment for right ventricular outflow tract dysfunction and has been rapidly evolving over the past years. Heart valve prostheses currently available still have major limitations. Therefore, one of the significant challenges for the future is the roll out of transcatheter tissue engineered pulmonary valve replacement to more patients. In the present study, biodegradable poly-ε-caprolactone (PCL) nanofiber scaffolds in the form of a 3D leaflet matrix were successfully seeded with human endothelial colony-forming cells (ECFCs), human induced pluripotent stem cell-derived MSCs (hMSCs), and porcine MSCs (pMSCs) for three weeks for the generation of 3D tissue-engineered tri-leaflet valved stent grafts. The cell adhesion, proliferation, and distribution of these 3D heart leaflets was analyzed using fluorescence microscopy and scanning electron microscopy (SEM). All cell lineages were able to increase the overgrown leaflet area within the three-week timeframe. While hMSCs showed a consistent growth rate over the course of three weeks, ECFSs showed almost no increase between days 7 and 14 until a growth spurt appeared between days 14 and 21. More than 90% of heart valve leaflets were covered with cells after the full three-week culturing cycle in nearly all leaflet areas, regardless of which cell type was used. This study shows that seeded biodegradable PCL nanofiber scaffolds incorporated in nitinol or biodegradable stents will offer a new therapeutic option in the future.


Asunto(s)
Células Madre Pluripotentes Inducidas , Poliésteres , Humanos , Animales , Porcinos , Poliésteres/farmacología , Ingeniería de Tejidos , Andamios del Tejido , Stents
11.
Pflugers Arch ; 474(9): 993-1002, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35648220

RESUMEN

Investigating atherosclerosis and endothelial dysfunction has mainly become established in genetically modified ApoE-/- or LDL-R-/- mice transgenic models. A new AAV-PCSK9DYDY mouse model with no genetic modification has now been reported as an alternative atherosclerosis model. Here, we aimed to employ this AAV-PCSK9DY mouse model to quantify the mechanical stiffness of the endothelial surface, an accepted hallmark for endothelial dysfunction and forerunner for atherosclerosis. Ten-week-old male C57BL/6 N mice were injected with AAV-PCSK9DY (0.5, 1 or 5 × 1011 VG) or saline as controls and fed with Western diet (1.25% cholesterol) for 3 months. Total cholesterol (TC) and triglycerides (TG) were measured after 6 and 12 weeks. Aortic sections were used for atomic force microscopy (AFM) measurements or histological analysis using Oil-Red-O staining. Mechanical properties of in situ endothelial cells derived from ex vivo aorta preparations were quantified using AFM-based nanoindentation. Compared to controls, an increase in plasma TC and TG and extent of atherosclerosis was demonstrated in all groups of mice in a viral load-dependent manner. Cortical stiffness of controls was 1.305 pN/nm and increased (10%) in response to viral load (≥ 0.5 × 1011 VG) and positively correlated with the aortic plaque content and plasma TC and TG. For the first time, we show changes in the mechanical properties of the endothelial surface and thus the development of endothelial dysfunction in the AAV-PCSK9DY mouse model. Our results demonstrate that this model is highly suitable and represents a good alternative to the commonly used transgenic mouse models for studying atherosclerosis and other vascular pathologies.


Asunto(s)
Aterosclerosis , Proproteína Convertasa 9 , Animales , Aterosclerosis/patología , Colesterol , Modelos Animales de Enfermedad , Células Endoteliales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía de Fuerza Atómica , Proproteína Convertasa 9/genética , Triglicéridos
12.
Immunology ; 165(2): 158-170, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34606637

RESUMEN

Treatment of myocarditis is often limited to symptomatic treatment due to unknown pathomechanisms. In order to identify new therapeutic approaches, the contribution of locked nucleic acid antisense oligonucleotides (LNA ASOs) in autoimmune myocarditis was investigated. Hence, A/J mice were immunized with cardiac troponin I (TnI) to induce experimental autoimmune myocarditis (EAM) and treated with LNA ASOs. The results showed an unexpected anti-inflammatory effect for one administered LNA ASO MB_1114 by reducing cardiac inflammation and fibrosis. The target sequence of MB_1114 was identified as lactate dehydrogenase B (mLDHB). For further analysis, mice received mLdhb-specific GapmeR during induction of EAM. Here, mice receiving the mLdhb-specific GapmeR showed increased protein levels of cardiac mLDHB and a reduced cardiac inflammation and fibrosis. The effect of increased cardiac mLDHB protein level was associated with a downregulation of genes of reactive oxygen species (ROS)-associated proteins, indicating a reduction in ROS. Here, the suppression of murine pro-apoptotic Bcl-2-associated X protein (mBax) was also observed. In our study, an unexpected anti-inflammatory effect of LNA ASO MB_1114 and mLdhb-specific GapmeR during induction of EAM could be demonstrated in vivo. This effect was associated with increased protein levels of cardiac mLDHB, mBax suppression and reduced ROS activation. Thus, LDHB and LNA ASOs may be considered as a promising target for directed therapy of myocarditis. Nevertheless, further investigations are necessary to clarify the mechanism of action of anti-inflammatory LDHB-triggered effects.


Asunto(s)
Antiinflamatorios/farmacología , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Miocarditis/etiología , Miocarditis/metabolismo , Oligonucleótidos/farmacología , Animales , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/tratamiento farmacológico , Biomarcadores , Biopsia , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Inhibidores Enzimáticos/farmacología , Femenino , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Isoenzimas/antagonistas & inhibidores , Ratones , Miocarditis/diagnóstico , Miocarditis/tratamiento farmacológico , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/farmacología , Especies Reactivas de Oxígeno/metabolismo
13.
Basic Res Cardiol ; 117(1): 8, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35230541

RESUMEN

The role and outcome of the muscarinic M2 acetylcholine receptor (M2R) signaling in healthy and diseased cardiomyocytes is still a matter of debate. Here, we report that the long isoform of the regulator of G protein signaling 3 (RGS3L) functions as a switch in the muscarinic signaling, most likely of the M2R, in primary cardiomyocytes. High levels of RGS3L, as found in heart failure, redirect the Gi-mediated Rac1 activation into a Gi-mediated RhoA/ROCK activation. Functionally, this switch resulted in a reduced production of reactive oxygen species (- 50%) in cardiomyocytes and an inotropic response (+ 18%) in transduced engineered heart tissues. Importantly, we could show that an adeno-associated virus 9-mediated overexpression of RGS3L in rats in vivo, increased the contractility of ventricular strips by maximally about twofold. Mechanistically, we demonstrate that this switch is mediated by a complex formation of RGS3L with the GTPase-activating protein p190RhoGAP, which balances the activity of RhoA and Rac1 by altering its substrate preference in cardiomyocytes. Enhancement of this complex formation could open new possibilities in the regulation of the contractility of the diseased heart.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Animales , Colinérgicos , Ventrículos Cardíacos , Ratas , Receptores Muscarínicos
14.
Basic Res Cardiol ; 117(1): 32, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35737129

RESUMEN

Alterations of RNA editing that affect the secondary structure of RNAs can cause human diseases. We therefore studied RNA editing in failing human hearts. Transcriptome sequencing showed that adenosine-to-inosine (A-to-I) RNA editing was responsible for 80% of the editing events in the myocardium. Failing human hearts were characterized by reduced RNA editing. This was primarily attributable to Alu elements in introns of protein-coding genes. In the failing left ventricle, 166 circRNAs were upregulated and 7 circRNAs were downregulated compared to non-failing controls. Most of the upregulated circRNAs were associated with reduced RNA editing in the host gene. ADAR2, which binds to RNA regions that are edited from A-to-I, was decreased in failing human hearts. In vitro, reduction of ADAR2 increased circRNA levels suggesting a causal effect of reduced ADAR2 levels on increased circRNAs in the failing human heart. To gain mechanistic insight, one of the identified upregulated circRNAs with a high reduction of editing in heart failure, AKAP13, was further characterized. ADAR2 reduced the formation of double-stranded structures in AKAP13 pre-mRNA, thereby reducing the stability of Alu elements and the circularization of the resulting circRNA. Overexpression of circAKAP13 impaired the sarcomere regularity of human induced pluripotent stem cell-derived cardiomyocytes. These data show that ADAR2 mediates A-to-I RNA editing in the human heart. A-to-I RNA editing represses the formation of dsRNA structures of Alu elements favoring canonical linear mRNA splicing and inhibiting the formation of circRNAs. The findings are relevant to diseases with reduced RNA editing and increased circRNA levels and provide insights into the human-specific regulation of circRNA formation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Edición de ARN , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , ARN/química , ARN/genética , ARN/metabolismo , ARN Circular/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
15.
Vasa ; 51(4): 256-262, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35604329

RESUMEN

Background: The search for an optimal interventional treatment strategy in infrapopliteal peripheral artery disease remains in the focus of interest. Whether drug-coated balloons (DCB) might enhance interventional outcomes after crural interventions is a matter of debate, as studies yielded conflicting results on DCB safety and efficacy. Patients and methods: We analyzed a retrospective cohort of 75 infrapopliteal DCB interventions performed at our institution in 68 patients with peripheral artery disease in Rutherford category 3 to 6. Results: Despite a high rate of long complex lesions and multi-vessel disease, freedom from clinically driven target lesions revascularization (TLR) after 365 days was 68%. After six months, healing or significant improvement of the ischemic ulcer was observed in 78% of cases. Accordingly, freedom from major amputation and death after 365 days was 82%. Freedom from major amputation and death was 76.2% of cases in patients with diabetes mellitus as opposed to 91.5% in patients without diabetes mellitus (p=0.049). Conclusions: With this real-world analysis we would like to contribute to the ongoing discussion on the benefit and safety of DCB treatment in below-the-knee interventions.


Asunto(s)
Angioplastia de Balón , Fármacos Cardiovasculares , Diabetes Mellitus , Enfermedad Arterial Periférica , Angioplastia de Balón/efectos adversos , Fármacos Cardiovasculares/efectos adversos , Materiales Biocompatibles Revestidos , Arteria Femoral , Humanos , Isquemia/diagnóstico por imagen , Isquemia/terapia , Recuperación del Miembro , Enfermedad Arterial Periférica/cirugía , Enfermedad Arterial Periférica/terapia , Arteria Poplítea/diagnóstico por imagen , Arteria Poplítea/cirugía , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento , Grado de Desobstrucción Vascular
16.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682624

RESUMEN

The transcription factor EB (TFEB) promotes protein degradation by the autophagy and lysosomal pathway (ALP) and overexpression of TFEB was suggested for the treatment of ALP-related diseases that often affect the heart. However, TFEB-mediated ALP induction may perturb cardiac stress response. We used adeno-associated viral vectors type 9 (AAV9) to overexpress TFEB (AAV9-Tfeb) or Luciferase-control (AAV9-Luc) in cardiomyocytes of 12-week-old male mice. Mice were subjected to transverse aortic constriction (TAC, 27G; AAV9-Luc: n = 9; AAV9-Tfeb: n = 14) or sham (AAV9-Luc: n = 9; AAV9-Tfeb: n = 9) surgery for 28 days. Heart morphology, echocardiography, gene expression, and protein levels were monitored. AAV9-Tfeb had no effect on cardiac structure and function in sham animals. TAC resulted in compensated left ventricular hypertrophy in AAV9-Luc mice. AAV9-Tfeb TAC mice showed a reduced LV ejection fraction and increased left ventricular diameters. Morphological, histological, and real-time PCR analyses showed increased heart weights, exaggerated fibrosis, and higher expression of stress markers and remodeling genes in AAV9-Tfeb TAC compared to AAV9-Luc TAC. RNA-sequencing, real-time PCR and Western Blot revealed a stronger ALP activation in the hearts of AAV9-Tfeb TAC mice. Cardiomyocyte-specific TFEB-overexpression promoted ALP gene expression during TAC, which was associated with heart failure. Treatment of ALP-related diseases by overexpression of TFEB warrants careful consideration.


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Modelos Animales de Enfermedad , Ecocardiografía , Insuficiencia Cardíaca/metabolismo , Hipertrofia Ventricular Izquierda/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Remodelación Ventricular
17.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35054905

RESUMEN

Patients with the complex congenital heart disease (CHD) are usually associated with right ventricular outflow tract dysfunction and typically require multiple surgical interventions during their lives to relieve the right ventricular outflow tract abnormality. Transcatheter pulmonary valve replacement was used as a non-surgical, less invasive alternative treatment for right ventricular outflow tract dysfunction and has been rapidly developing over the past years. Despite the current favorable results of transcatheter pulmonary valve replacement, many patients eligible for pulmonary valve replacement are still not candidates for transcatheter pulmonary valve replacement. Therefore, one of the significant future challenges is to expand transcatheter pulmonary valve replacement to a broader patient population. This review describes the limitations and problems of existing techniques and focuses on decellularized tissue engineering for pulmonary valve stenting.


Asunto(s)
Implantación de Prótesis de Válvulas Cardíacas/métodos , Válvula Pulmonar/cirugía , Stents , Ingeniería de Tejidos , Animales , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Implantación de Prótesis de Válvulas Cardíacas/normas , Ventrículos Cardíacos/fisiopatología , Humanos , Pronóstico , Ingeniería de Tejidos/métodos , Resultado del Tratamiento , Función Ventricular
18.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008953

RESUMEN

Clinically used heart valve prostheses, despite their progress, are still associated with limitations. Biodegradable poly-ε-caprolactone (PCL) nanofiber scaffolds, as a matrix, were seeded with human endothelial colony-forming cells (ECFCs) and human induced-pluripotent stem cells-derived MSCs (iMSCs) for the generation of tissue-engineered heart valves. Cell adhesion, proliferation, and distribution, as well as the effects of coating PCL nanofibers, were analyzed by fluorescence microscopy and SEM. Mechanical properties of seeded PCL scaffolds were investigated under uniaxial loading. iPSCs were used to differentiate into iMSCs via mesoderm. The obtained iMSCs exhibited a comparable phenotype and surface marker expression to adult human MSCs and were capable of multilineage differentiation. EFCFs and MSCs showed good adhesion and distribution on PCL fibers, forming a closed cell cover. Coating of the fibers resulted in an increased cell number only at an early time point; from day 7 of colonization, there was no difference between cell numbers on coated and uncoated PCL fibers. The mechanical properties of PCL scaffolds under uniaxial loading were compared with native porcine pulmonary valve leaflets. The Young's modulus and mean elongation at Fmax of unseeded PCL scaffolds were comparable to those of native leaflets (p = ns.). Colonization of PCL scaffolds with human ECFCs or iMSCs did not alter these properties (p = ns.). However, the native heart valves exhibited a maximum tensile stress at a force of 1.2 ± 0.5 N, whereas it was lower in the unseeded PCL scaffolds (0.6 ± 0.0 N, p < 0.05). A closed cell layer on PCL tissues did not change the values of Fmax (ECFCs: 0.6 ± 0.1 N; iMSCs: 0.7 ± 0.1 N). Here, a successful two-phase protocol, based on the timed use of differentiation factors for efficient differentiation of human iPSCs into iMSCs, was developed. Furthermore, we demonstrated the successful colonization of a biodegradable PCL nanofiber matrix with human ECFCs and iMSCs suitable for the generation of tissue-engineered heart valves. A closed cell cover was already evident after 14 days for ECFCs and 21 days for MSCs. The PCL tissue did not show major mechanical differences compared to native heart valves, which was not altered by short-term surface colonization with human cells in the absence of an extracellular matrix.


Asunto(s)
Biopolímeros/química , Caproatos/química , Células Progenitoras Endoteliales/citología , Válvulas Cardíacas , Células Madre Pluripotentes Inducidas/citología , Lactonas/química , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos , Andamios del Tejido , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Cultivadas , Células Progenitoras Endoteliales/metabolismo , Matriz Extracelular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Nanofibras , Porcinos , Andamios del Tejido/química
19.
Circulation ; 141(20): 1628-1644, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32100557

RESUMEN

BACKGROUND: Acute occlusion of a coronary artery results in swift tissue necrosis. Bordering areas of the infarcted myocardium can also experience impaired blood supply and reduced oxygen delivery, leading to altered metabolic and mechanical processes. Although transcriptional changes in hypoxic cardiomyocytes are well studied, little is known about the proteins that are actively secreted from these cells. METHODS: We established a novel secretome analysis of cardiomyocytes by combining stable isotope labeling and click chemistry with subsequent mass spectrometry analysis. Further functional validation experiments included ELISA measurement of human samples, murine left anterior descending coronary artery ligation, and adeno-associated virus 9-mediated in vivo overexpression in mice. RESULTS: The presented approach is feasible for analysis of the secretome of primary cardiomyocytes without serum starvation. A total of 1026 proteins were identified to be secreted within 24 hours, indicating a 5-fold increase in detection compared with former approaches. Among them, a variety of proteins have not yet been explored in the context of cardiovascular pathologies. One of the secreted factors most strongly upregulated upon hypoxia was PCSK6 (proprotein convertase subtilisin/kexin type 6). Validation experiments revealed an increase of PCSK6 on mRNA and protein level in hypoxic cardiomyocytes. PCSK6 expression was elevated in hearts of mice after 3 days of ligation of the left anterior descending artery, a finding confirmed by immunohistochemistry. ELISA measurements in human serum also indicate distinct kinetics for PCSK6 in patients with acute myocardial infarction, with a peak on postinfarction day 3. Transfer of PCSK6-depleted cardiomyocyte secretome resulted in decreased expression of collagen I and III in fibroblasts compared with control treated cells, and small interfering RNA-mediated knockdown of PCSK6 in cardiomyocytes impacted transforming growth factor-ß activation and SMAD3 (mothers against decapentaplegic homolog 3) translocation in fibroblasts. An adeno-associated virus 9-mediated, cardiomyocyte-specific overexpression of PCSK6 in mice resulted in increased collagen expression and cardiac fibrosis, as well as decreased left ventricular function, after myocardial infarction. CONCLUSIONS: A novel mass spectrometry-based approach allows investigation of the secretome of primary cardiomyocytes. Analysis of hypoxia-induced secretion led to the identification of PCSK6 as being crucially involved in cardiac remodeling after acute myocardial infarction.


Asunto(s)
Infarto del Miocardio/enzimología , Miocitos Cardíacos/enzimología , Proproteína Convertasa 9/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Animales Recién Nacidos , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Proproteína Convertasa 9/genética , Proteoma , Ratas Wistar , Vías Secretoras , Transducción de Señal
20.
Circulation ; 142(22): 2155-2171, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33023321

RESUMEN

BACKGROUND: Mutations in the human desmin gene cause myopathies and cardiomyopathies. This study aimed to elucidate molecular mechanisms initiated by the heterozygous R406W-desmin mutation in the development of a severe and early-onset cardiac phenotype. METHODS: We report an adolescent patient who underwent cardiac transplantation as a result of restrictive cardiomyopathy caused by a heterozygous R406W-desmin mutation. Sections of the explanted heart were analyzed with antibodies specific to 406W-desmin and to intercalated disc proteins. Effects of the R406W mutation on the molecular properties of desmin were addressed by cell transfection and in vitro assembly experiments. To prove the genuine deleterious effect of the mutation on heart tissue, we further generated and analyzed R405W-desmin knock-in mice harboring the orthologous form of the human R406W-desmin. RESULTS: Microscopic analysis of the explanted heart revealed desmin aggregates and the absence of desmin filaments at intercalated discs. Structural changes within intercalated discs were revealed by the abnormal organization of desmoplakin, plectin, N-cadherin, and connexin-43. Next-generation sequencing confirmed the DES variant c.1216C>T (p.R406W) as the sole disease-causing mutation. Cell transfection studies disclosed a dual behavior of R406W-desmin with both its integration into the endogenous intermediate filament system and segregation into protein aggregates. In vitro, R406W-desmin formed unusually thick filaments that organized into complex filament aggregates and fibrillar sheets. In contrast, assembly of equimolar mixtures of mutant and wild-type desmin generated chimeric filaments of seemingly normal morphology but with occasional prominent irregularities. Heterozygous and homozygous R405W-desmin knock-in mice develop both a myopathy and a cardiomyopathy. In particular, the main histopathologic results from the patient are recapitulated in the hearts from R405W-desmin knock-in mice of both genotypes. Moreover, whereas heterozygous knock-in mice have a normal life span, homozygous animals die at 3 months of age because of a smooth muscle-related gastrointestinal phenotype. CONCLUSIONS: We demonstrate that R406W-desmin provokes its severe cardiotoxic potential by a novel pathomechanism, where the concurrent dual functional states of mutant desmin assembly complexes underlie the uncoupling of desmin filaments from intercalated discs and their structural disorganization.


Asunto(s)
Cardiomiopatías/genética , Cardiomiopatías/terapia , Desmina/genética , Miocardio/patología , Índice de Severidad de la Enfermedad , Adolescente , Animales , Cateterismo Cardíaco/métodos , Cardiomiopatías/diagnóstico por imagen , Desmina/metabolismo , Técnicas de Sustitución del Gen/métodos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocardio/ultraestructura , Marcapaso Artificial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA