Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675579

RESUMEN

High ionic conductivity, outstanding mechanical stability, and a wide electrochemical window are the keys to the application of solid-state lithium metal batteries (LMBs). Due to their regular channels for ion transport and tailored functional groups, covalent organic frameworks (COFs) have been applied to solid electrolytes to improve their performance. Herein, we report a flexible polyethylene oxide-COF-LZU1 (abbreviated as PEO-COF) electrolyte membrane with a high lithium ion transference number and satisfactory mechanical strength, allowing for dendrite-free and long-time cycling for LMBs. Benefiting from the interaction between bis(triflfluoromethanesulonyl)imide anions (TFSI-) and aldehyde groups in COF-LZU1, the Li+ transference number of the PEO-5% COF-LZU1 electrolyte reached up to 0.43, much higher than that of neat PEO electrolyte (0.18). Orderly channels are conducive to the homogenous Li-+ deposition, thereby inhibiting the lithium dendrites. The assembled LiFePO4|PEO-5% COF-LZU1/Li cells delivered a discharge specific capacity of 146 mAh g-1 and displayed a capacity retention of 80% after 200 cycles at 0.1 C (60 °C). The Li/Li symmetrical cells of the PEO-5% COF-LZU1 electrolyte presented a longer working stability at different current densities compared to that of the PEO electrolyte. Therefore, the enhanced comprehensive performance of the solid electrolyte shows potential application prospects for use in LMBs.

2.
Materials (Basel) ; 17(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39124519

RESUMEN

To address the challenges posed by the narrow oxidation decomposition potential window and the characteristic of low ionic conductivity at room temperature of solid polymer electrolytes (SPEs), carbon dioxide (CO2), epichlorohydrin (PO), caprolactone (CL), and phthalic anhydride (PA) were employed in synthesizing di-block copolymer PCL-b-PPC and PCL-b-PPCP. The carbonate and ester bonds in PPC and PCL provide high electrochemical stability, while the polyether segments in PPC contribute to the high ion conductivity. To further improve the ion conductivity, we added succinonitrile as a plasticizer to the copolymer and used the copolymer to assemble lithium metal batteries (LMBs) with LiFePO4 as the cathode. The LiFePO4/SPE/Li battery assembled with PCL-b-PPC electrolyte exhibited an initial discharge-specific capacity of 155.5 mAh·g-1 at 0.5 C and 60 °C. After 270 cycles, the discharge-specific capacity was 140.8 mAh·g-1, with a capacity retention of 90.5% and an average coulombic efficiency of 99%, exhibiting excellent electrochemical performance. The study establishes the design strategies of di-block polymer electrolytes and provides a new strategy for the application of LMBs.

3.
Polymers (Basel) ; 13(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34883713

RESUMEN

Lithium-sulfur batteries (LSBs) have attracted wide attention, but the shuttle effect of polysulfide hinders their further practical application. Herein, we develop a new strategy to construct a Ketjen black@zeolite imidazole framework-8/polypropylene composite separator. Such a separator consists of Ketjen black (KB), zeolite imidazole framework-8 (ZIF-8) and polypropylene (PP) with a low coating load of 0.06 mg cm-2 and is denoted as KB@ZIF-8/PP. KB@ZIF-8/PP can absorb polysulfides because of the Lewis acid-base interaction between ZIF-8 and polysulfides. This interaction can reduce the dissolution of polysulfides and suppress the shuttle effect, thereby enhancing the electrochemical performance of the battery. When tested at a current density of 0.1 C, an LSB with a KB@ZIF-8/PP separator exhibits low polarization and achieves a high initial capacity of 1235.6 mAh/g and a high capacity retention rate of 59.27% after 100 cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA