Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Plant Cell Physiol ; 64(12): 1511-1522, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37130085

RESUMEN

Plants produce sugars by photosynthesis and use them for growth and development. Sugars are transported from source-to-sink organs via the phloem in the vasculature. It is well known that vascular development is precisely controlled by plant hormones and peptide hormones. However, the role of sugars in the regulation of vascular development is poorly understood. In this study, we examined the effects of sugars on vascular cell differentiation using a vascular cell induction system named 'Vascular Cell Induction Culture System Using Arabidopsis Leaves' (VISUAL). We found that sucrose has the strongest inhibitory effect on xylem differentiation, among several types of sugars. Transcriptome analysis revealed that sucrose suppresses xylem and phloem differentiation in cambial cells. Physiological and genetic analyses suggested that sucrose might function through the BRI1-EMS-SUPPRESSOR1 transcription factor, which is the central regulator of vascular cell differentiation. Conditional overexpression of cytosolic invertase led to a decrease in the number of cambium layers due to an imbalance between cell division and differentiation. Taken together, our results suggest that sucrose potentially acts as a signal that integrates environmental conditions with the developmental program.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cámbium/genética , Cámbium/metabolismo , Diferenciación Celular/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Floema/metabolismo , Xilema/metabolismo , Azúcares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA