Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 623(7987): 633-642, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938770

RESUMEN

Trimethylation of histone H3 lysine 9 (H3K9me3) is crucial for the regulation of gene repression and heterochromatin formation, cell-fate determination and organismal development1. H3K9me3 also provides an essential mechanism for silencing transposable elements1-4. However, previous studies have shown that canonical H3K9me3 readers (for example, HP1 (refs. 5-9) and MPP8 (refs. 10-12)) have limited roles in silencing endogenous retroviruses (ERVs), one of the main transposable element classes in the mammalian genome13. Here we report that trinucleotide-repeat-containing 18 (TNRC18), a poorly understood chromatin regulator, recognizes H3K9me3 to mediate the silencing of ERV class I (ERV1) elements such as LTR12 (ref. 14). Biochemical, biophysical and structural studies identified the carboxy-terminal bromo-adjacent homology (BAH) domain of TNRC18 (TNRC18(BAH)) as an H3K9me3-specific reader. Moreover, the amino-terminal segment of TNRC18 is a platform for the direct recruitment of co-repressors such as HDAC-Sin3-NCoR complexes, thus enforcing optimal repression of the H3K9me3-demarcated ERVs. Point mutagenesis that disrupts the TNRC18(BAH)-mediated H3K9me3 engagement caused neonatal death in mice and, in multiple mammalian cell models, led to derepressed expression of ERVs, which affected the landscape of cis-regulatory elements and, therefore, gene-expression programmes. Collectively, we describe a new H3K9me3-sensing and regulatory pathway that operates to epigenetically silence evolutionarily young ERVs and exert substantial effects on host genome integrity, transcriptomic regulation, immunity and development.


Asunto(s)
Retrovirus Endógenos , Silenciador del Gen , Histonas , Péptidos y Proteínas de Señalización Intracelular , Lisina , Retroelementos , Animales , Humanos , Ratones , Cromatina/genética , Cromatina/metabolismo , Proteínas Co-Represoras/metabolismo , Retrovirus Endógenos/genética , Epigénesis Genética , Perfilación de la Expresión Génica , Genoma/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisina/metabolismo , Metilación , Dominios Proteicos , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Animales Recién Nacidos , Línea Celular
2.
Nature ; 595(7868): 591-595, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34163069

RESUMEN

The development of cancer is intimately associated with genetic abnormalities that target proteins with intrinsically disordered regions (IDRs). In human haematological malignancies, recurrent chromosomal translocation of nucleoporin (NUP98 or NUP214) generates an aberrant chimera that invariably retains the nucleoporin IDR-tandemly dispersed repeats of phenylalanine and glycine residues1,2. However, how unstructured IDRs contribute to oncogenesis remains unclear. Here we show that IDRs contained within NUP98-HOXA9, a homeodomain-containing transcription factor chimera recurrently detected in leukaemias1,2, are essential for establishing liquid-liquid phase separation (LLPS) puncta of chimera and for inducing leukaemic transformation. Notably, LLPS of NUP98-HOXA9 not only promotes chromatin occupancy of chimera transcription factors, but also is required for the formation of a broad 'super-enhancer'-like binding pattern typically seen at leukaemogenic genes, which potentiates transcriptional activation. An artificial HOX chimera, created by replacing the phenylalanine and glycine repeats of NUP98 with an unrelated LLPS-forming IDR of the FUS protein3,4, had similar enhancing effects on the genome-wide binding and target gene activation of the chimera. Deeply sequenced Hi-C revealed that phase-separated NUP98-HOXA9 induces CTCF-independent chromatin loops that are enriched at proto-oncogenes. Together, this report describes a proof-of-principle example in which cancer acquires mutation to establish oncogenic transcription factor condensates via phase separation, which simultaneously enhances their genomic targeting and induces organization of aberrant three-dimensional chromatin structure during tumourous transformation. As LLPS-competent molecules are frequently implicated in diseases1,2,4-7, this mechanism can potentially be generalized to many malignant and pathological settings.


Asunto(s)
Cromatina/genética , Proteínas de Homeodominio/genética , Proteínas Intrínsecamente Desordenadas/genética , Neoplasias/patología , Proteínas de Complejo Poro Nuclear/genética , Translocación Genética , Animales , Carcinogénesis , Femenino , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Neoplasias/genética , Proteínas de Fusión Oncogénica/genética , Factores de Transcripción/genética , Activación Transcripcional
3.
Nucleic Acids Res ; 51(14): 7288-7313, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37378433

RESUMEN

We have conducted a detailed transcriptomic, proteomic and phosphoproteomic analysis of CDK8 and its paralog CDK19, alternative enzymatic components of the kinase module associated with transcriptional Mediator complex and implicated in development and diseases. This analysis was performed using genetic modifications of CDK8 and CDK19, selective CDK8/19 small molecule kinase inhibitors and a potent CDK8/19 PROTAC degrader. CDK8/19 inhibition in cells exposed to serum or to agonists of NFκB or protein kinase C (PKC) reduced the induction of signal-responsive genes, indicating a pleiotropic role of Mediator kinases in signal-induced transcriptional reprogramming. CDK8/19 inhibition under basal conditions initially downregulated a small group of genes, most of which were inducible by serum or PKC stimulation. Prolonged CDK8/19 inhibition or mutagenesis upregulated a larger gene set, along with a post-transcriptional increase in the proteins comprising the core Mediator complex and its kinase module. Regulation of both RNA and protein expression required CDK8/19 kinase activities but both enzymes protected their binding partner cyclin C from proteolytic degradation in a kinase-independent manner. Analysis of isogenic cell populations expressing CDK8, CDK19 or their kinase-inactive mutants revealed that CDK8 and CDK19 have the same qualitative effects on protein phosphorylation and gene expression at the RNA and protein levels, whereas differential effects of CDK8 versus CDK19 knockouts were attributable to quantitative differences in their expression and activity rather than different functions.


Asunto(s)
Quinasas Ciclina-Dependientes , Complejo Mediador , Humanos , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo , Fosforilación , Proteómica , ARN/metabolismo
4.
Mol Cell ; 62(4): 558-71, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27132940

RESUMEN

Histone H2B monoubiquitination (H2Bub1) is centrally involved in gene regulation. The deubiquitination module (DUBm) of the SAGA complex is a major regulator of global H2Bub1 levels, and components of this DUBm are linked to both neurodegenerative diseases and cancer. Unexpectedly, we find that ablation of USP22, the enzymatic center of the DUBm, leads to a reduction, rather than an increase, in global H2bub1 levels. In contrast, depletion of non-enzymatic components, ATXN7L3 or ENY2, results in increased H2Bub1. These observations led us to discover two H2Bub1 DUBs, USP27X and USP51, which function independently of SAGA and compete with USP22 for ATXN7L3 and ENY2 for activity. Like USP22, USP51 and USP27X are required for normal cell proliferation, and their depletion suppresses tumor growth. Our results reveal that ATXN7L3 and ENY2 orchestrate activities of multiple deubiquitinating enzymes and that imbalances in these activities likely potentiate human diseases including cancer.


Asunto(s)
Neoplasias de la Mama/enzimología , Proliferación Celular , Enzimas Desubicuitinizantes/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo , Carga Tumoral , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Enzimas Desubicuitinizantes/genética , Endopeptidasas/genética , Endopeptidasas/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genotipo , Células HEK293 , Humanos , Células MCF-7 , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Fenotipo , Interferencia de ARN , Transducción de Señal , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Transfección , Ubiquitina Tiolesterasa , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
5.
Nucleic Acids Res ; 49(8): 4441-4455, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33823544

RESUMEN

Trimethylation of histone H3 lysine 27 (H3K27me3) is important for gene silencing and imprinting, (epi)genome organization and organismal development. In a prevalent model, the functional readout of H3K27me3 in mammalian cells is achieved through the H3K27me3-recognizing chromodomain harbored within the chromobox (CBX) component of canonical Polycomb repressive complex 1 (cPRC1), which induces chromatin compaction and gene repression. Here, we report that binding of H3K27me3 by a Bromo Adjacent Homology (BAH) domain harbored within BAH domain-containing protein 1 (BAHD1) is required for overall BAHD1 targeting to chromatin and for optimal repression of the H3K27me3-demarcated genes in mammalian cells. Disruption of direct interaction between BAHD1BAH and H3K27me3 by point mutagenesis leads to chromatin remodeling, notably, increased histone acetylation, at its Polycomb gene targets. Mice carrying an H3K27me3-interaction-defective mutation of Bahd1BAH causes marked embryonic lethality, showing a requirement of this pathway for normal development. Altogether, this work demonstrates an H3K27me3-initiated signaling cascade that operates through a conserved BAH 'reader' module within BAHD1 in mammals.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Acetilación , Animales , Cromatina/genética , Ensamble y Desensamble de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/genética , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Células HEK293 , Humanos , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Proteínas del Grupo Polycomb/genética , Dominios Proteicos
6.
Nucleic Acids Res ; 49(9): 4971-4988, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33849067

RESUMEN

Castration-resistant prostate cancer (CRPC) is a terminal disease and the molecular underpinnings of CRPC development need to be better understood in order to improve its treatment. Here, we report that a transcription factor Yin Yang 1 (YY1) is significantly overexpressed during prostate cancer progression. Functional and cistrome studies of YY1 uncover its roles in promoting prostate oncogenesis in vitro and in vivo, as well as sustaining tumor metabolism including the Warburg effect and mitochondria respiration. Additionally, our integrated genomics and interactome profiling in prostate tumor show that YY1 and bromodomain-containing proteins (BRD2/4) co-occupy a majority of gene-regulatory elements, coactivating downstream targets. Via gene loss-of-function and rescue studies and mutagenesis of YY1-bound cis-elements, we unveil an oncogenic pathway in which YY1 directly binds and activates PFKP, a gene encoding the rate-limiting enzyme for glycolysis, significantly contributing to the YY1-enforced Warburg effect and malignant growth. Altogether, this study supports a master regulator role for YY1 in prostate tumorigenesis and reveals a YY1:BRD2/4-PFKP axis operating in advanced prostate cancer with implications for therapy.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Fosfofructoquinasa-1 Tipo C/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Factor de Transcripción YY1/metabolismo , Animales , Carcinogénesis , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Glucólisis , Células HEK293 , Humanos , Masculino , Ratones SCID , Fosfofructoquinasa-1 Tipo C/fisiología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Factores de Transcripción/metabolismo , Activación Transcripcional , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/fisiología
7.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685904

RESUMEN

Infection with hepatitis B virus (HBV) is a main risk factor for hepatocellular carcinoma (HCC). Extracellular vesicles, such as exosomes, play an important role in tumor development and metastasis, including regulation of HBV-related HCC. In this study, we have characterized exosome microRNA and proteins released in vitro from hepatitis B virus (HBV)-related HCC cell lines SNU-423 and SNU-182 and immortalized normal hepatocyte cell lines (THLE2 and THLE3) using microRNA sequencing and mass spectrometry. Bioinformatics, including functional enrichment and network analysis, combined with survival analysis using data related to HCC in The Cancer Genome Atlas (TCGA) database, were applied to examine the prognostic significance of the results. More than 40 microRNAs and 200 proteins were significantly dysregulated (p < 0.05) in the exosomes released from HCC cells in comparison with the normal liver cells. The functional analysis of the differentially expressed exosomal miRNAs (i.e., mir-483, mir-133a, mir-34a, mir-155, mir-183, mir-182), their predicted targets, and exosomal differentially expressed proteins (i.e., POSTN, STAM, EXOC8, SNX9, COL1A2, IDH1, FN1) showed correlation with pathways associated with HBV, virus activity and invasion, exosome formation and adhesion, and exogenous protein binding. The results from this study may help in our understanding of the role of HBV infection in the development of HCC and in the development of new targets for treatment or non-invasive predictive biomarkers of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Virus de la Hepatitis B , Neoplasias Hepáticas/genética , Hepatocitos
8.
J Biol Chem ; 297(4): 101209, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34562454

RESUMEN

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is known primarily for its function in DNA double-stranded break repair and nonhomologous end joining (NHEJ). However, DNA-PKcs also has a critical yet undefined role in immunity impacting both myeloid and lymphoid cell lineages spurring interest in targeting DNA-PKcs for therapeutic strategies in immune-related diseases. To gain insight into the function of DNA-PKcs within immune cells, we performed a quantitative phosphoproteomic screen in T cells to identify phosphorylation targets of DNA-PKcs. Our results indicate that DNA-PKcs phosphorylates the transcription factor Egr1 (early growth response protein 1) at serine 301. Expression of Egr1 is induced early upon T cell activation and dictates T cell response by modulating expression of cytokines and key costimulatory molecules such as IL (interleukin) 2, IL6, IFNγ, and NFκB. Inhibition of DNA-PKcs by treatment with a DNA-PKcs specific inhibitor NU7441 or shRNA knockdown increased proteasomal degradation of Egr1. Mutation of serine 301 to alanine via CRISPR-Cas9 reduced EGR1 protein expression and decreased Egr1-dependent transcription of IL2 in activated T cells. Our findings identify DNA-PKcs as a critical intermediary link between T cell activation and T cell fate and a novel phosphosite involved in regulating Egr1 activity.


Asunto(s)
Proteína Quinasa Activada por ADN/inmunología , Proteínas de Unión al ADN/inmunología , Proteína 1 de la Respuesta de Crecimiento Precoz/inmunología , Activación de Linfocitos , Linfocitos T/inmunología , Animales , Citocinas/genética , Citocinas/inmunología , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Humanos , Células Jurkat , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Mutación Missense , Estabilidad Proteica , Transcripción Genética/inmunología
9.
Nature ; 532(7599): 329-33, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27027282

RESUMEN

It has been widely accepted that 5-methylcytosine is the only form of DNA methylation in mammalian genomes. Here we identify N(6)-methyladenine as another form of DNA modification in mouse embryonic stem cells. Alkbh1 encodes a demethylase for N(6)-methyladenine. An increase of N(6)-methyladenine levels in Alkbh1-deficient cells leads to transcriptional silencing. N(6)-methyladenine deposition is inversely correlated with the evolutionary age of LINE-1 transposons; its deposition is strongly enriched at young (<1.5 million years old) but not old (>6 million years old) L1 elements. The deposition of N(6)-methyladenine correlates with epigenetic silencing of such LINE-1 transposons, together with their neighbouring enhancers and genes, thereby resisting the gene activation signals during embryonic stem cell differentiation. As young full-length LINE-1 transposons are strongly enriched on the X chromosome, genes located on the X chromosome are also silenced. Thus, N(6)-methyladenine developed a new role in epigenetic silencing in mammalian evolution distinct from its role in gene activation in other organisms. Our results demonstrate that N(6)-methyladenine constitutes a crucial component of the epigenetic regulation repertoire in mammalian genomes.


Asunto(s)
Adenina/análogos & derivados , Metilación de ADN , Epigénesis Genética/genética , Células Madre Embrionarias de Ratones/metabolismo , Adenina/metabolismo , Histona H2a Dioxigenasa, Homólogo 1 de AlkB , Animales , Diferenciación Celular/genética , Elementos Transponibles de ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/deficiencia , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Silenciador del Gen , Elementos de Nucleótido Esparcido Largo/genética , Mamíferos/genética , Ratones , Células Madre Embrionarias de Ratones/citología , Regulación hacia Arriba/genética , Cromosoma X/genética , Cromosoma X/metabolismo
10.
Mol Cell Proteomics ; 19(4): 730-743, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32071147

RESUMEN

Dynamic tyrosine phosphorylation is fundamental to a myriad of cellular processes. However, the inherently low abundance of tyrosine phosphorylation in the proteome and the inefficient enrichment of phosphotyrosine(pTyr)-containing peptides has led to poor pTyr peptide identification and quantitation, critically hindering researchers' ability to elucidate signaling pathways regulated by tyrosine phosphorylation in systems where cellular material is limited. The most popular approaches to wide-scale characterization of the tyrosine phosphoproteome use pTyr enrichment with pan-specific, anti-pTyr antibodies from a large amount of starting material. Methods that decrease the amount of starting material and increase the characterization depth of the tyrosine phosphoproteome while maintaining quantitative accuracy and precision would enable the discovery of tyrosine phosphorylation networks in rarer cell populations. To achieve these goals, the BOOST (Broad-spectrum Optimization Of Selective Triggering) method leveraging the multiplexing capability of tandem mass tags (TMT) and the use of pervanadate (PV) boost channels (cells treated with the broad-spectrum tyrosine phosphatase inhibitor PV) selectively increased the relative abundance of pTyr-containing peptides. After PV boost channels facilitated selective fragmentation of pTyr-containing peptides, TMT reporter ions delivered accurate quantitation of each peptide for the experimental samples while the quantitation from PV boost channels was ignored. This method yielded up to 6.3-fold boost in pTyr quantification depth of statistically significant data derived from contrived ratios, compared with TMT without PV boost channels or intensity-based label-free (LF) quantitation while maintaining quantitative accuracy and precision, allowing quantitation of over 2300 unique pTyr peptides from only 1 mg of T cell receptor-stimulated Jurkat T cells. The BOOST strategy can potentially be applied in analyses of other post-translational modifications where treatments that broadly elevate the levels of those modifications across the proteome are available.


Asunto(s)
Fosfoproteínas/metabolismo , Fosfotirosina/metabolismo , Proteoma/metabolismo , Proteómica , Espectrometría de Masas en Tándem , Vanadatos/metabolismo , Humanos , Iones , Células Jurkat , Fosfopéptidos/metabolismo
11.
Blood ; 134(14): 1176-1189, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31383640

RESUMEN

Dysregulation of polycomb repressive complex 2 (PRC2) promotes oncogenesis partly through its enzymatic function for inducing trimethylation of histone H3 lysine 27 (H3K27me3). However, it remains to be determined how PRC2 activity is regulated in normal and diseased settings. We here report a PRC2-associated cofactor, PHD finger protein 19 (PHF19; also known as polycomb-like 3), as a crucial mediator of tumorigenicity in multiple myeloma (MM). Overexpression and/or genomic amplification of PHF19 is found associated with malignant progression of MM and plasma cell leukemia, correlating to worse treatment outcomes. Using various MM models, we demonstrated a critical requirement of PHF19 for tumor growth in vitro and in vivo. Mechanistically, PHF19-mediated oncogenic effect relies on its PRC2-interacting and chromatin-binding functions. Chromatin immunoprecipitation followed by sequencing profiling showed a critical role for PHF19 in maintaining the H3K27me3 landscape. PHF19 depletion led to loss of broad H3K27me3 domains, possibly due to impaired H3K27me3 spreading from cytosine guanine dinucleotide islands, which is reminiscent to the reported effect of an "onco"-histone mutation, H3K27 to methionine (H3K27M). RNA-sequencing-based transcriptome profiling in MM lines also demonstrated a requirement of PHF19 for optimal silencing of PRC2 targets, which include cell cycle inhibitors and interferon-JAK-STAT signaling genes critically involved in tumor suppression. Correlation studies using patient sample data sets further support a clinical relevance of the PHF19-regulated pathways. Lastly, we show that MM cells are generally sensitive to PRC2 inhibitors. Collectively, this study demonstrates that PHF19 promotes MM tumorigenesis through enhancing H3K27me3 deposition and PRC2's gene-regulatory functions, lending support for PRC2 blockade as a means for MM therapeutics.


Asunto(s)
Carcinogénesis/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Mieloma Múltiple/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Factores de Transcripción/metabolismo , Animales , Carcinogénesis/patología , Línea Celular Tumoral , Humanos , Metilación , Ratones , Mieloma Múltiple/patología
12.
J Proteome Res ; 19(3): 1183-1195, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32027144

RESUMEN

Cells respond to environmental perturbations and insults through modulating protein abundance and function. However, the majority of studies have focused on changes in RNA abundance because quantitative transcriptomics has historically been more facile than quantitative proteomics. Modern Orbitrap mass spectrometers now provide sensitive and deep proteome coverage, allowing direct, global quantification of not only protein abundance but also post-translational modifications (PTMs) that regulate protein activity. We implemented and validated using the well-characterized heat shock response of budding yeast, a tandem mass tagging (TMT), triple-stage mass spectrometry (MS3) strategy to measure global changes in the proteome during the yeast heat shock response over nine time points. We report that basic-pH, ultra-high performance liquid chromatography (UPLC) fractionation of tryptic peptides yields superfractions of minimal redundancy, a crucial requirement for deep coverage and quantification by subsequent LC-MS3. We quantified 2275 proteins across three biological replicates and found that differential expression peaked near 90 min following heat shock (with 868 differentially expressed proteins at 5% false discovery rate). The sensitivity of the approach also allowed us to detect changes in the relative abundance of ubiquitination and phosphorylation PTMs over time. Remarkably, relative quantification of post-translationally modified peptides revealed striking evidence of regulation of the heat shock response by protein PTMs. These data demonstrate that the high precision of TMT-MS3 enables peptide-level quantification of samples, which can reveal important regulation of protein abundance and regulatory PTMs under various experimental conditions.


Asunto(s)
Proteoma , Proteómica , Cromatografía Liquida , Respuesta al Choque Térmico , Espectrometría de Masas
13.
J Biol Chem ; 294(28): 10969-10986, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31152063

RESUMEN

The Musashi family of mRNA translational regulators controls both physiological and pathological stem cell self-renewal primarily by repressing target mRNAs that promote differentiation. In response to differentiation cues, Musashi can switch from a repressor to an activator of target mRNA translation. However, the molecular events that distinguish Musashi-mediated translational activation from repression are not understood. We have previously reported that Musashi function is required for the maturation of Xenopus oocytes and specifically for translational activation of specific dormant maternal mRNAs. Here, we employed MS to identify cellular factors necessary for Musashi-dependent mRNA translational activation. We report that Musashi1 needs to associate with the embryonic poly(A)-binding protein (ePABP) or the canonical somatic cell poly(A)-binding protein PABPC1 for activation of Musashi target mRNA translation. Co-immunoprecipitation studies demonstrated an increased Musashi1 interaction with ePABP during oocyte maturation. Attenuation of endogenous ePABP activity severely compromised Musashi function, preventing downstream signaling and blocking oocyte maturation. Ectopic expression of either ePABP or PABPC1 restored Musashi-dependent mRNA translational activation and maturation of ePABP-attenuated oocytes. Consistent with these Xenopus findings, PABPC1 remained associated with Musashi under conditions of Musashi target mRNA de-repression and translation during mammalian stem cell differentiation. Because association of Musashi1 with poly(A)-binding proteins has previously been implicated only in repression of Musashi target mRNAs, our findings reveal novel context-dependent roles for the interaction of Musashi with poly(A)-binding protein family members in response to extracellular cues that control cell fate.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Ciclo Celular , Diferenciación Celular , Proteínas del Tejido Nervioso/fisiología , Oocitos/metabolismo , Oogénesis/fisiología , Proteína I de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/genética , Poliadenilación , Biosíntesis de Proteínas , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/fisiología , Transducción de Señal , Proteínas de Xenopus/fisiología , Xenopus laevis/metabolismo
14.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L592-L605, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32022592

RESUMEN

Respiratory disease is a leading cause of mortality in patients with osteogenesis imperfecta (OI), a connective tissue disease that causes severely reduced bone mass and is most commonly caused by dominant mutations in type I collagen genes. Previous studies proposed that impaired respiratory function in OI patients was secondary to skeletal deformities; however, recent evidence suggests the existence of a primary lung defect. Here, we analyzed the lung phenotype of Crtap knockout (KO) mice, a mouse model of recessive OI. While we confirm changes in the lung parenchyma that are reminiscent of emphysema, we show that CrtapKO lung fibroblasts synthesize type I collagen with altered posttranslation modifications consistent with those observed in bone and skin. Unrestrained whole body plethysmography showed a significant decrease in expiratory time, resulting in an increased ratio of inspiratory time over expiratory time and a concomitant increase of the inspiratory duty cycle in CrtapKO compared with WT mice. Closed-chest measurements using the forced oscillation technique showed increased respiratory system elastance, decreased respiratory system compliance, and increased tissue damping and elasticity in CrtapKO mice compared with WT. Pressure-volume curves showed significant differences in lung volumes and in the shape of the curves between CrtapKO mice and WT mice, with and without adjustment for body weight. This is the first evidence that collagen defects in OI cause primary changes in lung parenchyma and several respiratory parameters and thus negatively impact lung function.


Asunto(s)
Colágeno Tipo I/genética , Proteínas de la Matriz Extracelular/genética , Chaperonas Moleculares/genética , Osteogénesis Imperfecta/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Procesamiento Proteico-Postraduccional/genética
15.
PLoS Genet ; 12(4): e1006002, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27119146

RESUMEN

Collagen is a major component of the extracellular matrix and its integrity is essential for connective tissue and organ function. The importance of proteins involved in intracellular collagen post-translational modification, folding and transport was recently highlighted from studies on recessive forms of osteogenesis imperfecta (OI). Here we describe the critical role of SC65 (Synaptonemal Complex 65, P3H4), a leprecan-family member, as part of an endoplasmic reticulum (ER) complex with prolyl 3-hydroxylase 3. This complex affects the activity of lysyl-hydroxylase 1 potentially through interactions with the enzyme and/or cyclophilin B. Loss of Sc65 in the mouse results in instability of this complex, altered collagen lysine hydroxylation and cross-linking leading to connective tissue defects that include low bone mass and skin fragility. This is the first indication of a prolyl-hydroxylase complex in the ER controlling lysyl-hydroxylase activity during collagen synthesis.


Asunto(s)
Autoantígenos/metabolismo , Colágeno/biosíntesis , Retículo Endoplásmico/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Animales , Autoantígenos/genética , Huesos/fisiología , Línea Celular , Colágeno/metabolismo , Ciclofilinas/metabolismo , Matriz Extracelular/metabolismo , Hidroxilación/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/patología , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética
16.
J Proteome Res ; 17(10): 3384-3395, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30209945

RESUMEN

The staphylococcal accessory regulator A ( sarA) impacts the extracellular accumulation of Staphylococcus aureus virulence factors at the level of intracellular production and extracellular protease-mediated degradation. We previously used a proteomics approach that measures protein abundance of all proteoforms to demonstrate that mutation of sarA results in increased levels of extracellular proteases and assesses the impact of this on the accumulation of S. aureus exoproteins. Our previous approach was limited as it did not take into account that large, stable proteolytic products from a given protein could result in false negatives when quantified by total proteoforms. Here, our goal was to use an expanded proteomics approach utilizing a dual quantitative method for measuring abundance at both the total proteoform and full-length exoprotein levels to alleviate these false negatives and thereby provide for characterization of protease-dependent and -independent effects of sarA mutation on the S. aureus exoproteome. Proteins present in conditioned medium from overnight, stationary phase cultures of the USA300 strain LAC, an isogenic sarA mutant, and a sarA mutant unable to produce any of the known extracellular proteases ( sarA/protease) were resolved using one-dimensional gel electrophoresis. Quantitative proteomic comparisons of sarA versus sarA/protease mutants identified proteins that were cleaved in a protease-dependent manner owing to mutation of sarA, and comparisons of sarA/protease mutant versus the LAC parent strain identified proteins in which abundance was altered in a sarA mutant in a protease-independent manner. Furthermore, the proteins uniquely identified by the full-length data analysis approach eliminated false negatives observed in the total proteoform analysis. This expanded approach provided for a more comprehensive analysis of the impact of mutating sarA on the S. aureus exoproteome.


Asunto(s)
Proteínas Bacterianas/metabolismo , Péptido Hidrolasas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Biopelículas , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Mutación/genética , Proteoma/genética , Staphylococcus aureus/genética , Staphylococcus aureus/fisiología , Espectrometría de Masas en Tándem , Virulencia/genética
17.
Mol Cell Proteomics ; 15(3): 765-75, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26621846

RESUMEN

Normal cell growth is characterized by a regulated epigenetic program that drives cellular activities such as gene transcription, DNA replication, and DNA damage repair. Perturbation of this epigenetic program can lead to events such as mis-regulation of gene transcription and diseases such as cancer. To begin to understand the epigenetic program correlated to the development of melanoma, we performed a novel quantitative mass spectrometric analysis of histone post-translational modifications mis-regulated in melanoma cell culture as well as patient tumors. Aggressive melanoma cell lines as well as metastatic melanoma were found to have elevated histone H3 Lys(27) trimethylation (H3K27me3) accompanied by overexpressed methyltransferase EZH2 that adds the specific modification. The altered epigenetic program that led to elevated H3K27me3 in melanoma cell culture was found to directly silence transcription of the tumor suppressor genes RUNX3 and E-cadherin. The EZH2-mediated silencing of RUNX3 and E-cadherin transcription was also validated in advanced stage human melanoma tissues. This is the first study focusing on the detailed epigenetic mechanisms leading to EZH2-mediated silencing of RUNX3 and E-cadherin tumor suppressors in melanoma. This study underscores the utility of using high resolution mass spectrometry to identify mis-regulated epigenetic programs in diseases such as cancer, which could ultimately lead to the identification of biological markers for diagnostic and prognostic applications.


Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Espectrometría de Masas/métodos , Mieloma Múltiple/metabolismo , Regulación hacia Arriba , Cadherinas/genética , Línea Celular Tumoral , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Metilación , Mieloma Múltiple/genética , Metástasis de la Neoplasia , Procesamiento Proteico-Postraduccional
19.
J Biol Chem ; 291(34): 18041-57, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27369081

RESUMEN

Cells engage numerous signaling pathways in response to oxidative stress that together repair macromolecular damage or direct the cell toward apoptosis. As a result of DNA damage, mitochondrial DNA or nuclear DNA has been shown to enter the cytoplasm where it binds to "DNA sensors," which in turn initiate signaling cascades. Here we report data that support a novel signaling pathway in response to oxidative stress mediated by specific guanine-rich sequences that can fold into G-quadruplex DNA (G4DNA). In response to oxidative stress, we demonstrate that sequences capable of forming G4DNA appear at increasing levels in the cytoplasm and participate in assembly of stress granules. Identified proteins that bind to endogenous G4DNA in the cytoplasm are known to modulate mRNA translation and participate in stress granule formation. Consistent with these findings, stress granule formation is known to regulate mRNA translation during oxidative stress. We propose a signaling pathway whereby cells can rapidly respond to DNA damage caused by oxidative stress. Guanine-rich sequences that are excised from damaged genomic DNA are proposed to enter the cytoplasm where they can regulate translation through stress granule formation. This newly proposed role for G4DNA provides an additional molecular explanation for why such sequences are prevalent in the human genome.


Asunto(s)
Citoplasma/metabolismo , Gránulos Citoplasmáticos/metabolismo , Daño del ADN , G-Cuádruplex , Estrés Oxidativo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Citoplasma/genética , Gránulos Citoplasmáticos/genética , Células HeLa , Humanos , ARN Mensajero/genética
20.
J Virol ; 90(3): 1397-413, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26581985

RESUMEN

UNLABELLED: Latency-associated nuclear antigen (LANA) is a conserved, multifunctional protein encoded by members of the rhadinovirus subfamily of gammaherpesviruses, including Kaposi sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68). We previously demonstrated that MHV68 LANA (mLANA) is required for efficient lytic replication. However, mechanisms by which mLANA facilitates viral replication, including interactions with cellular and viral proteins, are not known. Thus, we performed a mass spectrometry-based interaction screen that defined an mLANA protein-protein interaction network for lytic viral replication consisting of 15 viral proteins and 191 cellular proteins, including 19 interactions previously reported in KSHV LANA interaction studies. We also employed a stable-isotope labeling technique to illuminate high-priority mLANA-interacting host proteins. Among the top prioritized mLANA-binding proteins was a cellular chaperone, heat shock cognate protein 70 (Hsc70). We independently validated the mLANA-Hsc70 interaction through coimmunoprecipitation and in vitro glutathione S-transferase (GST) pulldown assays. Immunofluorescence and cellular fractionation analyses comparing wild-type (WT) to mLANA-null MHV68 infections demonstrated mLANA-dependent recruitment of Hsc70 to nuclei of productively infected cells. Pharmacologic inhibition and small hairpin RNA (shRNA)-mediated knockdown of Hsc70 impaired MHV68 lytic replication, which functionally correlated with impaired viral protein expression, reduced viral DNA replication, and failure to form viral replication complexes. Replication of mLANA-null MHV68 was less affected than that of WT virus by Hsc70 inhibition, which strongly suggests that Hsc70 function in MHV68 lytic replication is at least partially mediated by its interaction with mLANA. Together these experiments identify proteins engaged by mLANA during the MHV68 lytic replication cycle and define a previously unknown role for Hsc70 in facilitating MHV68 lytic replication. IMPORTANCE: Latency-associated nuclear antigen (LANA) is a conserved gamma-2-herpesvirus protein important for latency maintenance and pathogenesis. For MHV68, this includes regulating lytic replication and reactivation. While previous studies of KSHV LANA defined interactions with host cell proteins that impact latency, interactions that facilitate productive viral replication are not known. Thus, we performed a differential proteomics analysis to identify and prioritize cellular and viral proteins that interact with the MHV68 LANA homolog during lytic infection. Among the proteins identified was heat shock cognate protein 70 (Hsc70), which we determined is recruited to host cell nuclei in an mLANA-dependent process. Moreover, Hsc70 facilitates MHV68 protein expression and DNA replication, thus contributing to efficient MHV68 lytic replication. These experiments expand the known LANA-binding proteins to include MHV68 lytic replication and demonstrate a previously unappreciated role for Hsc70 in regulating viral replication.


Asunto(s)
Antígenos Virales/metabolismo , Interacciones Huésped-Patógeno , Proteínas Nucleares/metabolismo , Rhadinovirus/fisiología , Replicación Viral , Animales , Antígenos Virales/genética , Línea Celular , Centrifugación , Eliminación de Gen , Inmunoprecipitación , Marcaje Isotópico , Espectrometría de Masas , Ratones , Proteínas Nucleares/genética , Unión Proteica , Mapas de Interacción de Proteínas , Rhadinovirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA