Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(17): 3577-3592.e18, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37499659

RESUMEN

Hybrid sterility restricts the utilization of superior heterosis of indica-japonica inter-subspecific hybrids. In this study, we report the identification of RHS12, a major locus controlling male gamete sterility in indica-japonica hybrid rice. We show that RHS12 consists of two genes (iORF3/DUYAO and iORF4/JIEYAO) that confer preferential transmission of the RHS12-i type male gamete into the progeny, thereby forming a natural gene drive. DUYAO encodes a mitochondrion-targeted protein that interacts with OsCOX11 to trigger cytotoxicity and cell death, whereas JIEYAO encodes a protein that reroutes DUYAO to the autophagosome for degradation via direct physical interaction, thereby detoxifying DUYAO. Evolutionary trajectory analysis reveals that this system likely formed de novo in the AA genome Oryza clade and contributed to reproductive isolation (RI) between different lineages of rice. Our combined results provide mechanistic insights into the genetic basis of RI as well as insights for strategic designs of hybrid rice breeding.


Asunto(s)
Tecnología de Genética Dirigida , Oryza , Hibridación Genética , Oryza/genética , Fitomejoramiento/métodos , Aislamiento Reproductivo , Infertilidad Vegetal
2.
Mol Cell ; 84(8): 1585-1600.e7, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38479385

RESUMEN

Myriad physiological and pathogenic processes are governed by protein levels and modifications. Controlled protein activity perturbation is essential to studying protein function in cells and animals. Based on Trim-Away technology, we screened for truncation variants of E3 ubiquitinase Trim21 with elevated efficiency (ΔTrim21) and developed multiple ΔTrim21-based targeted protein-degradation systems (ΔTrim-TPD) that can be transfected into host cells. Three ΔTrim-TPD variants are developed to enable chemical and light-triggered programmable activation of TPD in cells and animals. Specifically, we used ΔTrim-TPD for (1) red-light-triggered inhibition of HSV-1 virus proliferation by degrading the packaging protein gD, (2) for chemical-triggered control of the activity of Cas9/dCas9 protein for gene editing, and (3) for blue-light-triggered degradation of two tumor-associated proteins for spatiotemporal inhibition of melanoma tumor growth in mice. Our study demonstrates that multiple ΔTrim21-based controllable TPD systems provide powerful tools for basic biology research and highlight their potential biomedical applications.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ratones , Animales , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Proteínas/metabolismo , Proteolisis , Mamíferos/metabolismo
3.
Plant Physiol ; 192(2): 1132-1150, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36815292

RESUMEN

Lesion mimic mutants (LMMs) are valuable genetic resources for unraveling plant defense responses including programmed cell death. Here, we identified a rice (Oryza sativa) LMM, spotted leaf 38 (spl38), and demonstrated that spl38 is essential for the formation of hypersensitive response-like lesions and innate immunity. Map-based cloning revealed that SPL38 encodes MEDIATOR SUBUNIT 16 (OsMED16). The spl38 mutant showed enhanced resistance to rice pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae (Xoo) and exhibited delayed flowering, while OsMED16-overexpressing plants showed increased rice susceptibility to M. oryzae. The OsMED16-edited rice lines were phenotypically similar to the spl38 mutant but were extremely weak, exhibited growth retardation, and eventually died. The C-terminus of OsMED16 showed interaction with the positive immune regulator PATHOGENESIS RELATED 3 (OsPR3), resulting in the competitive repression of its chitinase and chitin-binding activities. Furthermore, the ospr3 osmed16 double mutants did not exhibit the lesion mimic phenotype of the spl38 mutant. Strikingly, OsMED16 exhibited an opposite function in plant defense relative to that of Arabidopsis (Arabidopsis thaliana) AtMED16, most likely because of 2 amino acid substitutions between the monocot and dicot MED16s tested. Collectively, our findings suggest that OsMED16 negatively regulates cell death and immunity in rice, probably via the OsPR3-mediated chitin signaling pathway.


Asunto(s)
Oryza , Xanthomonas , Proteínas de Plantas/metabolismo , Inmunidad Innata , Muerte Celular/genética , Apoptosis , Xanthomonas/fisiología , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad/genética
4.
J Exp Bot ; 73(7): 1949-1962, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35179195

RESUMEN

Weedy rice (Oryza sativa f. spontanea) is a relative of cultivated rice that propagates in paddy fields and has strong drought resistance. In this study, we used 501 rice accessions to reveal the selection mechanism of drought resistance in weedy rice through a combination of selection analysis, genome-wide association studies, gene knockout and overexpression analysis, and Ca2+ and K+ ion flux assays. The results showed that the weedy rice species investigated have gene introgression with cultivated rice, which is consistent with the hypothesis that weedy rice originated from de-domestication of cultivated rice. Regions related to tolerance have particularly diversified during de-domestication and three drought-tolerance genes were identified. Of these, Os01g0800500 was also identified using an assay of the degree of leaf withering under drought, and it was named as PAPH1, encoding a PAP family protein. The drought-resistance capacity of PAPH1-knockout lines was much lower than that of the wild type, while that of overexpression lines was much higher. Concentrations of Ca2+ and K+ were lower in the knockout lines and higher in the overexpression lines compared with those of the wild type, suggesting that PAPH1 plays important roles in coping with drought stress. Our study therefore provides new insights into the genetic mechanisms underlying adaptive tolerance to drought in wild rice and highlights potential new resistance genes for future breeding programs in cultivated rice.


Asunto(s)
Oryza , Sequías , Evolución Molecular , Estudio de Asociación del Genoma Completo , Oryza/genética , Fitomejoramiento , Malezas
5.
Plant Biotechnol J ; 18(1): 83-95, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31131526

RESUMEN

Pyrophosphate-fructose 6-phosphate 1-phosphotransferase (PFP1) reversibly converts fructose 6-phosphate and pyrophosphate to fructose 1, 6-bisphosphate and orthophosphate during glycolysis, and has diverse functions in plants. However, mechanisms underlying the regulation of starch metabolism by PFP1 remain elusive. This study addressed the function of PFP1 in rice floury endosperm and defective grain filling. Compared with the wild type, pfp1-3 exhibited remarkably low grain weight and starch content, significantly increased protein and lipid content, and altered starch physicochemical properties and changes in embryo development. Map-based cloning revealed that pfp1-3 is a novel allele and encodes the regulatory ß-subunit of PFP1 (PFP1ß). Measurement of nicotinamide adenine dinucleotide (NAD+) showed that mutation of PFP1ß markedly decreased its enzyme activity. PFP1ß and three of four putative catalytic α-subunits of PFP1, PFP1α1, PFP1α2, and PFP1α4, interacted with each other to form a heterotetramer. Additionally, PFP1ß, PFP1α1 and PFP1α2 also formed homodimers. Furthermore, transcriptome analysis revealed that mutation of PFP1ß significantly altered expression of many essential enzymes in starch biosynthesis pathways. Concentrations of multiple lipid and glycolytic intermediates and trehalose metabolites were elevated in pfp1-3 endosperm, indicating that PFP1 modulates endosperm metabolism, potentially through reversible adjustments to metabolic fluxes. Taken together, these findings provide new insights into seed endosperm development and starch biosynthesis and will help in the breeding of rice cultivars with higher grain yield and quality.


Asunto(s)
Oryza/enzimología , Fosfotransferasas/fisiología , Proteínas de Plantas/fisiología , Semillas/crecimiento & desarrollo , Almidón/biosíntesis , Endospermo , Regulación de la Expresión Génica de las Plantas
7.
Plant Biotechnol J ; 17(8): 1679-1693, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30771255

RESUMEN

Lesion mimic mutants that exhibit spontaneous hypersensitive response (HR)-like necrotic lesions are ideal experimental systems for elucidating molecular mechanisms involved in plant cell death and defence responses. Here we report identification of a rice lesion mimic mutant, spotted leaf 35 (spl35), and cloning of the causal gene by TAIL-PCR strategy. spl35 exhibited decreased chlorophyll content, higher accumulation of H2 O2 , up-regulated expression of defence-related marker genes, and enhanced resistance to both fungal and bacterial pathogens of rice. The SPL35 gene encodes a novel CUE (coupling of ubiquitin conjugation to ER degradation) domain-containing protein that is predominantly localized in cytosol, ER and unknown punctate compartment(s). SPL35 is constitutively expressed in all organs, and both overexpression and knockdown of SPL35 cause the lesion mimic phenotype. SPL35 directly interacts with the E2 protein OsUBC5a and the coatomer subunit delta proteins Delta-COP1 and Delta-COP2 through the CUE domain, and down-regulation of these interacting proteins also cause development of HR-like lesions resembling those in spl35 and activation of defence responses, indicating that SPL35 may be involved in the ubiquitination and vesicular trafficking pathways. Our findings provide insight into a role of SPL35 in regulating cell death and defence response in plants.


Asunto(s)
Muerte Celular , Resistencia a la Enfermedad/genética , Oryza/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/microbiología , Fenotipo , Enfermedades de las Plantas/microbiología , Hojas de la Planta , Dominios Proteicos
8.
Plant Cell Rep ; 38(3): 321-331, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30603810

RESUMEN

KEY MESSAGE: FLA, the homolog of ubiquitin-specific protease does not have deubiquitination activity, but it is essential for flower and chloroplast development in rice. Ubiquitin-specific proteases (UBPs) are widely distributed and highly conserved proteins and are also members of the most important family of deubiquitination enzymes. Although the functions and phylogenies of UBPs from yeast, mammals and Arabidopsis have been widely reported, the functions and evolutionary relationships of UBPs in rice remain unclear. In this study, we characterized the rice flower and leaf color aberrant mutant (fla), which exhibited a variety of developmental defects, including abnormal floral organs and pollen development, and leaf bleaching. We isolated FLA by positional cloning and found that it encodes a homolog of ubiquitin-specific protease. FLA is a ubiquitously expressed gene with the highest expression in floral organs. Subcellular localization analysis indicated that FLA is a cell membrane protein. Through searches of the rice genome database ( http://rice.plantbiology.msu.edu ), we identified 35 UBP family members in the rice genome. These proteins were grouped into 16 subfamilies based on phylogenetic analysis, and FLA was found to belong to the G8 subfamily. In vitro activity assays revealed that FLA does not have deubiquitination activity. Our data suggest that FLA plays an important role in the development of floral organs and chloroplast in rice, but that this role probably does not involve deubiquitination activity, because FLA does not have an active site and deubiquitination activity.


Asunto(s)
Clorofila/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genoma de Planta/genética , Filogenia , Proteínas de Plantas/genética
9.
Theor Appl Genet ; 129(1): 155-68, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26498440

RESUMEN

KEY MESSAGE: Diachronic analysis showed no significant changes in the level of genetic diversity occurred over the past 27 years' domestication, which indicated genetic diversity was successfully maintained under on-farm conservation. Rice (Oryza sativa L.) is one of the earliest domesticated crop species. Its genetic diversity has been declining as a result of natural and artificial selection. In this study, we performed the first analysis of the levels and patterns of nucleotide variation in rice genomes under on-farm conservation in Yunnan during a 27-year period of domestication. We performed large-scale sequencing of 600 rice accessions with high diversity, which were collected in 1980 and 2007, using ten unlinked nuclear loci. Diachronic analysis showed no significant changes in the level of genetic diversity occurring over the past 27 years' domestication, which indicated genetic diversity was successfully maintained under on-farm conservation. Population structure revealed that the rice landraces could be grouped into two subpopulations, namely the indica and japonica groups. Interestingly, the alternate distribution of indica and japonica rice landraces could be found in each ecological zone. The results of AMOVA showed that on-farm conservation provides opportunities for continued differentiation and variation of landraces. Therefore, dynamic conservation measures such as on-farm conservation (which is a backup, complementary strategy to ex situ conservation) should be encouraged and enhanced, especially in crop genetic diversity centers. The results of this study offered accurate insights into short-term evolutionary processes and provided a scientific basis for on-farm management practices.


Asunto(s)
Conservación de los Recursos Naturales , Variación Genética , Genoma de Planta , Oryza/genética , China , Productos Agrícolas/genética , ADN de Plantas/genética , Genética de Población , Genotipo , Haplotipos , Repeticiones de Microsatélite , Modelos Genéticos , Filogenia , Análisis de Secuencia de ADN
10.
Mol Plant Microbe Interact ; 28(5): 558-68, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25650828

RESUMEN

Rice blast caused by Magnaporthe oryzae poses a major threat to rice production worldwide. The utilization of host resistance (R) genes is considered to be the most effective and economic means to control rice blast. Here, we show that the japonica landrace Yangmaogu (YMG) displays a broader spectrum of resistance to blast isolates than other previously reported broad-spectrum resistant (BSR) cultivars. Genetic analysis suggested that YMG contains at least three major R genes. One gene, Pi64, which exhibits resistance to indica-sourced isolate CH43 and several other isolates, was mapped to a 43-kb interval on chromosome 1 of YMG. Two open reading frames (NBS-1 and NBS-2) encoding nucleotide-binding site and leucine-rich repeat proteins were short-listed as candidate genes for Pi64. Constructs containing each candidate gene were transformed into three susceptible japonica cultivars. Only transformants with NBS-2 conferred resistance to leaf and neck blast, validating the idea that NBS-2 represents the functional Pi64 gene. Pi64 is constitutively expressed at all development stages and in all tissues examined. Pi64 protein is localized in both the cytoplasm and nucleus. Furthermore, introgression of Pi64 into susceptible cultivars via gene transformation and marker-assisted selection conferred high-level and broad-spectrum leaf and neck blast resistance to indica-sourced isolates, demonstrating its potential utility in breeding BSR rice cultivars.


Asunto(s)
Resistencia a la Enfermedad , Magnaporthe/fisiología , Oryza/genética , Enfermedades de las Plantas/inmunología , Proteínas/genética , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Cruzamiento , Mapeo Cromosómico , Genes Reporteros , Proteínas Repetidas Ricas en Leucina , Oryza/inmunología , Oryza/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas/metabolismo , Protoplastos , Alineación de Secuencia , Análisis de Secuencia de ADN
11.
Plant J ; 73(2): 190-200, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26011250

RESUMEN

Nitrogen is a crucial nutrient for plant growth and development. Arginine is considered to be an important amino acid for nitrogen transport and storage, playing a crucial role during plant seedling development. However, little is known about the role of arginine in nitrogen remobilization at the reproductive stage. We isolated a rice mutant nglf-1 with reduced plant height, small panicle and grain size, and low seed-setting rate (10% in nglf-1 compared to 93% in wild-type). Map-based cloning revealed that the mutant phenotype was caused by loss of function of a gene (OsARG) encoding an arginine hydrolysis enzyme, which is consistent with arginine accumulation in the mutant. The phenotype was partially corrected supplying exogenous nitrogen, and fully corrected by expression of a wild-type OsARG transgene. Over-expression of OsARG in rice (cv. Kitaake) increased grain number per plant under nitrogen-limited conditions. OsARG was ubiquitously expressed in various organs, but most strongly in developing panicles. The OsARG protein was localized in the mitochondria, consistent with other arginases. Our results suggest that the arginase encoded by OsARG, a key enzyme in Arg catabolism, plays a critical role during panicle development, especially under conditions of insufficient exogenous nitrogen. OsARG is a potential target for crop improvement.


Asunto(s)
Arginasa/metabolismo , Oryza/enzimología , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Arginasa/genética , Clonación Molecular , Regulación de la Expresión Génica de las Plantas/fisiología , Datos de Secuencia Molecular , Mutación , Nitrógeno/metabolismo , Oryza/genética , Tallos de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Estaciones del Año
12.
Genes (Basel) ; 15(5)2024 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-38790193

RESUMEN

The role of rice genomics in breeding progress is becoming increasingly important. Deeper research into the rice genome will contribute to the identification and utilization of outstanding functional genes, enriching the diversity and genetic basis of breeding materials and meeting the diverse demands for various improvements. Here, we review the significant contributions of rice genomics research to breeding progress over the last 25 years, discussing the profound impact of genomics on rice genome sequencing, functional gene exploration, and novel breeding methods, and we provide valuable insights for future research and breeding practices.


Asunto(s)
Genoma de Planta , Genómica , Oryza , Fitomejoramiento , Oryza/genética , Fitomejoramiento/métodos , Genómica/métodos
13.
Science ; 383(6687): eadk8838, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38452087

RESUMEN

Crop yield potential is constrained by the inherent trade-offs among traits such as between grain size and number. Brassinosteroids (BRs) promote grain size, yet their role in regulating grain number is unclear. By deciphering the clustered-spikelet rice germplasm, we show that activation of the BR catabolic gene BRASSINOSTEROID-DEFICIENT DWARF3 (BRD3) markedly increases grain number. We establish a molecular pathway in which the BR signaling inhibitor GSK3/SHAGGY-LIKE KINASE2 phosphorylates and stabilizes OsMADS1 transcriptional factor, which targets TERMINAL FLOWER1-like gene RICE CENTRORADIALIS2. The tissue-specific activation of BRD3 in the secondary branch meristems enhances panicle branching, minimizing negative effects on grain size, and improves grain yield. Our study showcases the power of tissue-specific hormonal manipulation in dismantling the trade-offs among various traits and thus unleashing crop yield potential in rice.


Asunto(s)
Brasinoesteroides , Grano Comestible , Oryza , Proteínas de Plantas , Brasinoesteroides/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
New Phytol ; 200(4): 1076-88, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23902579

RESUMEN

Brassinosteroids (BRs) are essential regulators of plant architecture. Understanding how BRs control plant height and leaf angle would facilitate development of new plant type varieties by biotechnology. A number of mutants involved in BR biosynthesis have been isolated but many of them lack detailed genetic analysis. Here, we report the isolation and characterization of a severe dwarf mutant, chromosome segment deleted dwarf 1 (csdd1), which was deficient in BR biosynthesis in rice. We isolated the mutant by screening a tissue culture-derived population, cloned the gene by mapping, and confirmed its function by complementary and RNAi experiments, combined with physiological and chemical analysis. We showed that the severe dwarf phenotype was caused by a complete deletion of a cytochrome P450 gene, CYP90D2/D2, which was further confirmed in two independent T-DNA insertion lines in different genetic backgrounds and by RNA interference. Our chemical analysis suggested that CYP90D2/D2 might catalyze C-3 dehydrogenation step in BR biosynthesis. We have demonstrated that the CYP90D2/D2 gene plays a more important role than previously reported. Allelic mutations of CYP90D2/D2 confer varying degrees of dwarfism and leaf angle, thus providing useful information for molecular breeding in grain crop plants.


Asunto(s)
Oryza/anatomía & histología , Oryza/enzimología , Proteínas de Plantas/metabolismo , Alelos , Secuencia de Aminoácidos , Emparejamiento Base , Secuencia de Bases , Brasinoesteroides/farmacología , Cromosomas de las Plantas/genética , Clonación Molecular , Genes de Plantas/genética , Prueba de Complementación Genética , Sitios Genéticos/genética , Datos de Secuencia Molecular , Oryza/genética , Oryza/ultraestructura , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/ultraestructura , Proteínas de Plantas/química , Interferencia de ARN/efectos de los fármacos , Eliminación de Secuencia
15.
Plant Cell Rep ; 32(12): 1855-67, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24043333

RESUMEN

KEY MESSAGE: An insert mutation of YELLOW-GREEN LEAF2 , encoding Heme Oxygenase 1 , results in significant reduction of its transcript levels, and therefore impairs chlorophyll biosynthesis in rice. Heme oxygenase (HO) in higher plants catalyzes the degradation of heme to synthesize phytochrome precursor and its roles conferring the photoperiodic control of flowering in rice have been revealed. However, its involvement in regulating rice chlorophyll (Chl) synthesis is not fully explored. In this study, we isolated a rice mutant named yellow-green leaf 2 (ygl2) from a (60)Co-irradiated population. Normal grown ygl2 seedlings showed yellow-green leaves with reduced contents of Chl and tetrapyrrole intermediates whereas an increase of Chl a/b ratio. Ultrastructural analyses demonstrated grana were poorly stacked in ygl2 mutant, resulting in underdevelopment of chloroplasts. The ygl2 locus was mapped to chromosome 6 and isolated via map-based cloning. Sequence analysis indicated that it encodes the rice HO1 and its identity was verified by transgenic complementation test and RNA interference. A 7-Kb insertion was found in the first exon of YGL2/HO1, resulting in significant reduction of YGL2 expressions in the ygl2 mutant. YGL2 was constitutively expressed in a variety of rice tissues with the highest levels in leaves and regulated by temperature. In addition, we found expression levels of some genes associated with Chl biosynthesis and photosynthesis were concurrently altered in ygl2 mutant. These results provide direct evidence that YGL2 has a vital function in rice Chl biosynthesis.


Asunto(s)
Clorofila/biosíntesis , Técnicas de Silenciamiento del Gen , Mutación/genética , Oryza/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Cromosomas de las Plantas/genética , Clonación Molecular , Secuencia Conservada , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Prueba de Complementación Genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Células del Mesófilo/metabolismo , Células del Mesófilo/ultraestructura , Datos de Secuencia Molecular , Oryza/enzimología , Fotosíntesis/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fracciones Subcelulares/metabolismo , Temperatura , Tilacoides/metabolismo , Tilacoides/ultraestructura
16.
Food Chem ; 399: 133926, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36007446

RESUMEN

Pigmented rice, particularly black rice, has attracted widespread global interest due to its high nutritional value. To obtain a better understanding of differential metabolites between pigmented rice and white rice, we used a widely-targeted metabolomics-based approach to investigate the metabolite profiling of black, red, glutinous, and common white rice. In total, 732 metabolites were identified, of which 281, 305, 241, 267, and 265 differential metabolites were screened by comparing the following group: glutinous/white vs black, glutinous/white vs red, and red vs black. Venn diagram demonstrated that 69 metabolites were shared between pigmented and non-pigmented rice, and 117 between glutinous/white/red vs black. Additionally, metabolic pathways analysis of differential metabolites in glutinous/white/red vs black revealed that the flavonoid biosynthesis, anthocyanin biosynthesis, and flavone and flavonol biosynthesis are differential enrichment metabolic pathways. As such, identifying these different metabolites contribute to a better understanding of the function and nutritional value of various rice strains.


Asunto(s)
Oryza , Redes y Vías Metabólicas , Metabolómica , Oryza/genética , Oryza/metabolismo
17.
Front Plant Sci ; 14: 1065334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36760644

RESUMEN

Salinity is one of the most widespread abiotic stresses affecting rice productivity worldwide. Understanding the genetic basis of salt tolerance is key for breeding salt-tolerant rice varieties. Numerous QTLs have been identified to help dissect rice salt-tolerance genetic mechanisms, yet only rare genes located in significant QTLs have been thoroughly studied or fine-mapped. Here, a combination of linkage mapping and transcriptome profiling analysis was used to identify salt tolerance-related functional candidate genes underlying stable QTLs. A recombinant inbred line (RIL) population derived from a cross between Jileng 1 (salt-sensitive) and Milyang 23 (salt-tolerant) was constructed. Subsequently, a high-density genetic map was constructed by using 2921 recombination bin markers developed from whole genome resequencing. A total of twelve QTLs controlling the standard evaluation score under salt stress were identified by linkage analysis and distributed on chromosomes 2, 3, 4, 6, 8 and 11. Notably, five QTL intervals were detected as environmentally stable QTLs in this study, and their functions were verified by comparative transcriptome analysis. By comparing the transcriptome profiles of the two parents and two bulks, we found 551 salt stress-specific differentially expressed genes. Among them, fifteen DEGs located in stable QTL intervals were considered promising candidate genes for salt tolerance. According to gene annotations, the gene OsRCI2-8(Os06g0184800) was the most promising, as it is known to be associated with salt stress, and its differential expression between the tolerant and sensitive RIL bulks highlights its important role in salt stress response pathways. Our findings provide five stable salt tolerance-related QTLs and one promising candidate gene, which will facilitate breeding for improved salt tolerance in rice varieties and promote the exploration of salt stress tolerance mechanisms in rice.

18.
Adv Sci (Weinh) ; 10(4): e2202858, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36507552

RESUMEN

Pluripotent stem cells (PSCs) hold great promise for cell-based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light-inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease-deficient CRISPR-associated protein 9 for induced PSCs reprogramming. This system enables remote, non-invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSCLIRE ) under light-emitting diode-based illumination. iPSCLIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSCLIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non-invasive control of user-defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non-invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Animales , Humanos , Ratones , Reprogramación Celular/genética , Optogenética , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular
19.
Mol Plant ; 16(2): 415-431, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36578210

RESUMEN

The Dong people are one of China's 55 recognized ethnic minorities, but there has been a long-standing debate about their origins. In this study, we performed whole-genome resequencing of Kam Sweet Rice (KSR), a valuable, rare, and ancient rice landrace unique to the Dong people. Through comparative genomic analyses of KSR and other rice landraces from south of the Yangtze River Basin in China, we provide evidence that the ancestors of the Dong people likely originated from the southeast coast of China at least 1000 years ago. Alien introgression and admixture in KSR demonstrated multiple migration events in the history of the Dong people. Genomic footprints of domestication demonstrated characteristics of KSR that arose from artificial selection and geographical adaptation by the Dong people. The key genes GS3, Hd1, and DPS1 (related to agronomic traits) and LTG1 and MYBS3 (related to cold tolerance) were identified as domestication targets, reflecting crop improvement and changes in the geographical environment of the Dong people during migration. A genome-wide association study revealed a candidate yield-associated gene, Os01g0923300, a specific haplotype in KSR that is important for regulating grain number per panicle. RNA-sequencing and quantitative reverse transcription-PCR results showed that this gene was more highly expressed in KSR than in ancestral populations, indicating that it may have great value in increasing yield potential in other rice accessions. In summary, our work develops a novel approach for studying human civilization and migration patterns and provides valuable genomic datasets and resources for future breeding of high-yield and climate-resilient rice varieties.


Asunto(s)
Domesticación , Migración Humana , Oryza , Humanos , Estudio de Asociación del Genoma Completo , Genómica , Oryza/genética , Fitomejoramiento
20.
Autophagy ; 19(9): 2558-2574, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37249424

RESUMEN

Antimicrobial acroautophagy/autophagy plays a vital role in degrading intracellular pathogens or microbial molecules in host-microbe interactions. However, microbes evolved various mechanisms to hijack or modulate autophagy to escape elimination. Vector-transmitted phloem-limited bacteria, Candidatus Liberibacter (Ca. Liberibacter) species, cause Huanglongbing (HLB), one of the most catastrophic citrus diseases worldwide, yet contributions of autophagy to HLB disease proliferation remain poorly defined. Here, we report the identification of a virulence effector in "Ca. Liberibacter asiaticus" (Las), SDE3, which is highly conserved among the "Ca. Liberibacter". SDE3 expression not only promotes the disease development of HLB and canker in sweet orange (Citrus sinensis) plants but also facilitates Phytophthora and viral infections in Arabidopsis, and Nicotiana benthamiana (N. benthamiana). SDE3 directly associates with citrus cytosolic glyceraldehyde-3-phosphate dehydrogenases (CsGAPCs), which negatively regulates plant immunity. Overexpression of CsGAPCs and SDE3 significantly inhibits autophagy in citrus, Arabidopsis, and N. benthamiana. Intriguingly, SDE3 undermines autophagy-mediated immunity by the specific degradation of CsATG8 family proteins in a CsGAPC1-dependent manner. CsATG8 degradation is largely rescued by treatment with an inhibitor of the late autophagic pathway, E64d. Furthermore, ectopic expression of CsATG8s enhances Phytophthora resistance. Collectively, these results suggest that SDE3-CsGAPC interactions modulate CsATG8-mediated autophagy to enhance Las progression in citrus.Abbreviations: ACP: asian citrus psyllid; ACD2: ACCELERATED CELL DEATH 2; ATG: autophagy related; Ca. Liberibacter: Candidatus Liberibacter; CaMV: cauliflower mosaic virus; CMV: cucumber mosaic virus; Cs: Citrus sinensis; EV: empty vector; GAPC: cytosolic glyceraldehyde-3-phosphate dehydrogenase; HLB: huanglongbing; H2O2: hydrogen peroxide; Las: liberibacter asiaticus; Laf: liberibacter africanus; Lam: liberibacter americanus; Pst: Pseudomonas syringae pv. tomato; PVX: potato virus X; ROS: reactive oxygen species; SDE3: sec-delivered effector 3; TEM: transmission electron microscopy; VIVE : virus-induced virulence effector; WT: wild-type; Xcc: Xanthomonas citri subsp. citri.


Asunto(s)
Arabidopsis , Citrus , Hemípteros , Rhizobiaceae , Animales , Citrus/microbiología , Liberibacter , Peróxido de Hidrógeno , Hemípteros/fisiología , Autofagia , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA