RESUMEN
Although a number of repair strategies have been shown to promote axon outgrowth following neuronal injury in the mammalian CNS, it remains unclear whether regenerated axons establish functional synapses and support behavior. Here, in both juvenile and adult mice, we show that either PTEN and SOCS3 co-deletion, or co-overexpression of osteopontin (OPN)/insulin-like growth factor 1 (IGF1)/ciliary neurotrophic factor (CNTF), induces regrowth of retinal axons and formation of functional synapses in the superior colliculus (SC) but not significant recovery of visual function. Further analyses suggest that regenerated axons fail to conduct action potentials from the eye to the SC due to lack of myelination. Consistent with this idea, administration of voltage-gated potassium channel blockers restores conduction and results in increased visual acuity. Thus, enhancing both regeneration and conduction effectively improves function after retinal axon injury.
Asunto(s)
Axones/fisiología , Colículos Superiores/fisiología , 4-Aminopiridina/farmacología , Animales , Axones/efectos de los fármacos , Factor Neurotrófico Ciliar/metabolismo , Fenómenos Electrofisiológicos , Ojo/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Vaina de Mielina/metabolismo , Nervio Óptico , Osteopontina/metabolismo , Fosfohidrolasa PTEN/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Regeneración/efectos de los fármacos , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , SinapsisRESUMEN
Oxidative stress response is a fundamental biological process mediated by conserved mechanisms. The identities and functions of some key regulators remain unknown. Here, we report a novel role of C. elegans casein kinase 1 gamma CSNK-1 (also known as CK1γ or CSNK1G) in regulating oxidative stress response and ROS levels. csnk-1 interacted with the bli-3/tsp-15/doxa-1 NADPH dual oxidase genes via genetic nonallelic noncomplementation to affect C. elegans survival in oxidative stress. The genetic interaction was supported by specific biochemical interactions between DOXA-1 and CSNK-1 and potentially between their human orthologs DUOXA2 and CSNK1G2. Consistently, CSNK-1 was required for normal ROS levels in C. elegans. CSNK1G2 and DUOXA2 each can promote ROS levels in human cells, effects that were suppressed by a small molecule casein kinase 1 inhibitor. We also detected genetic interactions between csnk-1 and skn-1 Nrf2 in oxidative stress response. Together, we propose that CSNK-1 CSNK1G defines a novel conserved regulatory mechanism for ROS homeostasis.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Oxidasas Duales/farmacología , NADP , Especies Reactivas de Oxígeno , Quinasa de la Caseína I/genética , Estrés Oxidativo/genética , NADPH Oxidasas , Tetraspaninas/genéticaRESUMEN
Two-pore domain potassium channels (K2P) are a large family of "background" channels that allow outward "leak" of potassium ions. The NALCN/UNC80/UNC79 complex is a non-selective channel that allows inward flow of sodium and other cations. It is unclear how K2Ps and NALCN differentially modulate animal behavior. Here, we found that loss of function (lf) in the K2P gene twk-40 suppressed the reduced body curvatures of C. elegans NALCN(lf) mutants. twk-40(lf) caused a deep body curvature and extended backward locomotion, and these phenotypes appeared to be associated with neuron-specific expression of twk-40 and distinct twk-40 transcript isoforms. To survey the functions of other less studied K2P channels, we examined loss-of-function mutants of 13 additional twk genes expressed in the motor circuit and detected defective body curvature and/or locomotion in mutants of twk-2, twk-17, twk-30, twk-48, unc-58, and the previously reported twk-7. We generated presumptive gain-of-function (gf) mutations in twk-40, twk-2, twk-7, and unc-58 and found that they caused paralysis. Further analyses detected variable genetic interactions between twk-40 and other twk genes, an interdependence between twk-40 and twk-2, and opposite behavioral effects between NALCN and twk-2, twk-7, or unc-58. Finally, we found that the hydrophobicity/hydrophilicity property of TWK-40 residue 159 could affect the channel activity. Together, our study identified twk-40 as a novel modulator of the motor behavior, uncovered potential behavioral effects of five other K2P genes and suggests that NALCN and some K2Ps can oppositely affect C. elegans behavior.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Locomoción/genética , Canales de Potasio/genética , Canales de Potasio/metabolismo , Canales de Sodio/genéticaRESUMEN
The quality of Recombination signal sequences (RSSs), location, and genetics of mammalian V, D, and J genes synergistically affect the recombination frequency of genes; however, the specific regulatory mechanism and efficiency have not been elucidated. By taking advantage of single-cell RNA-sequencing (scRNA-seq) and high-throughput sequencing (HTS) to investigate V(D)J rearrangement characteristics in the CDR3 repertoire, we found that the distal and proximal V genes (or J genes) "to D" gene were involved in rearrangement significantly more frequently than the middle V genes (or J genes) in the TRB locus among various species, including Primates (human and rhesus monkey), Rodentia (BALB/c, C57BL/6, and Kunming mice), Artiodactyla (buffalo), and Chiroptera (Rhinolophus affinis). The RSS quality of the V and J genes affected their frequency in rearrangement to varying degrees, especially when the V-RSSs with recombination signal information content (RIC) score < -45 significantly reduced the recombination frequency of the V gene. The V and J genes that were "away from D" had the dual advantages of recombinant structural accessibility and relatively high-quality RSSs, which promoted their preferential utilization in rearrangement. The quality of J-RSSs formed during mammalian evolution was apparently greater than that of V-RSSs, and the D-J distance was obviously shorter than that of V-D, which may be one of the reasons for guaranteeing that the "D-to-J preceding V-to-DJ rule" occurred when rearranged. This study provides a novel perspective on the mechanism and efficiency of V-D-J rearrangement in the mammalian TRB locus, as well as the biased utilization characteristics and application of V and J genes in the initial CDR3 repertoire.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de la Célula Individual , Animales , Humanos , Recombinación V(D)J , Mamíferos/genética , Análisis de Secuencia de ARN , Ratones , Análisis de Expresión Génica de una Sola CélulaRESUMEN
At the 3' end of the C2 gene in the mammalian TRB locus, a distinct reverse TRBV30 gene (named TRBV31 in mice) has been conserved throughout evolution. In the fully annotated TRB locus of 14 mammals (including six orders), we observed noteworthy variations in the localization and quality of the reverse V30 genes and Recombination Signal Sequences (RSSs) in the gene trees of 13 mammals. Conversely, the forward V29 genes and RSSs were generally consistent with the species tree of their corresponding species. This finding suggested that the evolution of the reverse V30 gene was not synchronous and likely played a crucial role in regulating adaptive immune responses. To further investigate this possibility, we utilized single-cell TCR sequencing (scTCR-seq) and high-throughput sequencing (HTS) to analyze TCRß CDR3 repertoires from both central and peripheral tissues of Primates (Homo sapiens and Macaca mulatta), Rodentia (Mus musculus: BALB/c, C57BL/6, and Kunming mice), Artiodactyla (Bos taurus and Bubalus bubalis), and Chiroptera (Rhinolophus affinis and Hipposideros armige). Our investigation revealed several novel observations: (1) The reverse V30 gene exhibits classical rearrangement patterns adhering to the '12/23 rule' and the 'D-J rearrangement preceding the V-(D-J) rearrangement'. This results in the formation of rearranged V30-D2J2, V30-D1J1, and V30-D1J2. However, we also identified 'special rearrangement patterns' wherein V30-D rearrangement preceding D-J rearrangement, giving rise to rearranged V30-D2-J1 and forward Vx-D2-J. (2) Compared to the 'deletional rearrangement' (looping out) of forward V1-V29 genes, the reverse V30 gene exhibits preferential utilization with 'inversional rearrangement'. This may be attributed to the shorter distance between the V30 gene and D gene and the 'inversional rearrangement' modes. In summary, in the mammalian TRB locus, the reverse V30 gene has been uniquely preserved throughout evolution and preferentially utilized in V(D)J recombination, potentially serving a significant role in adaptive immunity. These results will pave the way for novel and specialized research into the mechanisms, efficiency, and function of V(D)J recombination in mammals.
Asunto(s)
Evolución Molecular , Mamíferos , Animales , Mamíferos/genética , Humanos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento , RatonesRESUMEN
The development of novel method for drug-resistant bacteria detection is imperative. A simultaneous dual-gene Test of methicillin-resistant Staphylococcus aureus (MRSA) is developed using an Argonaute-centered portable biosensor (STAR). This is the first report concerning Argonaute-based pathogenic bacteria detection. Simply, the species-specific mecA and nuc gene are isothermally amplified using loop-mediated isothermal amplification (LAMP) technique, followed by Argonaute-based detection enabled by its programmable, guided, sequence-specific recognition and cleavage. With the strategy, the targeted nucleic acid signals gene are dexterously converted into fluorescent signals. STAR is capable of detecting the nuc gene and mecA gene simultaneously in a single reaction. The limit of detection is 10 CFU/mL with a dynamic range from 10 to 107 CFU/mL. The sample-to-result time is <65 min. This method is successfully adapted to detect clinical samples, contaminated foods, and MRSA-infected animals. This work broadens the reach of Argonaute-based biosensing and presents a novel bacterial point-of-need (PON) detection platform.
Asunto(s)
Técnicas Biosensibles , Staphylococcus aureus Resistente a Meticilina , Técnicas de Amplificación de Ácido Nucleico , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Técnicas Biosensibles/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión a las Penicilinas/genética , Animales , Nucleasa Microcócica/metabolismo , Nucleasa Microcócica/genéticaRESUMEN
Synovial inflammation and fibrosis are important pathological changes associated with osteoarthritis (OA). Herein, we investigated if nintedanib, a drug specific for pulmonary fibrosis, plays a positive role in osteoarthritic synovial inflammation and fibrosis. We assessed the effect of nintedanib on osteoarthritic synovial inflammation and fibrosis in a mouse model of OA created by destabilization of the medial meniscus and a macrophage M1 polarization model created by stimulating RAW264.7 cells with lipopolysaccharide. Histological staining showed that daily gavage administration of nintedanib significantly alleviated articular cartilage degeneration, reduced the OARSI score, upregulated matrix metalloproteinase-13 and downregulated collagen II expression, and significantly reduced the synovial score and synovial fibrosis in a mouse OA model. In addition, immunofluorescence staining showed that nintedanib significantly decreased the number of M1 macrophages in the synovium of a mouse model of OA. In vitro results showed that nintedanib downregulated the phosphorylation levels of ERK, JNK, p38, PI3K, and AKT while inhibiting the expression of macrophage M1 polarization marker proteins (CD86, CD80, and iNOS). In conclusion, this study suggests that nintedanib is a potential candidate for OA treatment. The mechanisms of action of nintedanib include the inhibition of M1 polarization in OA synovial macrophages via the MAPK/PI3K-AKT pathway, inhibition of synovial inflammation and fibrosis, and reduction of articular cartilage degeneration.
Asunto(s)
Osteoartritis , Fibrosis Pulmonar , Animales , Ratones , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Osteoartritis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Macrófagos , Modelos Animales de EnfermedadRESUMEN
Bipolar nanopores, with asymmetric charge distributions, can induce significant ionic current rectification (ICR) at ultrashort lengths, finding potential applications in nanofluidic devices, energy conversion, and other related fields. Here, with simulations, we investigated the characteristics of ion transport and modulation of the ICR inside bipolar nanopores. With bipolar nanopores of half-positive and half-negative surfaces, the most significant ICR phenomenon appears at various concentrations. In these cases, the ICR ratios are independent of electrolyte types. In other cases where nanopores have oppositely charged surfaces of different lengths, ICR ratios are related to the mobility of anions and cations. The pore length and surface charge density can enhance ICR. As the pore length increases, ICR ratios first increase and then approach their saturation, which is determined by the surface charge density. External surface charges of nanopores can promote the ICR phenomenon mainly due to the enhancement of ion enrichment inside the nanopores by external surface conductance. The effective width of exterior charged surfaces under various conditions is also explored, which is inversely proportional to the pore length and salt concentration and linearly related to the pore diameter, surface charge density, and applied voltage. Our results may provide guidance for the design of bipolar porous membranes.
RESUMEN
Pathogens contamination is a pressing global public issue that has garnered significant attention worldwide, especially in light of recent outbreaks of foodborne illnesses. Programmable nucleases like CRISPR/Cas and Argonaute hold promise as tools for nucleic acid testing owning to programmability and the precise target sequence specificity, which has been utilized for the development pathogens detection. At present, fluorescence, as the main signal output method, provides a simple response mode for sensing analysis. However, the dependence of fluorescence output on large instruments and correct analysis of output data limited its use in remote areas. Lateral flow strips (LFS), emerging as a novel flexible substrate, offer a plethora of advantages, encompassing easy-to-use, rapidity, visualization, low-cost, portability, etc. The integration of CRISPR/Cas and Argonaute with LFS, lateral flow assay (LFA), rendered a new and on-site mode for pathogens detection. In the review, we introduced two programmable nucleases CRISPR/Cas and Argonaute, followed by the structure, principle and advantages of LFA. Then diversified engineering detection pattens for viruses, bacteria, parasites, and fungi based on CRISPR/Cas and Argonaute were introduced and summarized. Finally, the challenge and perspectives involved in on-site diagnostic assays were discussed.
RESUMEN
BACKGROUND: Sevoflurane is a widely used anesthetic in infants. However, long and repeated exposure to this drug can cause developmental neurotoxicity. This study aimed to investigate the role and mechanism of circular RNA DLGAP4 (circDLGAP4) in sevoflurane-induced neurotoxicity. METHODS: Neonatal mice and mouse hippocampal neuronal cell line HT22 were used to construct sevoflurane-induced nerve injury models. The role of circDLGAP4 in sevoflurane-induced neurotoxicity was evaluated by gain-and/or loss-of-function methods. Pathological alterations in hippocampus were analyzed by hematoxylin-eosin and Tunel staining. Cell injury was assessed by cell viability and apoptosis, which was detected by CCK-8 and flow cytometry. The expression of circDLGAP4 and miR-9-5p was determined by real-time PCR. Sirt1 and BDNF levels were measured by Western blot. Productions of TNF-α and IL-6 were examined by ELISA. Dual-luciferase reporter assay and/or RNA pull-down assay were used to confirm the direct binding among circDLGAP4, miR-9-5p, and Sirt1. Rescue experiments were used to further verify the mechanism of circDLGAP4. RESULTS: CircDLGAP4 expression was decreased by sevoflurane both in vivo and in vitro. Overexpression of circDLGAP4 elevated cell viability, reduced apoptosis and levels of TNF-α and IL-6, while circDLGAP4 knockdown showed the opposite effects in sevoflurane-induced HT22 cells. Mechanically, circDLGAP4 functioned via directly binding to and regulating miR-9-5p, followed by targeting the Sirt1/BDNF pathway. Additionally, circDLGAP4 upregulation relieved sevoflurane-induced nerve injury, reduced levels of TNF-α, IL-6 and miR-9-5p, but increased the expression of Sirt1 and BDNF in hippocampus. CONCLUSIONS: Our studies found that circDLGAP4 relieved sevoflurane-induced neurotoxicity by sponging miR-9-5p to regulate Sirt1/BDNF pathway.
Asunto(s)
MicroARNs , ARN Circular , Animales , Ratones , Apoptosis , Factor Neurotrófico Derivado del Encéfalo/genética , Interleucina-6/metabolismo , MicroARNs/metabolismo , ARN Circular/genética , Sevoflurano/farmacología , Sirtuina 1/genética , Sirtuina 1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
BACKGROUND: Telocytes (TCs) is a novel type of interstitial cells in many mammals organs, which participate in the organizational metabolism, mechanical support, immunomodulation and other aspects. The aim of this study was to explore the organizational chemical characteristics of TCs in pituitary gland and their changes in cryptorchid yaks. METHODS: Transmission electron microscopy (TEM), toluidine blue staining, immunofluorescence, qRT-PCR, and Western blotting may enable us to understand TCs distribution characteristics and biological functions. RESULT: TEM confirmed the presence of TCs in the pituitary gland with small bodies and moniliform telopodes (Tps). The Tps extending out from the cell body to the peri-sinusoidal vessels spaces, the number of Tps is closely related to the morphology of the nucleus. The most obvious changes of TCs in the pituitary gland of cryptorchid yaks is the Tps are relatively shorter and decreased secretory vesicles. H.E. and toluidine blue staining revealed that TCs not only distributed between the sinusoidal blood vessels and the glandular cell clusters, but also present on the surface of vascular endothelial cells. The co-expression of TCs biomarkers, such as Vimentin/CD34, CD117/CD34 and α-SMA/CD34, were evaluated by immunofluorescence to further determine the phenotypic characteristics of TCs. Besides, we analyzed the mRNA and protein expression of these biomarkers to determine the characteristics of TCs changes and possible biological roles. Both the mRNA and protein expression of CD117 were significantly higher in the pituitary gland of cryptorchid yaks than in the normal (p < 0.01), the protein expression of CD34 in the cryptorchid yaks was significantly higher than the normal (p < 0.01). There were no significant difference in mRNA expression of Vimentin and α-SMA (p>0.05), while the protein expression were significantly increased in the normal yaks (p < 0.05). CONCLUSIONS: In summary, this study reports for the first time that the biological characteristics of TCs in yak pituitary gland. Although there is no significant change in the distribution characteristics, the changes in biological features of TCs in cryptorchid yaks are clear, suggesting that TCs participated in alteration in the local microenvironment of the pituitary gland. Therefore, our study provides clues for further investigating the role of TCs in the pituitary gland during the occurrence of cryptorchidism in yaks.
Asunto(s)
Hipófisis , Telocitos , Animales , Bovinos , Masculino , Hipófisis/metabolismo , Microscopía Electrónica de Transmisión/veterinaria , Criptorquidismo/veterinaria , Criptorquidismo/patología , Enfermedades de los Bovinos/patología , Antígenos CD34/metabolismoRESUMEN
Short nanopores find extensive applications, capitalizing on their high throughput and detection resolution. Ionic behaviors through long nanopores are mainly determined by charged inner-pore walls. When pore lengths decrease to sub-200 nm, charged exterior surfaces provide considerable modulation to ion current. We find that the charge status of inner-pore walls affects the modulation of ion current from charged exterior surfaces. For 50-nm-long nanopores with neutral inner-pore walls, the charged exterior surfaces on the voltage (surfaceV) and ground (surfaceG) sides enhance and inhibit the ion transport by forming ion enrichment and depletion zones inside nanopores, respectively. For nanopores with both charged inner-pore and exterior surfaces, continuous electric double layers enhance the ion transport through nanopores significantly. The charged surfaceV results in higher ion current by simultaneously weakening the ion depletion at pore entrances and enhancing the intra-pore ion enrichment. The charged surfaceG expedites the exit of ions from nanopores, resulting in a decrease in ion enrichment at pore exits. Through adjustment in the width of charged-ring regions near pore boundaries, the effective charged width of the charged exterior is explored at â¼20 nm. Our results may provide a theoretical guide for further optimizing the performance of nanopore-based applications, such as seawater desalination, biosensing, and osmotic energy conversion.
RESUMEN
Oocyte maturation is pertinent to the success of in vitro maturation (IVM), which is used to overcome female infertility, and produced over 5000 live births worldwide. However, the quality of human IVM oocytes has not been investigated at single-cell proteome level. Here, we quantified 2094 proteins in human oocytes during in vitro and in vivo maturation (IVO) by single-cell proteomic analysis and identified 176 differential proteins between IVO and germinal vesicle oocytes and 45 between IVM and IVO oocytes including maternal effect proteins, with potential contribution to the clinically observed decreased fertilization, implantation, and birth rates using human IVM oocytes. IVM and IVO oocytes showed separate clusters in principal component analysis, with higher inter-cell variability among IVM oocytes, and have little correlation between mRNA and protein changes during maturation. The patients with the most aberrantly expressed proteins in IVM oocytes had the lowest level of estradiol per mature follicle on trigger day. Our data provide a rich resource to evaluate effect of IVM on oocyte quality and study mechanism of oocyte maturation.
Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Proteómica , Femenino , Humanos , Oocitos , Oogénesis , Análisis de la Célula IndividualRESUMEN
BACKGROUND: Several studies indicate that the cystathionine ß-synthase (CBS) gene T833C, G919A and 844ins68 polymorphisms in the 8th exon region may be correlated with coronary artery disease (CAD) susceptibility, but the results have been inconsistent and inconclusive. Thus, a meta-analysis was conducted to provide a comprehensive estimate of these associations. METHODS: On the basis of searches in the PubMed, EMBASE, Cochrane Library, Wanfang, VIP, and CNKI databases, we selected 14 case - control studies including 2123 cases and 2368 controls for this meta-analysis. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated accordingly using a fixed-effect or random-effect model. RESULTS: The results indicated an increased risk between the CBS T833C gene polymorphisms and susceptibility to CAD under the dominant model (CC+CT vs. TT: OR = 1.92, 95% CI: 1.11 ~ 3.32), recessive model (CC vs. CT+TT: OR = 1.88, 95% CI: 1.17 ~ 3.03), and homozygous model (CC vs. TT: OR = 2.46, 95% CI: 1.04 ~ 5.83). In these three genetic models, no significant association was identified for CBS G919A (AA+AG vs. GG: OR = 1.48, 95% CI: 0.45 ~ 4.82),(AA vs. AG+GG: OR = 1.58, 95% CI: 0.93 ~ 2.70),(AA vs. GG: OR = 1.66, 95% CI: 0.40 ~ 6.92) or CBS 844ins68 (II+ID vs. DD: OR = 1.04, 95% CI: 0.80 ~ 1.35),(II vs. ID+DD: OR = 1.09, 95% CI: 0.51 ~ 2.36),(II vs. DD: OR = 1.10, 95% CI: 0.51 ~ 2.39). CONCLUSIONS: This meta-analysis suggests that the CBS T833C gene polymorphism is significantly associated with the risk of CAD and it shows a stronger association in Asian populations. Individuals with the C allele of the CBS gene T833C polymorphism might be particularly susceptible to CAD.
Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Enfermedad de la Arteria Coronaria/genética , Cistationina betasintasa/genética , Polimorfismo Genético , Homocigoto , Exones/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Potentially toxic elements (PTEs) in surface water in arid areas pose a serious threat to environmental safety and human health within a basin. It is important to determine the factors controlling PTEs and to assess the likelihood that they will pose a risk to human health in order to support the development of environmental protection and risk management strategies. In this study, a structural equation model and Bayesian method were combined to discuss the distribution and probabilistic health risks of PTEs in surface water in arid area, and the Tarim River Basin was taken as a case study. The results show that the average concentrations of As, Co, Cu, and Ni in the surface water in the Tarim River Basin ranged from 0.04 to 2.92⯵g/L, which do not exceed the international standard values. However, the maximum value of As (19.20⯵g/L) exceeded both the recommended drinking water standards and the Chinese irrigation water standards. Spatially, the high As concentrations were distributed in the upper reaches of the Kashgar River, and the high Co, Cu and Ni concentrations were distributed in reservoirs and lakes on the main stream of the Tarim River. The concentrations of the PTEs in the surface water in the basin were not only affected by random anthropogenic factors such as traffic discharge, agricultural activities and mining industry, but were also directly and indirectly influenced by climatic factors. The results of the probabilistic health risk assessment showed that the 95th percentile the total hazard index for infants exceeded the allowable value of 1, and the total carcinogenic risk of PTEs exposure in four age groups was at the notable level. In this study, we conducted a comprehensive analysis of the controlling factors and health risks associated with PTEs in surface water in the Tarim River Basin, and the findings are expected to provide a scientific basis for regional water environment management and safety control.
RESUMEN
Lufenuron, a benzoylurea chitin synthesis inhibitor, is effective against many insect pests. However, the insecticidal activity of lufenuron has not been completely elucidated, nor has its disturbing effect on chitin synthesis genes. In this study, bioassay results demonstrated an outstanding toxicity of lufenuron against Helicoverpa armigera larvae. The treated larvae died from abortive molting and metamorphosis defects, and severe separation of epidermis and subcutaneous tissues was observed. Treatment of 3rd- and 4th-instar larvae with LC25 lufenuron significantly extended the duration of larval and pupal stage, reduced the rates of pupation and emergence, and adversely affected pupal weight. Besides, lufenuron can severely reduce chitin content in larval integument, and the lufenuron-treated larvae showed reduced trehalose content in their hemolymph. Further analysis using RNA sequencing revealed that five chitin synthesis genes were down-regulated, whereas the expressions of two chitin degradation genes were significantly enhanced. Knockdown of chitin synthase 1 (HaCHS1), uridine diphosphate-N-acetylglucosamine-pyrophosphorylase (HaUAP), phosphoacetyl glucosamine mutase (HaPGM), and glucosamine 6-phosphate N-acetyl-transferase (HaGNPAT) in H. armigera led to significant increase in larval susceptibilities to LC25 lufenuron by 75.48%, 65.00%, 68.42% and 28.00%, respectively. Our findings therefore revealed the adverse effects of sublethal doses of lufenuron on the development of H. armigera larvae, elucidated the perturbations on chitin metabolism, and proved that the combination of RNAi and lufenuron would improve the control effect of this pest.
Asunto(s)
Benzamidas , Quitina , Insecticidas , Larva , Mariposas Nocturnas , Animales , Quitina/biosíntesis , Benzamidas/farmacología , Larva/efectos de los fármacos , Insecticidas/farmacología , Insecticidas/toxicidad , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/crecimiento & desarrollo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Quitina Sintasa/metabolismo , Quitina Sintasa/genética , Helicoverpa armigera , FluorocarburosRESUMEN
Trauma is an important cause of death in young- and middle-aged people. Trauma is comprehensive and includes many surgical specialties, and the surgical techniques of these specialties have long been mature. To reduce the mortality and disability rate of trauma patients, it is necessary to improve trauma management. Trauma has attracted attention in China and trauma treatment and care developed rapidly in recent years. To decrease traumatic mortality and disability rates, our team is committed to building an efficient trauma system in Shaanxi province and has successfully developed a trauma limb salvage map to address the high rates of amputation and disability in patients with limb injuries. This article elaborates on the construction experience of a trauma limb salvage map and its application details in Shaanxi province of China.
RESUMEN
The widespread use of rare earth elements (REEs) across various industries makes them a new type of pollutant. Additionally, REEs are powerful indicators of geochemical processes. As one of the two main rivers in the Aral Sea, identifying the geochemical behavior of REEs in agricultural soils of the Syr Darya River is of great significance for subsequent indicative studies. In this study, the geochemical characteristics, influencing factors, and potential application significance of REEs in agricultural soils from three sampling areas along the Syr Darya River were analyzed using soil geography and elemental geochemical analyses. The results showed that the highest total concentration of REEs in the agricultural soil was in Area I, with a mean value of 142.49 µg/g, followed by Area III with a mean value of 124.56 µg/g, and the lowest concentration was in Area II with a mean value of 122.48 µg/g. The agricultural soils in the three regions were enriched in light rare earth elements (LREEs), with mean L/H values of 10.54, 10.13, and 10.24, respectively. The differentiation between light and heavy rare earth elements (HREEs) was also high. The concentration of REEs in agricultural soil along the Syr Darya River was primarily influenced by minerals such as monazite and zircon, rather than human activities (the pollution index of all REEs was less than 1.5). The relationship between Sm and Gd can differentiate soils impacted by agricultural activities from natural background soils. The results of this study can serve as a basis for indicative studies of REEs in Central Asia.
Asunto(s)
Agricultura , Monitoreo del Ambiente , Metales de Tierras Raras , Ríos , Contaminantes del Suelo , Suelo , Metales de Tierras Raras/análisis , Suelo/química , Ríos/química , Contaminantes del Suelo/análisisRESUMEN
Objective: To explore the effects of budesonide combined with Bifidobacteria and Lactobacilli on the lung function and intestinal microbiota of patients with chronic obstructive pulmonary disease (COPD). Methods: Clinical data of 124 COPD patients admitted to Fengcheng Hospital, Fengxian District, Shanghai from February 2021 to February 2023 were retrospectively analyzed. Patients either received budesonide treatment alone (n=59, control group) or budesonide combined with Bifidobacteria and Lactobacilli (n=65, observation group). Levels of lung function indicators, symptom relief time, gut microbiota levels, and quality of life were compared between the two groups before and after the treatment. Results: After two weeks of treatment, the improvement of lung function in the observation group was better than that in the control group (P<0.05). Compared to budesonide treatment alone, combined budesonide, Bifidobacteria, and Lactobacilli treatment were associated with shorter symptom relief time (P<0.05), and with more significant improvement of intestinal microbiota level (P<0.05) and the quality of life (P<0.05). Conclusions: Budesonide combined with Bifidobacteria and Lactobacilli can effectively alleviate clinical symptoms, regulate intestinal microbiota, improve lung function and the quality of life of COPD patients.
RESUMEN
Objective: To compare the clinical efficacy of microendoscopic discectomy + fibrous ring suture versus microendoscopic discectomy alone in the treatment of lumbar disc herniation (LDH) in young and middle-aged patients. Methods: A retrospective analysis was performed on the clinical data of 66 young and middle-aged patients with single-segment LDH diagnosed in Orthopedic Hospital of Henan Province from October 2019 to October 2022. All patients were divided into two groups: the microendoscopic discectomy + fibrous ring suture group and the microendoscopic discectomy alone group, with 33 cases in each group. The Visual Analogue Scale (VAS) and the Oswestry Disability Index (ODI) scores of the two groups were recorded before surgery and six and twelve months after surgery. Results: Both groups completed the surgery and postoperative follow-up successfully and showed no statistically significant differences in terms of incision length, duration of surgery, intraoperative blood loss and length of hospital stay (all P>0.05). VAS, ODI and JOA scores were significantly improved in both groups at 6 and 12 months after surgery compared with those before surgery (all P<0.05). The two groups were similar in terms of excellent and good rates of postoperative modified MacNab Evaluation Criteria, with no statistically significant differences. No serious complications were observed in the two groups during and after surgery. Conclusion: Both of the two surgical methods are effective in the treatment of LDH in young and middle-aged patients, and microendoscopic discectomy + fibrous ring suture in particular may be preferred because it results in significant improvement in patients' VAS and ODI scores.