Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(6): 1206-1221, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38772379

RESUMEN

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.


Asunto(s)
Trastornos del Neurodesarrollo , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Epilepsia/genética , Secuenciación del Exoma , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Heterocigoto , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Linaje , Fenotipo , Canales de Potasio Shal/genética
2.
Am J Med Genet A ; : e63824, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031930

RESUMEN

Legius syndrome, commonly referred to as SPRED1-related neurofibromatosis type 1-like syndrome, is a rare autosomal dominant disorder characterized by café-au-lait macules, freckling, lipomas, macrocephaly, and heterogeneous neurodevelopmental manifestations, including a different degree of learning difficulties. Although a partial clinical overlap exists with neurofibromatosis type 1 (NF1), Legius syndrome is distinguished by its genetic etiology and the absence of neurofibromas, indicating an inherent lack of tumor risk. The SPRED1 gene encodes the Sprouty-related protein with an EVH1 domain 1 (SPRED1), a negative regulator of the RAS-MAPK signaling pathway with a crucial role in cellular growth and development. Despite various genetic variants and genomic deletions associated with Legius syndrome, the full genetic spectrum of this condition remains elusive. In this study, we investigated the underlying genetic etiology in a cohort of patients presenting with typical manifestations of Legius syndrome using a custom Next Generation Sequencing (NGS) panel and Multiplex Ligation-Dependent Probe Amplification (MLPA) for NF1 and SPRED1. We identified 12 novel SPRED1 damaging variants segregating with the phenotype in all families. These rare variants affect conserved residues of the protein and are predicted damaging according to in silico tools. No clear genotype-phenotype correlations could be observed in the current cohort and previously reported patients, underscoring the heterogeneous genotype spectrum of this condition. Our findings expand the understanding of SPRED1 variants causing Legius syndrome and underscore the importance of comprehensively characterizing the genetic landscape of this disorder. Despite the absence of clear genotype-phenotype correlations, elucidating the genetic etiology of Legius syndrome is pertinent for facilitating accurate diagnosis, genetic counseling, and therapeutic interventions.

3.
Prenat Diagn ; 44(8): 1003-1007, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38768012

RESUMEN

Brachyolmia is a rare form of skeletal dysplasia characterized by a wide genetic and clinical heterogeneity. This condition is usually diagnosed postnatally, and very few cases of prenatal diagnosis have been described so far. Here, we report a case of a pregnant woman at 20 weeks' gestation referred to our center because of fetal short long bones. On targeted ultrasound, mild bowing of the femurs and fibulae and mild micrognathia were also observed. Exome sequencing analysis showed the presence in compound heterozygosity of two pathogenic variants-both truncating variants-in the 3-prime-phosphoadenosine 5-prime-phosphosulfate synthase 2 (PAPSS2) gene, known to cause brachyolmia type 4 (OMIM #612847). Of note, all of the few cases reported prenatally have indeed truncating variants. Hence, we speculate this kind of variant is likely responsible for a complete loss of function of the protein leading to an earlier and more severe phenotype.


Asunto(s)
Sulfato Adenililtransferasa , Humanos , Femenino , Embarazo , Adulto , Sulfato Adenililtransferasa/genética , Ultrasonografía Prenatal , Secuenciación del Exoma , Enfermedades del Desarrollo Óseo/genética , Enfermedades del Desarrollo Óseo/diagnóstico , Enfermedades del Desarrollo Óseo/diagnóstico por imagen , Complejos Multienzimáticos
4.
Neurol Genet ; 10(4): e200168, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39035822

RESUMEN

Objectives: To present a case series of novel CHD2 variants in patients presenting with genetic epileptic and developmental encephalopathy. Background: CHD2 gene encodes an ATP-dependent enzyme, chromodomain helicase DNA-binding protein 2, involved in chromatin remodeling. Pathogenic variants in CHD2 are linked to early-onset conditions such as developmental and epileptic encephalopathy, drug-resistant epilepsies, and neurodevelopmental disorders. Approximately 225 diagnosed patients from 28 countries exhibit various allelic variants in CHD2, including small intragenic deletions/insertions and missense, nonsense, and splice site variants. Results: We present the molecular and clinical characteristics of 17 unreported individuals from 17 families with novel pathogenic or likely pathogenic variants in CHD2. All individuals presented with severe global developmental delay, childhood-onset myoclonic epilepsy, and additional neuropsychiatric features, such as behavioral including autism, ADHD, and hyperactivity. Additional findings include abnormal reflexes, hypotonia and hypertonia, motor impairment, gastrointestinal problems, and kyphoscoliosis. Neuroimaging features included hippocampal signal alterations (4/10), with additional volume loss in 2 cases, inferior vermis hypoplasia (7/10), mild cerebellar atrophy (4/10), and cerebral atrophy (1/10). Discussion: Our study broadens the geographic scope of CHD2-related phenotypes, providing valuable insights into the prevalence and clinical characteristics of this genetic disorder in previously underrepresented populations.

5.
Front Pediatr ; 11: 1326552, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38178912

RESUMEN

Rotatin, encoded by the RTTN gene, is a centrosomal protein with multiple, emerging functions, including left-right specification, ciliogenesis, and neuronal migration. Recessive variants in RTTN are associated with a neurodevelopmental disorder with microcephaly and malformations of cortical development known as "Microcephaly, short stature, and polymicrogyria with seizures" (MSSP, MIM #614833). Affected individuals show a wide spectrum of clinical manifestations like intellectual disability, poor/absent speech, short stature, microcephaly, and congenital malformations. Here, we report a subject showing a distinctive neuroradiological phenotype and harboring novel biallelic variants in RTTN: the c.5500A>G, p.(Asn1834Asp), (dbSNP: rs200169343, ClinVar ID:1438510) and c.19A>G, p.(Ile7Val), (dbSNP: rs201165599, ClinVar ID:1905275) variants. In particular brain magnetic resonance imaging (MRI) showed a peculiar pattern, with cerebellar hypo-dysplasia, and multiple arachnoid cysts in the lateral cerebello-medullary cisterns, in addition to left Meckel cave. Thus, we compare his phenotypic features with current literature, speculating a possible role of newly identified RTTN variants in his clinical picture, and supporting a relevant variability in this emerging condition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA