Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

Intervalo de año de publicación
2.
Cell Mol Life Sci ; 79(5): 274, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35503478

RESUMEN

Polyglutamine (PolyQ) diseases include a group of inherited neurodegenerative disorders caused by unstable expansions of CAG trinucleotide repeats in the coding region of specific genes. Such genetic alterations produce abnormal proteins containing an unusually long PolyQ tract that renders them more prone to aggregate and cause toxicity. Although research in the field in the last years has contributed significantly to the knowledge of the biological mechanisms implicated in these diseases, effective treatments are still lacking. In this review, we revisit work performed in models of PolyQ diseases, namely the yeast Saccharomyces cerevisiae, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, and provide a critical overview of the high-throughput unbiased genetic screens that have been performed using these systems to identify novel genetic modifiers of PolyQ diseases. These approaches have revealed a wide variety of cellular processes that modulate the toxicity and aggregation of mutant PolyQ proteins, reflecting the complexity of these disorders and demonstrating how challenging the development of therapeutic strategies can be. In addition to the unbiased large-scale genetic screenings in non-vertebrate models, complementary studies in mammalian systems, closer to humans, have contributed with novel genetic modifiers of PolyQ diseases, revealing neuronal function and inflammation as key disease modulators. A pathway enrichment analysis, using the human orthologues of genetic modifiers of PolyQ diseases clustered modifier genes into major themes translatable to the human disease context, such as protein folding and transport as well as transcription regulation. Innovative genetic strategies of genetic manipulation, together with significant advances in genomics and bioinformatics, are taking modifier genetic studies to more realistic disease contexts. The characterization of PolyQ disease modifier pathways is of extreme relevance to reveal novel therapeutic possibilities to delay disease onset and progression in patients.


Asunto(s)
Drosophila melanogaster , Péptidos , Animales , Caenorhabditis elegans/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Pruebas Genéticas , Humanos , Mamíferos/genética , Proteínas Mutantes/metabolismo , Péptidos/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(14): 8154-8165, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32205441

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by CAG (encoding glutamine) repeat expansion in the Ataxin-3 (ATXN3) gene. We have shown previously that ATXN3-depleted or pathogenic ATXN3-expressing cells abrogate polynucleotide kinase 3'-phosphatase (PNKP) activity. Here, we report that ATXN3 associates with RNA polymerase II (RNAP II) and the classical nonhomologous end-joining (C-NHEJ) proteins, including PNKP, along with nascent RNAs under physiological conditions. Notably, ATXN3 depletion significantly decreased global transcription, repair of transcribed genes, and error-free double-strand break repair of a 3'-phosphate-containing terminally gapped, linearized reporter plasmid. The missing sequence at the terminal break site was restored in the recircularized plasmid in control cells by using the endogenous homologous transcript as a template, indicating ATXN3's role in PNKP-mediated error-free C-NHEJ. Furthermore, brain extracts from SCA3 patients and mice show significantly lower PNKP activity, elevated p53BP1 level, more abundant strand-breaks in the transcribed genes, and degradation of RNAP II relative to controls. A similar RNAP II degradation is also evident in mutant ATXN3-expressing Drosophila larval brains and eyes. Importantly, SCA3 phenotype in Drosophila was completely amenable to PNKP complementation. Hence, salvaging PNKP's activity can be a promising therapeutic strategy for SCA3.


Asunto(s)
Ataxina-3/genética , Reparación del ADN por Unión de Extremidades , Enzimas Reparadoras del ADN/metabolismo , Enfermedad de Machado-Joseph/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , ARN Polimerasa II/metabolismo , Proteínas Represoras/genética , Anciano de 80 o más Años , Animales , Animales Modificados Genéticamente , Ataxina-3/metabolismo , Encéfalo/patología , Línea Celular , Roturas del ADN de Doble Cadena , Modelos Animales de Enfermedad , Drosophila , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Células Madre Pluripotentes Inducidas , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Masculino , Ratones , Persona de Mediana Edad , Mutación , Péptidos/genética , ARN Interferente Pequeño/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(7): 3848-3857, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32024760

RESUMEN

l-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite N-acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, little is known about the exact mode of action of the serotonin metabolite and the possible interplay between the 2 Trp metabolic pathways. Prompted by the discovery that NAS neuroprotective effects in EAE are abrogated in mice lacking IDO1 expression, we investigated the NAS mode of action in neuroinflammation. We found that NAS directly binds IDO1 and acts as a positive allosteric modulator (PAM) of the IDO1 enzyme in vitro and in vivo. As a result, increased Kyn will activate the ligand-activated transcription factor aryl hydrocarbon receptor and, consequently, antiinflammatory and immunoregulatory effects. Because NAS also increased IDO1 activity in peripheral blood mononuclear cells of a significant proportion of MS patients, our data may set the basis for the development of IDO1 PAMs as first-in-class drugs in autoimmune/neuroinflammatory diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental/enzimología , Encefalomielitis Autoinmune Experimental/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Regulación Alostérica , Sitio Alostérico , Animales , Biocatálisis , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina/metabolismo , Leucocitos Mononucleares/metabolismo , Masculino , Ratones Noqueados , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Serotonina/análogos & derivados , Serotonina/química , Serotonina/metabolismo , Triptófano/metabolismo
5.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37445783

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disease caused by an abnormal polyglutamine expansion within the ataxin-3 protein (ATXN3). This leads to neurodegeneration of specific brain and spinal cord regions, resulting in a progressive loss of motor function. Despite neuronal death, non-neuronal cells, including astrocytes, are also involved in SCA3 pathogenesis. Astrogliosis is a common pathological feature in SCA3 patients and animal models of the disease. However, the contribution of astrocytes to SCA3 is not clearly defined. Inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is the predominant IP3R in mediating astrocyte somatic calcium signals, and genetically ablation of IP3R2 has been widely used to study astrocyte function. Here, we aimed to investigate the relevance of IP3R2 in the onset and progression of SCA3. For this, we tested whether IP3R2 depletion and the consecutive suppression of global astrocytic calcium signalling would lead to marked changes in the behavioral phenotype of a SCA3 mouse model, the CMVMJD135 transgenic line. This was achieved by crossing IP3R2 null mice with the CMVMJD135 mouse model and performing a longitudinal behavioral characterization of these mice using well-established motor-related function tests. Our results demonstrate that IP3R2 deletion in astrocytes does not modify SCA3 progression.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedad de Machado-Joseph/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Ratones Transgénicos , Calcio/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , Progresión de la Enfermedad
6.
J Prosthet Dent ; 129(2): 365.e1-365.e8, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36462969

RESUMEN

STATEMENT OF PROBLEM: Stone casts are subject to contamination, but whether disinfectants incorporated into the stone are effective is unclear. PURPOSE: The purpose of this in vitro study was to evaluate the antimicrobial activity and the mechanical and surface properties of self-disinfecting gypsum (SDG) and gypsum mixed with 2% chlorhexidine (GCHX). MATERIAL AND METHODS: Antimicrobial action was evaluated using the diffusion-disk technique on Streptococcus aureus and Candida albicans 1 hour and 24 hours after pouring the gypsum. The groups were SDG, GCHX, a positive control (PC) of gypsum mixed with distilled water, and a negative control (NC) of filter paper disk soaked with 2% chlorhexidine; n=8. Inhibition halos were measured using the ImageJ software program and statistically analyzed using the repeated measures mixed ANOVA with time×group interaction. Compressive strength (CS) in MPa and surface roughness (SR) in µm (parameters: Ra - roughness average; and Sa - 3-dimensional (3D) arithmetic mean of the surface profile) tests were performed to characterize the specimens (evaluated groups: SDG, GCHX, and PC; n=10). CS data were analyzed by a 2-way ANOVA with time×group interaction, and SR data by a 1-way ANOVA (α=.05). RESULTS: For S aureus, there were differences between GCHX and SDG at 1 hour and 24 hours (P<.05), but no significant differences were found for C albicans (P>.05). GCHX was better than PC, except for C albicans, and showed a reduction in CS when compared with PC and SDG (P<.05) at all time intervals. The SR of GCHX increased (Ra:1.76, Sa:2.08) when compared with PC (Ra:0.89, Sa:1.12) and SDG (Ra:1.03, Sa:1.35) (Ra: P<.004 and Sa: P<.001). CONCLUSIONS: The antimicrobial activity of GCHX against S aureus was better than that of SDG, but neither had an effect against C albicans. As for CS and SR, GCHX presented a decrease in properties when compared with PC and SDG but was within the American Dental Association #25 specification values.


Asunto(s)
Sulfato de Calcio , Desinfectantes , Clorhexidina/farmacología , Clorhexidina/uso terapéutico , Propiedades de Superficie , Ensayo de Materiales
7.
Neurobiol Dis ; 162: 105578, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34871736

RESUMEN

Machado-Joseph disease (MJD/SCA3) is a neurodegenerative polyglutamine disorder exhibiting a wide spectrum of phenotypes. The abnormal size of the (CAG)n at ATXN3 explains ~55% of the age at onset variance, suggesting the involvement of other factors, namely genetic modifiers, whose identification remains limited. Our aim was to find novel genetic modifiers, analyse their epistatic effects and identify disease-modifying pathways contributing to MJD variable expressivity. We performed whole-exome sequencing in a discovery sample of four age at onset concordant and four discordant first-degree relative pairs of Azorean patients, to identify candidate variants which genotypes differed for each discordant pair but were shared in each concordant pair. Variants identified by this approach were then tested in an independent multi-origin cohort of 282 MJD patients. Whole-exome sequencing identified 233 candidate variants, from which 82 variants in 53 genes were prioritized for downstream analysis. Eighteen disease-modifying pathways were identified; two of the most enriched pathways were relevant for the nervous system, namely the neuregulin signaling and the agrin interactions at neuromuscular junction. Variants at PARD3, NFKB1, CHD5, ACTG1, CFAP57, DLGAP2, ITGB1, DIDO1 and CERS4 modulate age at onset in MJD, with those identified in CFAP57, ACTG1 and DIDO1 showing consistent effects across cohorts of different geographical origins. Network analyses of the nine novel MJD modifiers highlighted several important molecular interactions, including genes/proteins previously related with MJD pathogenesis, namely between ACTG1/APOE and VCP/ITGB1. We describe novel pathways, modifiers, and their interaction partners, providing a broad molecular portrait of age at onset modulation to be further exploited as new disease-modifying targets for MJD and related diseases.


Asunto(s)
Enfermedad de Machado-Joseph , Edad de Inicio , Alelos , ADN Helicasas/genética , Genotipo , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Proteínas del Tejido Nervioso/genética , Secuenciación del Exoma
8.
Neurobiol Dis ; 152: 105278, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33516872

RESUMEN

Machado-Joseph disease (MJD) or Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder that affects movement coordination leading to a premature death. Despite several efforts, no disease-modifying treatment is yet available for this disease. Previous studies pinpointed the modulation of serotonergic signaling, through pharmacological inhibition of the serotonin transporter SERT, as a promising therapeutic approach for MJD/SCA3. Here, we describe the 5-HT1A receptor as a novel therapeutic target in MJD, using a C. elegans model of ATXN3 proteotoxicity. Chronic and acute administration of befiradol (also known as NLX-112), a highly specific 5-HT1A agonist, rescued motor function and suppressed mutant ATXN3 aggregation. This action required the 5-HT1A receptor orthologue in the nematode, SER-4. Tandospirone, a clinically tested 5-HT1A receptor partial agonist, showed a limited impact on animals' motor dysfunction on acute administration and a broader receptor activation profile upon chronic treatment, its effect depending on 5-HT1A but also on the 5-HT6/SER-5 and 5-HT7/SER-7 receptors. Our results support high potency and specificity of befiradol for activation of 5-HT1A/SER-4 receptors and highlight the contribution of the auto- and hetero-receptor function to the therapeutic outcome in this MJD model. Our study deepens the understanding of serotonergic signaling modulation in the suppression of ATXN3 proteotoxicity and suggests that a potent and selective 5-HT1A receptor agonist such as befiradol could constitute a promising therapeutic agent for MJD.


Asunto(s)
Enfermedad de Machado-Joseph , Piperidinas/farmacología , Piridinas/farmacología , Receptor de Serotonina 5-HT1A/metabolismo , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Animales , Ataxina-3/efectos de los fármacos , Ataxina-3/genética , Ataxina-3/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Mutación , Agregación Patológica de Proteínas
9.
Eur J Neurosci ; 54(5): 5673-5686, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32166822

RESUMEN

Astrocytes are key players in the regulation of brain development and function. They sense and respond to the surrounding activity by elevating their intracellular calcium (Ca2+ ) levels. These astrocytic Ca2+ elevations emerge from different sources and display complex spatio-temporal properties. Ca2+ elevations are spatially distributed in global (soma and main processes) and/or focal regions (microdomains). The inositol 1,4,5-trisphosphate receptor type 2 knockout (IP3 R2 KO) mouse model lacks global Ca2+ elevations in astrocytes, and it has been used by different laboratories. However, the constitutive deletion of IP3 R2 during development may trigger compensating phenotypes, which could bias the results of experiments using developing or adult mice. To address this issue, we performed a detailed neurodevelopmental evaluation of male and female IP3 R2 KO mice, during the first 21 days of life, as well as an evaluation of motor function, strength and neurological reflexes in adult mice. Our results show that male and female IP3 R2 KO mice display a normal acquisition of developmental milestones, as compared with wild-type (WT) mice. We also show that IP3 R2 KO mice display normal motor coordination, strength and neurological reflexes in adulthood. To exclude a potential compensatory overexpression of other IP3 Rs, we quantified the relative mRNA levels of all 3 subtypes, in brain tissue. We found that, along with the complete deletion of Itpr2, there is no compensatory expression of Itpr1 or Itrp3. Overall, our results show that the IP3 R2 KO mouse is a reliable model to study the functional impact of global IP3 R2-dependent astrocytic Ca2+ elevations.


Asunto(s)
Astrocitos , Señalización del Calcio , Animales , Astrocitos/metabolismo , Calcio/metabolismo , Femenino , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Ratones , Ratones Noqueados
10.
Mov Disord ; 35(10): 1774-1786, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32621646

RESUMEN

BACKGROUND: No treatment exists for the most common dominantly inherited ataxia Machado-Joseph disease, or spinocerebellar ataxia type 3 (SCA3). Successful evaluation of candidate therapeutics will be facilitated by validated noninvasive biomarkers of disease pathology recapitulated by animal models. OBJECTIVE: We sought to identify shared in vivo neurochemical signatures in two mouse models of SCA3 that reflect the human disease pathology. METHODS: Cerebellar neurochemical concentrations in homozygous YACMJD84.2 (Q84/Q84) and hemizygous CMVMJD135 (Q135) mice were measured by in vivo magnetic resonance spectroscopy at 9.4 tesla. To validate the neurochemical biomarkers, levels of neurofilament medium (NFL; indicator of neuroaxonal integrity) and myelin basic protein (MBP; indicator of myelination) were measured in cerebellar lysates from a subset of mice and patients with SCA3. Finally, NFL and MBP levels were measured in the cerebellar extracts of Q84/Q84 mice upon silencing of the mutant ATXN3 gene. RESULTS: Both Q84/Q84 and Q135 mice displayed lower N-acetylaspartate than wild-type littermates, indicating neuroaxonal loss/dysfunction, and lower myo-inositol and total choline, indicating disturbances in phospholipid membrane metabolism and demyelination. Cerebellar NFL and MBP levels were accordingly lower in both models as well as in the cerebellar cortex of patients with SCA3 than controls. Importantly, N-acetylaspartate and total choline correlated with NFL and MPB, respectively, in Q135 mice. Long-term sustained RNA interference (RNAi)-mediated reduction of ATXN3 levels increased NFL and MBP in Q84/Q84 cerebella. CONCLUSIONS: N-acetylaspartate, myo-inositol, and total choline levels in the cerebellum are candidate biomarkers of neuroaxonal and oligodendrocyte pathology in SCA3, aspects of pathology that are reversible by RNAi therapy. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Machado-Joseph , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Humanos , Enfermedad de Machado-Joseph/genética , Espectroscopía de Resonancia Magnética , Ratones
11.
Bioorg Chem ; 100: 103942, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32450388

RESUMEN

A selection of new chromeno[2,3-b]pyridines was prepared from chromenylacrylonitriles and N-substituted piperazines, using a novel and efficient synthetic procedure. The compounds were tested for their anticancer activity using breast cancer cell lines MCF-7, Hs578t and MDA-MB-231 and the non-neoplastic cell line MCF-10A for toxicity evaluation. In general, compounds showed higher activity towards the luminal breast cancer subtype (MCF-7), competitive with the reference compound Doxorubicin. The in vivo toxicity assay using C. elegans demonstrated a safe profile for the most active compounds. Chromene 3f revealed a promising drug profile, inhibiting cell growth and proliferation, inducing cell cycle arrest in G2/M phase, apoptosis and microtubule destabilization. The new compounds presented exciting bioactive features and may be used as lead compounds in cancer related drug discovery.


Asunto(s)
Antineoplásicos/química , Benzopiranos/química , Pirimidinas/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzopiranos/síntesis química , Benzopiranos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Pirimidinas/síntesis química , Pirimidinas/farmacología , Relación Estructura-Actividad
12.
Mol Cell Neurosci ; 96: 1-9, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30771505

RESUMEN

Parkinson's disease (PD) is a progressive neurological disorder, mainly characterized by the progressive loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc) and by the presence of intracellular inclusions, known as Lewy bodies. Despite SNpc being considered the primary affected region in PD, the neuropathological features are confined solely to the nigro-striatal axis. With disease progression other brain regions are also affected, namely the cerebral cortex, although the spreading of the neurologic damage to this region is still not completely unraveled. Tauroursodeoxycholic acid (TUDCA) is an endogenous bile acid that has been shown to have antioxidant properties and to exhibit a neuroprotective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice model of PD. Moreover, TUDCA anti-inflammatory properties have been reported in glial cells, making it a prominent therapeutic agent in PD. Here, we used C57BL/6 mice injected with MPTP in a sub-acute paradigm aiming to investigate if the neurotoxic effects of MPTP could be extended to the cerebral cortex. In parallel, we evaluated the anti-oxidant, neuroprotective and anti-inflammatory effects of TUDCA. The anti-inflammatory mechanisms elicited by TUDCA were further dissected in microglia cells. Our results show that MPTP leads to a decrease of ATP and activated AMP-activated protein kinase levels in mice cortex, and to a transient increase in the expression of antioxidant downstream targets of nuclear factor erythroid 2 related factor 2 (Nrf-2), and parkin. Notably, MPTP increases pro-inflammatory markers, while down-regulating the expression of the anti-inflammatory protein Annexin-A1 (ANXA1). Importantly, we show that TUDCA treatment prevents the deleterious effects of MPTP, sustains increased levels of antioxidant enzymes and parkin, and most of all negatively modulates neuroinflammation and up-regulates ANXA1 expression. Additionally, results from cellular models using microglia corroborate TUDCA modulation of ANXA1 synthesis, linking inhibition of neuroinflammation and neuroprotection by TUDCA.


Asunto(s)
Antiinflamatorios/farmacología , Corteza Cerebral/efectos de los fármacos , Intoxicación por MPTP/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Ácido Tauroquenodesoxicólico/farmacología , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenosina Trifosfato/metabolismo , Animales , Anexina A1/genética , Anexina A1/metabolismo , Antiinflamatorios/uso terapéutico , Línea Celular , Corteza Cerebral/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Proteínas Quinasas/metabolismo , Ácido Tauroquenodesoxicólico/uso terapéutico , Ubiquitina-Proteína Ligasas/metabolismo
13.
Neurogenetics ; 19(1): 27-40, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29260337

RESUMEN

Copy number variations (CNVs) at the 7q33 cytoband are very rarely described in the literature, and almost all of the cases comprise large deletions affecting more than just the q33 segment. We report seven patients (two families with two siblings and their affected mother and one unrelated patient) with neurodevelopmental delay associated with CNVs in 7q33 alone. All the patients presented mild to moderate intellectual disability (ID), dysmorphic features, and a behavioral phenotype characterized by aggressiveness and disinhibition. One family presents a small duplication in cis affecting CALD1 and AGBL3 genes, while the other four patients carry two larger deletions encompassing EXOC4, CALD1, AGBL3, and CNOT4. This work helps to refine the phenotype and narrow the minimal critical region involved in 7q33 CNVs. Comparison with similar cases and functional studies should help us clarify the relevance of the deleted genes for ID and behavioral alterations.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 7/genética , Variaciones en el Número de Copia de ADN , Discapacidad Intelectual/genética , Adulto , Niño , Femenino , Humanos , Masculino , Fenotipo , Hermanos , Adulto Joven
14.
Mov Disord ; 33(5): 815-826, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29570846

RESUMEN

BACKGROUND AND OBJECTIVE: Mitochondrial dysfunction has been implicated in several neurodegenerative diseases. Creatine administration increases concentration of the energy buffer phosphocreatine, exerting protective effects in the brain. We evaluate whether a creatine-enriched diet would be beneficial for a mouse model of spinocerebellar ataxia type 3, a genetically defined neurodegenerative disease for which no treatment is available. METHODS: We performed 2 independent preclinical trials using the CMVMJD135 mouse model (treating 2 groups of animals with different disease severity) and wild-type mice, to which 2% creatine was provided for 19 (preclinical trial 1) or 29 (preclinical trial 2) weeks, starting at a presymptomatic age. Motor behavior was evaluated at several time points from 5 to 34 weeks of age, and neuropathological studies were performed at the end of each trial. RESULTS: Creatine supplementation led to an overall improvement in the motor phenotype of CMVMJD135 mice in both trials, rescuing motor balance and coordination and also restored brain weight, mitigated astrogliosis, and preserved Calbindin-positive cells in the cerebellum. Moreover, a reduction of mutant ataxin-3 aggregates occurred despite maintained steady-state levels of the protein and the absence of autophagy activation. Creatine treatment also restored the expression of the mitochondrial mass marker Porin and reduced the expression of antioxidant enzymes Heme oxygenase 1 (HO1) and NAD(P)H Quinone Dehydrogenase 1 (NQO1), suggesting a beneficial effect at the level of mitochondria and oxidative stress. CONCLUSIONS: Creatine slows disease progression and improves motor dysfunction as well as ameliorates neuropathology of the CMVMJD135 animals, supporting this as a useful strategy to slow the progression of spinocerebellar ataxia type 3. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Creatina/administración & dosificación , Dieta/métodos , Enfermedad de Machado-Joseph/dietoterapia , Enfermedad de Machado-Joseph/genética , Fármacos Neuroprotectores/administración & dosificación , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Calbindinas/genética , Calbindinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Estudios de Seguimiento , Trastornos Neurológicos de la Marcha/dietoterapia , Trastornos Neurológicos de la Marcha/etiología , Gliosis/dietoterapia , Gliosis/genética , Enfermedad de Machado-Joseph/complicaciones , Enfermedad de Machado-Joseph/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/genética , ARN Mensajero/metabolismo
15.
Adv Exp Med Biol ; 1049: 369-394, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29427114

RESUMEN

Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia type 3 (SCA3), is the most common autosomal dominant ataxia worldwide. MJD integrates a large group of disorders known as polyglutamine diseases (polyQ). To date, no effective treatment exists for MJD and other polyQ diseases. Nevertheless, researchers are making efforts to find treatment possibilities that modify the disease course or alleviate disease symptoms. Since neuroimaging studies in mutation carrying individuals suggest that in nervous system dysfunction begins many years before the onset of any detectable symptoms, the development of therapeutic interventions becomes of great importance, not only to slow progression of manifest disease but also to delay, or ideally prevent, its onset. Potential therapeutic targets for MJD and polyQ diseases can be divided into (i) those that are aimed at the polyQ proteins themselves, namely gene silencing, attempts to enhance mutant protein degradation or inhibition/prevention of aggregation; and (ii) those that intercept the toxic downstream effects of the polyQ proteins, such as mitochondrial dysfunction and oxidative stress, transcriptional abnormalities, UPS impairment, excitotoxicity, or activation of cell death. The existence of relevant animal models and the recent contributions towards the identification of putative molecular mechanisms underlying MJD are impacting on the development of new drugs. To date only a few preclinical trials were conducted, nevertheless some had very promising results and some candidate drugs are close to being tested in humans. Clinical trials for MJD are also very few to date and their results not very promising, mostly due to trial design constraints. Here, we provide an overview of the pharmacological therapeutic strategies for MJD studied in animal models and patients, and of their possible translation into the clinical practice.


Asunto(s)
Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedades Mitocondriales/tratamiento farmacológico , Humanos , Enfermedad de Machado-Joseph/diagnóstico por imagen , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedades Mitocondriales/diagnóstico por imagen , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mutación , Neuroimagen , Estrés Oxidativo , Péptidos/genética , Péptidos/metabolismo , Proteolisis
16.
PLoS Genet ; 11(1): e1004834, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25590633

RESUMEN

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-δ pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible approach to treatment.


Asunto(s)
Daño del ADN/genética , Enzimas Reparadoras del ADN/genética , Enfermedad de Machado-Joseph/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Represoras/genética , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/genética , Ataxina-3 , Reparación del ADN/genética , Enzimas Reparadoras del ADN/biosíntesis , Humanos , Enfermedad de Machado-Joseph/patología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Agregado de Proteínas/genética , Proteína Quinasa C-delta/genética , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Expansión de Repetición de Trinucleótido/genética
17.
PLoS Genet ; 11(1): e1004749, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25633985

RESUMEN

DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3'-P and 5'-OH, are processed by mammalian polynucleotide kinase 3'-phosphatase (PNKP), a bifunctional enzyme with 3'-phosphatase and 5'-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14-41 to 55-82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP's 3' phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3'-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients' brain. Finally, long amplicon quantitative PCR analysis of human MJD patients' brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Enfermedad de Machado-Joseph/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Represoras/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Ataxina-3 , Línea Celular , Daño del ADN/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Humanos , Enfermedad de Machado-Joseph/enzimología , Enfermedad de Machado-Joseph/fisiopatología , Mamíferos , Ratones , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Estrés Oxidativo/genética , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Represoras/metabolismo
18.
Med Res Rev ; 37(4): 860-906, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27870126

RESUMEN

Polyglutamine (PolyQ) diseases are a group of neurodegenerative disorders caused by the expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the coding region of specific genes. This leads to the production of pathogenic proteins containing critically expanded tracts of glutamines. Although polyQ diseases are individually rare, the fact that these nine diseases are irreversibly progressive over 10 to 30 years, severely impairing and ultimately fatal, usually implicating the full-time patient support by a caregiver for long time periods, makes their economic and social impact quite significant. This has led several researchers worldwide to investigate the pathogenic mechanism(s) and therapeutic strategies for polyQ diseases. Although research in the field has grown notably in the last decades, we are still far from having an effective treatment to offer patients, and the decision of which compounds should be translated to the clinics may be very challenging. In this review, we provide a comprehensive and critical overview of the most recent drug discovery efforts in the field of polyQ diseases, including the most relevant findings emerging from two different types of approaches-hypothesis-based candidate molecule testing and hypothesis-free unbiased drug screenings. We hereby summarize and reflect on the preclinical studies as well as all the clinical trials performed to date, aiming to provide a useful framework for increasingly successful future drug discovery and development efforts.


Asunto(s)
Enfermedades Neurodegenerativas/terapia , Animales , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Péptidos/antagonistas & inhibidores , Péptidos/metabolismo
19.
Hum Mol Genet ; 24(1): 100-17, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25143392

RESUMEN

The physiological function of Ataxin-3 (ATXN3), a deubiquitylase (DUB) involved in Machado-Joseph Disease (MJD), remains elusive. In this study, we demonstrate that ATXN3 is required for neuronal differentiation and for normal cell morphology, cytoskeletal organization, proliferation and survival of SH-SY5Y and PC12 cells. This cellular phenotype is associated with increased proteasomal degradation of α5 integrin subunit (ITGA5) and reduced activation of integrin signalling and is rescued by ITGA5 overexpression. Interestingly, silencing of ATXN3, overexpression of mutant versions of ATXN3 lacking catalytic activity or bearing an expanded polyglutamine (polyQ) tract led to partially overlapping phenotypes. In vivo analysis showed that both Atxn3 knockout and MJD transgenic mice had decreased levels of ITGA5 in the brain. Furthermore, abnormal morphology and reduced branching were observed both in cultured neurons expressing shRNA for ATXN3 and in those obtained from MJD mice. Our results show that ATXN3 rescues ITGA5 from proteasomal degradation in neurons and that polyQ expansion causes a partial loss of this cellular function, resulting in reduced integrin signalling and neuronal cytoskeleton modifications, which may be contributing to neurodegeneration.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Ataxina-3 , Diferenciación Celular , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Integrina alfa5/metabolismo , Ratones , Células PC12 , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas , Ratas Wistar
20.
Am J Med Genet A ; 173(9): 2478-2484, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28691782

RESUMEN

Genetic alterations of ARID1B have been recently recognized as one of the most common mendelian causes of intellectual disability and are associated with both syndromic and non-syndromic phenotypes. The ARID1B protein, a subunit of the chromatin remodeling complex SWI/SNF-A, is involved in the regulation of transcription and multiple downstream cellular processes. We report here the clinical, genetic, and proteomic phenotypes of an individual with a unique apparent de novo mutation of ARID1B due to an intragenic duplication. His neurodevelopmental phenotype includes a severe speech/language disorder with full scale IQ scores 78-98 and scattered academic skill levels, expanding the phenotypic spectrum of ARID1B mutations. Haploinsufficiency of ARID1B was determined both by RNA sequencing and quantitative RT-PCR. Fluorescence in situ hybridization analysis supported an intragenic localization of the ARID1B copy number gain. Principal component analysis revealed marked differentiation of the subject's lymphoblast proteome from that of controls. Of 3426 proteins quantified, 1014 were significantly up- or down-regulated compared to controls (q < 0.01). Pathway analysis revealed highly significant enrichment for canonical pathways of EIF2 and EIF4 signaling, protein ubiquitination, tRNA charging and chromosomal replication, among others. Network analyses revealed down-regulation of: (1) intracellular components involved in organization of membranes, organelles, and vesicles; (2) aspects of cell cycle control, signal transduction, and nuclear protein export; (3) ubiquitination and proteosomal function; and (4) aspects of mRNA synthesis/splicing. Further studies are needed to determine the detailed molecular and cellular mechanisms by which constitutional haploinsufficiency of ARID1B causes syndromic and non-syndromic developmental disabilities.


Asunto(s)
Proteínas de Unión al ADN/genética , Discapacidades del Desarrollo/genética , Deformidades Congénitas de la Mano/genética , Discapacidad Intelectual/genética , Factores de Transcripción/genética , Anomalías Múltiples , Adolescente , Discapacidades del Desarrollo/fisiopatología , Cara/fisiopatología , Duplicación de Gen/genética , Deformidades Congénitas de la Mano/fisiopatología , Haploinsuficiencia/genética , Humanos , Hibridación Fluorescente in Situ , Discapacidad Intelectual/fisiopatología , Masculino , Mutación , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA