Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cell ; 157(3): 531-3, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24766802

RESUMEN

How the Merkel cell-neurite complex transduces and encodes touch remains unclear. Ikeda et al. now implicate Merkel cells as the primary sites of tactile transduction and the ion channel Piezo2 as the chief mechanotransducer. Surprisingly, Merkel cells also mediate allodynia, providing a new cellular target for chronic pain treatment.


Asunto(s)
Canales Iónicos/metabolismo , Células de Merkel/metabolismo , Tacto , Vibrisas/citología , Vibrisas/fisiología , Animales
2.
Cell ; 159(6): 1417-1432, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25467445

RESUMEN

Pain information processing in the spinal cord has been postulated to rely on nociceptive transmission (T) neurons receiving inputs from nociceptors and Aß mechanoreceptors, with Aß inputs gated through feed-forward activation of spinal inhibitory neurons (INs). Here, we used intersectional genetic manipulations to identify these critical components of pain transduction. Marking and ablating six populations of spinal excitatory and inhibitory neurons, coupled with behavioral and electrophysiological analysis, showed that excitatory neurons expressing somatostatin (SOM) include T-type cells, whose ablation causes loss of mechanical pain. Inhibitory neurons marked by the expression of dynorphin (Dyn) represent INs, which are necessary to gate Aß fibers from activating SOM(+) neurons to evoke pain. Therefore, peripheral mechanical nociceptors and Aß mechanoreceptors, together with spinal SOM(+) excitatory and Dyn(+) inhibitory neurons, form a microcircuit that transmits and gates mechanical pain. PAPERCLIP:


Asunto(s)
Neuronas/fisiología , Dolor/metabolismo , Médula Espinal/fisiología , Animales , Dinorfinas/metabolismo , Mecanorreceptores/metabolismo , Ratones , Percepción del Dolor , Somatostatina/metabolismo
3.
Nature ; 598(7882): 641-645, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34646018

RESUMEN

Somatosensory autonomic reflexes allow electroacupuncture stimulation (ES) to modulate body physiology at distant sites1-6 (for example, suppressing severe systemic inflammation6-9). Since the 1970s, an emerging organizational rule about these reflexes has been the presence of body-region specificity1-6. For example, ES at the hindlimb ST36 acupoint but not the abdominal ST25 acupoint can drive the vagal-adrenal anti-inflammatory axis in mice10,11. The neuroanatomical basis of this somatotopic organization is, however, unknown. Here we show that PROKR2Cre-marked sensory neurons, which innervate the deep hindlimb fascia (for example, the periosteum) but not abdominal fascia (for example, the peritoneum), are crucial for driving the vagal-adrenal axis. Low-intensity ES at the ST36 site in mice with ablated PROKR2Cre-marked sensory neurons failed to activate hindbrain vagal efferent neurons or to drive catecholamine release from adrenal glands. As a result, ES no longer suppressed systemic inflammation induced by bacterial endotoxins. By contrast, spinal sympathetic reflexes evoked by high-intensity ES at both ST25 and ST36 sites were unaffected. We also show that optogenetic stimulation of PROKR2Cre-marked nerve terminals through the ST36 site is sufficient to drive the vagal-adrenal axis but not sympathetic reflexes. Furthermore, the distribution patterns of PROKR2Cre nerve fibres can retrospectively predict body regions at which low-intensity ES will or will not effectively produce anti-inflammatory effects. Our studies provide a neuroanatomical basis for the selectivity and specificity of acupoints in driving specific autonomic pathways.


Asunto(s)
Glándulas Suprarrenales/fisiología , Sistema Nervioso Autónomo , Electroacupuntura , Nervio Vago/fisiología , Puntos de Acupuntura , Animales , Miembro Posterior/inervación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reflejo
4.
Nature ; 565(7737): 86-90, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30532001

RESUMEN

Animals and humans display two types of response to noxious stimuli. The first includes reflexive defensive responses that prevent or limit injury; a well-known example of these responses is the quick withdrawal of one's hand upon touching a hot object. When the first-line response fails to prevent tissue damage (for example, a finger is burnt), the resulting pain invokes a second-line coping response-such as licking the injured area to soothe suffering. However, the underlying neural circuits that drive these two strings of behaviour remain poorly understood. Here we show in mice that spinal neurons marked by coexpression of TAC1Cre and LBX1Flpo drive coping responses associated with pain. Ablation of these spinal neurons led to the loss of both persistent licking and conditioned aversion evoked by stimuli (including skin pinching and burn injury) that-in humans-produce sustained pain, without affecting any of the reflexive defensive reactions that we tested. This selective indifference to sustained pain resembles the phenotype seen in humans with lesions of medial thalamic nuclei1-3. Consistently, spinal TAC1-lineage neurons are connected to medial thalamic nuclei by direct projections and via indirect routes through the superior lateral parabrachial nuclei. Furthermore, the anatomical and functional segregation observed at the spinal level also applies to primary sensory neurons. For example, in response to noxious mechanical stimuli, MRGPRD- and TRPV1-positive nociceptors are required to elicit reflexive and coping responses, respectively. Our study therefore reveals a fundamental subdivision within the cutaneous somatosensory system, and challenges the validity of using reflexive defensive responses to measure sustained pain.


Asunto(s)
Adaptación Psicológica/fisiología , Dolor Crónico/fisiopatología , Dolor Crónico/psicología , Vías Nerviosas/fisiología , Animales , Reacción de Prevención , Condicionamiento Clásico , Femenino , Humanos , Masculino , Núcleo Talámico Mediodorsal/citología , Núcleo Talámico Mediodorsal/fisiología , Ratones , Neuronas Aferentes/fisiología , Núcleos Parabraquiales/citología , Núcleos Parabraquiales/fisiología , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canales Catiónicos TRPV/metabolismo , Taquicininas/genética , Taquicininas/metabolismo
6.
J Neurosci ; 37(22): 5549-5561, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28476948

RESUMEN

The somatic sensory neurons in dorsal root ganglia (DRG) detect and transmit a diverse array of sensory modalities, such as pain, itch, cold, warm, touch, and others. Recent genetic and single-cell RNA sequencing studies have revealed a group of DRG neurons that could be particularly relevant for acute and chronic itch information transmission. They express the natriuretic peptide type B (NPPB), as well as a cohort of receptors and neuropeptides that have been implicated in chronic itch manifestation, including the interleukin-31 receptor A (IL-31ra) and its coreceptor oncostatin M receptor (Osmr), the cysteinyl leukotriene receptor 2 (Cysltr2), somatostatin, and neurotensin. However, how these neurons are generated during development remains unclear. Here we report that Runx1 is required to establish all these molecular features of NPPB+ neurons. We further show that while early embryonic Runx1 activity is required for the formation of NPPB+ cells, at later stages Runx1 switches to a genetic repressor and thus its downregulation becomes a prerequisite for the proper development of these pruriceptors. This mode by Runx1 is analogous to that in controlling another group of pruriceptors that specifically express the chloroquine receptor MrgprA3. Finally, behavioral studies using both sexes of mice revealed marked deficits in processing acute and chronic itch in Runx1 conditional knock-out mice, possibly attributable to impaired development of various pruriceptors.SIGNIFICANCE STATEMENT Our studies reveal a generalized control mode by Runx1 for pruriceptor development and consolidate a hierarchical control mechanism for the formation of sensory neurons transmitting distinct modalities. Among dorsal root ganglion neurons that initially express the neurotrophin receptor TrkA, Runx1 is necessary for the proper development of those neurons that innervate tissues derived from the ectoderm such as skin epidermis and hair follicles. These Runx1-dependent cutaneous sensory neurons are then divided into two groups based on persistent or transient Runx1 expression. The Runx1-persistent group is involved in transmitting mechanical and thermal information, whereas the Runx1-transient group transmits pruriceptive information. Such hierarchical control mechanisms may provide a developmental solution for the formation of sensory circuits that transmit distinct modalities.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Ganglios Espinales/metabolismo , Prurito/metabolismo , Células Receptoras Sensoriales/fisiología , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
7.
J Neurosci ; 35(13): 5317-29, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25834056

RESUMEN

Mammalian skin is innervated by diverse, unmyelinated C fibers that are associated with senses of pain, itch, temperature, or touch. A key developmental question is how this neuronal cell diversity is generated during development. We reported previously that the runt domain transcription factor Runx1 is required to coordinate the development of these unmyelinated cutaneous sensory neurons, including VGLUT3(+) low-threshold c-mechanoreceptors (CLTMs), MrgprD(+) polymodal nociceptors, MrgprA3(+) pruriceptors, MrgprB4(+) c-mechanoreceptors, and others. However, how these Runx1-dependent cutaneous sensory neurons are further segregated is poorly illustrated. Here, we find that the Runx1-dependent transcription factor gene Zfp521 is expressed in, and required for establishing molecular features that define, VGLUT3(+) CLTMs. Furthermore, Runx1 and Zfp521 form a classic incoherent feedforward loop (I-FFL) in controlling molecular identities that normally belong to MrgprD(+) neurons, with Runx1 and Zfp51 playing activator and repressor roles, respectively (in genetic terms). A knock-out of Zfp521 allows prospective VGLUT3 lineage neurons to acquire MrgprD(+) neuron identities. Furthermore, Runx1 might form other I-FFLs to regulate the expression of MrgprA3 and MrgprB4, a mechanism preventing these genes from being expressed in Runx1-persistent VGLUT3(+) and MrgprD(+) neurons. The evolvement of these I-FFLs provides an explanation for how modality-selective sensory subtypes are formed during development and may also have intriguing implications for sensory neuron evolution and sensory coding.


Asunto(s)
Diferenciación Celular/fisiología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Mecanorreceptores/fisiología , Nociceptores/fisiología , Factores de Transcripción/fisiología , Sistemas de Transporte de Aminoácidos Acídicos/fisiología , Animales , Recuento de Células , Diferenciación Celular/genética , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
8.
Development ; 139(10): 1863-73, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22510988

RESUMEN

Lengthy developmental programs generate cell diversity within an organotypic framework, enabling the later physiological actions of each organ system. Cell identity, cell diversity and cell function are determined by cell type-specific transcriptional programs; consequently, transcriptional regulatory factors are useful markers of emerging cellular complexity, and their expression patterns provide insights into the regulatory mechanisms at play. We performed a comprehensive genome-scale in situ expression screen of 921 transcriptional regulators in the developing mammalian urogenital system. Focusing on the kidney, analysis of regional-specific expression patterns identified novel markers and cell types associated with development and patterning of the urinary system. Furthermore, promoter analysis of synexpressed genes predicts transcriptional control mechanisms that regulate cell differentiation. The annotated informational resource (www.gudmap.org) will facilitate functional analysis of the mammalian kidney and provides useful information for the generation of novel genetic tools to manipulate emerging cell populations.


Asunto(s)
Sistema Urogenital/metabolismo , Animales , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Riñón/metabolismo , Ratones
9.
J Neurosci ; 33(3): 870-82, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23325226

RESUMEN

VGLUT3-expressing unmyelinated low-threshold mechanoreceptors (C-LTMRs) are proposed to mediate pleasant touch and/or pain, but the molecular programs controlling C-LTMR development are unknown. Here, we performed genetic fate mapping, showing that VGLUT3 lineage sensory neurons are divided into two groups, based on transient or persistent VGLUT3 expression. VGLUT3-transient neurons are large- or medium-diameter myelinated mechanoreceptors that form the Merkel cell-neurite complex. VGLUT3-persistent neurons are small-diameter unmyelinated neurons that are further divided into two subtypes: (1) tyrosine hydroxylase (TH)-positive C-LTMRs that form the longitudinal lanceolate endings around hairs, and (2) TH-negative neurons that form epidermal-free nerve endings. We then found that VGLUT3-persistent neurons express the runt domain transcription factor Runx1. Analyses of mice with a conditional knock-out of Runx1 in VGLUT3 lineage neurons demonstrate that Runx1 is pivotal to the development of VGLUT3-persistent neurons, such as the expression of VGLUT3 and TH and the formation of the longitudinal lanceolate endings. Furthermore, Runx1 is required to establish mechanosensitivity in C-LTMRs, by controlling the expression of the mechanically gated ion channel Piezo2. Surprisingly, both acute and chronic mechanical pain was largely unaffected in these Runx1 mutants. These findings appear to argue against the recently proposed role of VGLUT3 in C-LTMRs in mediating mechanical hypersensitivity induced by nerve injury or inflammation. Thus, our studies provide new insight into the genetic program controlling C-LTMR development and call for a revisit for the physiological functions of C-LTMRs.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Hiperalgesia/metabolismo , Mecanorreceptores/fisiología , Terminaciones Nerviosas/fisiología , Neuralgia/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Conducta Animal/efectos de los fármacos , Capsaicina/farmacología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Hiperalgesia/inducido químicamente , Hiperalgesia/genética , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Ratones Noqueados , Neuralgia/inducido químicamente , Neuralgia/genética , Estimulación Física , Piel/inervación , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
10.
J Neurosci ; 33(37): 14738-48, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24027274

RESUMEN

Spatial and temporal cues govern the genesis of a diverse array of neurons located in the dorsal spinal cord, including dI1-dI6, dIL(A), and dIL(B) subtypes, but their physiological functions are poorly understood. Here we generated a new line of conditional knock-out (CKO) mice, in which the homeobox gene Tlx3 was removed in dI5 and dIL(B) cells. In these CKO mice, development of a subset of excitatory neurons located in laminae I and II was impaired, including itch-related GRPR-expressing neurons, PKCγ-expressing neurons, and neurons expressing three neuropeptide genes: somatostatin, preprotachykinin 1, and the gastrin-releasing peptide. These CKO mice displayed marked deficits in generating nocifensive motor behaviors evoked by a range of pain-related or itch-related stimuli. The mutants also failed to exhibit escape response evoked by dynamic mechanical stimuli but retained the ability to sense innocuous cooling and/or warm. Thus, our studies provide new insight into the ontogeny of spinal neurons processing distinct sensory modalities.


Asunto(s)
Ganglios Espinales/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/clasificación , Neuronas/fisiología , Sensación/genética , Animales , Animales Recién Nacidos , Capsaicina/toxicidad , Recuento de Células , Cloroquina/toxicidad , Embrión de Mamíferos , Péptido Liberador de Gastrina/genética , Péptido Liberador de Gastrina/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Oligopéptidos/toxicidad , Dolor/inducido químicamente , Dolor/genética , Dolor/metabolismo , Estimulación Física/efectos adversos , Proteína Quinasa C/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Prurito/etiología , Prurito/metabolismo , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , Somatostatina/genética , Somatostatina/metabolismo , Taquicininas/genética , Taquicininas/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
11.
J Neurosci ; 32(28): 9706-15, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22787056

RESUMEN

Neurons in the mouse dorsal root ganglia (DRGs) are composed of a variety of sensory modalities, such as pain-related nociceptors, itch-related pruriceptors, and thermoceptors. All these neurons are derived from late-born neurons that are initially marked by the expression of the nerve growth factor receptor TrkA. During perinatal and postnatal development, these TrkA lineage neurons are globally segregated into Ret-expressing and TrkA-expressing subtypes, and start to express a variety of sensory receptors and ion channels. The runt domain transcription factor Runx1 plays a pivotal role in controlling these developmental processes, but it remains unclear how it works. Here we showed that the homeodomain transcription factor Tlx3, expressed broadly in DRG neurons, is required to establish most Runx1-dependent phenotypes, including the segregation of TrkA-expressing versus Ret-expressing neurons and the expression of a dozen of sensory channels and receptors implicated in sensing pain, itch and temperature. Expression of Runx1 and Tlx3 is independent of each other at prenatal stages when they first establish the expression of these channels and receptors. Moreover, overexpression of Runx1 plus Tlx3 was able to induce ectopic expression of sensory channels and receptors. Collectively, these studies suggest that genetically Tlx3 acts in combination with Runx1 to control the development of a cohort of nociceptors, thermoceptors, and pruriceptors in mice.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Ganglios Espinales , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/fisiología , Animales , Animales Recién Nacidos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Recuento de Células , Células Quimiorreceptoras , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Electroporación/métodos , Embrión de Mamíferos , Ganglios Espinales/citología , Ganglios Espinales/embriología , Ganglios Espinales/crecimiento & desarrollo , Proteínas de Homeodominio/genética , Lectinas/metabolismo , Ratones , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.8 , Nociceptores , Técnicas de Cultivo de Órganos , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , ARN Mensajero/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Canales de Sodio/genética , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Termorreceptores , Proteína Wnt1/genética
12.
Dev Dyn ; 241(9): 1432-53, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22711520

RESUMEN

BACKGROUND: Mammalian lung development consists of a series of precisely choreographed events that drive the progression from simple lung buds to the elaborately branched organ that fulfills the vital function of gas exchange. Strict transcriptional control is essential for lung development. Among the large number of transcription factors encoded in the mouse genome, only a small portion of them are known to be expressed and function in the developing lung. Thus a systematic investigation of transcription factors expressed in the lung is warranted. RESULTS: To enrich for genes that may be responsible for regional growth and patterning, we performed a screen using RNA in situ hybridization to identify genes that show restricted expression patterns in the embryonic lung. We focused on the pseudoglandular stage during which the lung undergoes branching morphogenesis, a cardinal event of lung development. Using a genome-scale probe set that represents over 90% of the transcription factors encoded in the mouse genome, we identified 62 transcription factor genes with localized expression in the epithelium, mesenchyme, or both. Many of these genes have not been previously implicated in lung development. CONCLUSIONS: Our findings provide new starting points for the elucidation of the transcriptional circuitry that controls lung development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Pulmón/embriología , Pulmón/metabolismo , Factores de Transcripción/genética , Animales , Embrión de Mamíferos , Perfilación de la Expresión Génica/métodos , Genoma/genética , Ensayos Analíticos de Alto Rendimiento , Hibridación in Situ/métodos , Ratones , Morfogénesis/genética , Mucosa Respiratoria/citología , Mucosa Respiratoria/embriología , Mucosa Respiratoria/metabolismo , Factores de Transcripción/metabolismo
13.
Neuron ; 111(5): 669-681.e5, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36584681

RESUMEN

Visceral pain is among the most prevalent and bothersome forms of chronic pain, but their transmission in the spinal cord is still poorly understood. Here, we conducted focal colorectal distention (fCRD) to drive both visceromotor responses (VMRs) and aversion. We first found that spinal CCK neurons were necessary for noxious fCRD to drive both VMRs and aversion under naive conditions. We next showed that spinal VGLUT3 neurons mediate visceral allodynia, whose ablation caused loss of aversion evoked by low-intensity fCRD in mice with gastrointestinal (GI) inflammation or spinal circuit disinhibition. Importantly, these neurons were dispensable for driving sensitized VMRs under both inflammatory and central disinhibition conditions. Anatomically, a subset of VGLUT3 neurons projected to parabrachial nuclei, whose photoactivation sufficiently generated aversion in mice with GI inflammation, without influencing VMRs. Our studies suggest the presence of different spinal substrates that transmit nociceptive versus affective dimensions of visceral sensory information.


Asunto(s)
Hiperalgesia , Médula Espinal , Proteínas de Transporte Vesicular de Glutamato , Dolor Visceral , Animales , Ratones , Hiperalgesia/genética , Inflamación/complicaciones , Neuronas/fisiología , Médula Espinal/fisiología , Dolor Visceral/etiología , Dolor Visceral/genética , Proteínas de Transporte Vesicular de Glutamato/genética , Proteínas de Transporte Vesicular de Glutamato/metabolismo
14.
Curr Opin Neurobiol ; 76: 102602, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35780689

RESUMEN

Acupuncture has been practiced for more than 2000 years in China and now all over the world. One core idea behind this medical practice is that stimulation at specific body regions (acupoints) can distantly modulate organ physiology, but the underlying scientific basis has been long debated. Here, I summarize evidence supporting that long-distant acupuncture effects operate partly through somato-autonomic reflexes, leading to activation of sympathetic and/or parasympathetic pathways. I then discuss how the patterning of the somatosensory system along the rostro-caudal axis and the cutaneous-deep tissue axis might explain acupoint specificity and selectivity in driving specific autonomic pathways, particularly those modulating gastrointestinal motility and systemic inflammation.


Asunto(s)
Terapia por Acupuntura , Puntos de Acupuntura
15.
Neuron ; 110(5): 749-769, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35016037

RESUMEN

Somatosensory afferents are traditionally classified by soma size, myelination, and their response specificity to external and internal stimuli. Here, we propose the functional subdivision of the nociceptive somatosensory system into two branches. The exteroceptive branch detects external threats and drives reflexive-defensive reactions to prevent or limit injury. The interoceptive branch senses the disruption of body integrity, produces tonic pain with strong aversive emotional components, and drives self-caring responses toward to the injured region to reduce suffering. The central thesis behind this functional subdivision comes from a reflection on the dilemma faced by the pain research field, namely, the use of reflexive-defensive behaviors as surrogate assays for interoceptive tonic pain. The interpretation of these assays is now being challenged by the discovery of distinct but interwoven circuits that drive exteroceptive versus interoceptive types of behaviors, with the conflation of these two components contributing partially to the poor translation of therapies from preclinical studies.


Asunto(s)
Emociones , Dolor , Humanos , Neuronas
16.
Neuron ; 55(3): 353-64, 2007 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-17678850

RESUMEN

In order to deal effectively with danger, it is imperative to know about it. This is what nociceptors do--these primary sensory neurons are specialized to detect intense stimuli and represent, therefore, the first line of defense against any potentially threatening or damaging environmental inputs. By sensing noxious stimuli and contributing to the necessary reactions to avoid them--rapid withdrawal and the experience of an intensely unpleasant or painful sensation, nociceptors are essential for the maintenance of the body's integrity. Although nociceptive pain is clearly an adaptive alarm system, persistent pain is maladaptive, essentially an ongoing false alarm. Here, we highlight the genesis of nociceptors during development and the intrinsic properties of nociceptors that enable them to transduce, conduct, and transmit nociceptive information and also discuss how their phenotypic plasticity contributes to clinical pain.


Asunto(s)
Nociceptores/fisiología , Dolor/etiología , Dolor/fisiopatología , Animales , Diferenciación Celular , Desarrollo Embrionario/fisiología , Humanos , Canales Iónicos/metabolismo , Terminaciones Nerviosas/fisiología , Cresta Neural/citología , Plasticidad Neuronal , Nociceptores/citología , Nociceptores/metabolismo , Péptidos/metabolismo , Fenotipo , Estimulación Física , Terminales Presinápticos/fisiología , Receptores de Superficie Celular/metabolismo , Células Madre/citología
17.
Neuron ; 49(3): 365-77, 2006 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-16446141

RESUMEN

In mammals, the perception of pain is initiated by the transduction of noxious stimuli through specialized ion channels and receptors expressed by nociceptive sensory neurons. The molecular mechanisms responsible for the specification of distinct sensory modality are, however, largely unknown. We show here that Runx1, a Runt domain transcription factor, is expressed in most nociceptors during embryonic development but in adult mice, becomes restricted to nociceptors marked by expression of the neurotrophin receptor Ret. In these neurons, Runx1 regulates the expression of many ion channels and receptors, including TRP class thermal receptors, Na+-gated, ATP-gated, and H+-gated channels, the opioid receptor MOR, and Mrgpr class G protein coupled receptors. Runx1 also controls the lamina-specific innervation pattern of nociceptive afferents in the spinal cord. Moreover, mice lacking Runx1 exhibit specific defects in thermal and neuropathic pain. Thus, Runx1 coordinates the phenotype of a large cohort of nociceptors, a finding with implications for pain therapy.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Neuronas Aferentes/fisiología , Nociceptores/fisiología , Dolor/fisiopatología , Sensación Térmica/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Conducta Animal , Péptido Relacionado con Gen de Calcitonina/metabolismo , Recuento de Células/métodos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/deficiencia , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Ganglios Espinales/citología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Canales Iónicos/clasificación , Canales Iónicos/metabolismo , Lectinas/metabolismo , Ratones , Ratones Noqueados , Proteínas Nucleares/metabolismo , Dolor/genética , Dimensión del Dolor/métodos , Umbral del Dolor/fisiología , Estimulación Física/efectos adversos , Proteína Quinasa C/metabolismo , Receptor trkA/metabolismo , Factores de Tiempo , Ubiquitina-Proteína Ligasas , Proteína Wnt1/genética
18.
J Neurosci ; 29(13): 4096-108, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19339605

RESUMEN

Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, tumor necrosis factor alpha (TNF-alpha) transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-alpha/JNK pathway. MCP-1 upregulation by TNF-alpha was dose dependently inhibited by the JNK inhibitors SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one) and D-JNKI-1. Spinal injection of TNF-alpha produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Furthermore, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch-clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous EPSCs but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes after JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management.


Asunto(s)
Astrocitos/metabolismo , Quimiocina CCL2/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Neuralgia/metabolismo , Neuralgia/patología , Umbral del Dolor/fisiología , Médula Espinal/patología , Análisis de Varianza , Animales , Astrocitos/efectos de los fármacos , Células Cultivadas , Quimiocina CCL2/farmacología , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Ensayo de Inmunoadsorción Enzimática/métodos , Agonistas de Aminoácidos Excitadores/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Indoles/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp/métodos , Tiempo de Reacción/efectos de los fármacos , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Médula Espinal/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Factores de Tiempo , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba/efectos de los fármacos
19.
J Neurosci ; 29(36): 11399-408, 2009 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-19741146

RESUMEN

Forward genetic screens in genetically accessible invertebrate organisms such as Drosophila melanogaster have shed light on transcription factors that specify formation of neurons in the vertebrate CNS. However, invertebrate models have, to date, been uninformative with respect to genes that specify formation of the vertebrate glial lineages. All recent insights into specification of vertebrate glia have come via monitoring the spatial and temporal expression patterns of individual transcription factors during development. In studies described here, we have taken this approach to the genome scale with an in silico screen of the Mahoney pictorial atlas of transcription factor expression in the developing CNS. From the population of 1445 known or probable transcription factors encoded in the mouse genome, we identify 12 novel transcription factors that are expressed in glial lineage progenitor cells. Entry-level screens for biological function establish one of these transcription factors, Klf15, as sufficient for genesis of precocious GFAP-positive astrocytes in spinal cord explants. Another transcription factor, Tcf4, plays an important role in maturation of oligodendrocyte progenitors.


Asunto(s)
Diferenciación Celular/genética , Perfilación de la Expresión Génica , Pruebas Genéticas , Genoma/fisiología , Neuroglía/fisiología , Células Madre/fisiología , Factores de Transcripción/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Pruebas Genéticas/métodos , Ratones , Ratones Noqueados , Neuroglía/citología , Embarazo , Células Madre/citología , Factores de Transcripción/genética
20.
Mol Pain ; 6: 45, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20673362

RESUMEN

BACKGROUND: The cellular and molecular programs that control specific types of pain are poorly understood. We reported previously that the runt domain transcription factor Runx1 is initially expressed in most nociceptors and controls sensory neuron phenotypes necessary for inflammatory and neuropathic pain. RESULTS: Here we show that expression of Runx1-dependent ion channels and receptors is distributed into two nociceptor populations that are distinguished by persistent or transient Runx1 expression. Conditional mutation of Runx1 at perinatal stages leads to preferential impairment of Runx1-persistent nociceptors and a selective defect in inflammatory pain. Conversely, constitutive Runx1 expression in Runx1-transient nociceptors leads to an impairment of Runx1-transient nociceptors and a selective deficit in neuropathic pain. Notably, the subdivision of Runx1-persistent and Runx1-transient nociceptors does not follow the classical nociceptor subdivision into IB4+ nonpeptidergic and IB4- peptidergic populations. CONCLUSION: Altogether, we have uncovered two distinct Runx1-dependent nociceptor differentiation programs that are permissive for inflammatory versus neuropathic pain. These studies lend support to a transcription factor-based distinction of neuronal classes necessary for inflammatory versus neuropathic pain.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Inflamación/patología , Neuralgia/patología , Neurogénesis , Nociceptores/patología , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Inflamación/metabolismo , Ratones , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.8 , Neuralgia/metabolismo , Nociceptores/metabolismo , Canales de Sodio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA