Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Extremophiles ; 28(1): 15, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300354

RESUMEN

Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. In this work, we describe the heterologous production, biochemical properties and in silico structure analysis of an arginase from this yeast (GaArg). GaArg is a metalloenzyme that catalyses the hydrolysis of L-arginine to L-ornithine and urea. The cDNA of GaArg was reversed transcribed, cloned, expressed and purified as a recombinant protein in Escherichia coli. The purified protein was active against L-arginine as its substrate in a reaction at 20 °C, pH 9. At 10-35 °C and pH 7-9, the catalytic activity of the protein was still present around 50%. Mn2+, Ni2+, Co2+ and K+ were able to enhance the enzyme activity more than two-fold, while GaArg is most sensitive to SDS, EDTA and DTT. The predicted structure model of GaArg showed a very similar overall fold with other known arginases. GaArg possesses predominantly smaller and uncharged amino acids, fewer salt bridges, hydrogen bonds and hydrophobic interactions compared to the other counterparts. GaArg is the first reported arginase that is cold-active, facilitated by unique structural characteristics for its adaptation of catalytic functions at low-temperature environments. The structure and function of cold-active GaArg provide insights into the potentiality of new applications in various biotechnology and pharmaceutical industries.


Asunto(s)
Basidiomycota , Saccharomyces cerevisiae , Arginasa/genética , Basidiomycota/genética , Arginina , Escherichia coli
2.
BMC Evol Biol ; 18(1): 58, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29699483

RESUMEN

BACKGROUND: Dengue virus type 3 genotype III (DENV3/III) is associated with increased number of severe infections when it emerged in the Americas and Asia. We had previously demonstrated that the DENV3/III was introduced into Malaysia in the late 2000s. We investigated the genetic diversity of DENV3/III strains recovered from Malaysia and examined their phylogenetic relationships against other DENV3/III strains isolated globally. RESULTS: Phylogenetic analysis revealed at least four distinct DENV3/III lineages. Two of the lineages (DENV3/III-B and DENV3/III-C) are current actively circulating whereas the DENV3/III-A and DENV3/III-D were no longer recovered since the 1980s. Selection pressure analysis revealed strong evidence of positive selection on a number of amino acid sites in PrM, E, NS1, NS2a, NS2b, NS3, NS4a, and NS5. The Malaysian DENV3/III isolates recovered in the 1980s (MY.59538/1987) clustered into DENV3/III-B, which was the lineage with cosmopolitan distribution consisting of strains actively circulating in the Americas, Africa, and Asia. The Malaysian isolates recovered after the 2000s clustered within DENV3/III-C. This DENV3/III-C lineage displayed a more restricted geographical distribution and consisted of isolates recovered from Asia, denoted as the Asian lineage. Amino acid variation sites in NS5 (NS5-553I/M, NS5-629 T, and NS5-820E) differentiated the DENV3/III-C from other DENV3 viruses. The codon 629 of NS5 was identified as a positively selected site. While the NS5-698R was identified as unique to the genome of DENV3/III-C3. Phylogeographic results suggested that the recent Malaysian DENV3/III-C was likely to have been introduced from Singapore in 2008 and became endemic. From Malaysia, the virus subsequently spread into Taiwan and Thailand in the early part of the 2010s and later reintroduced into Singapore in 2013. CONCLUSIONS: Distinct clustering of the Malaysian old and new DENV3/III isolates suggests that the currently circulating DENV3/III in Malaysia did not descend directly from the strains recovered during the 1980s. Phylogenetic analyses and common genetic traits in the genome of the strains and those from the neighboring countries suggest that the Malaysian DENV3/III is likely to have been introduced from the neighboring regions. Malaysia, however, serves as one of the sources of the recent regional spread of DENV3/III-C3 within the Asia region.


Asunto(s)
Virus del Dengue/genética , Filogenia , Sustitución de Aminoácidos/genética , Dengue/epidemiología , Virus del Dengue/clasificación , Virus del Dengue/aislamiento & purificación , Variación Genética , Genotipo , Geografía , Humanos , Internacionalidad , Malasia , Sistemas de Lectura Abierta/genética , Filogeografía , Selección Genética
3.
Crit Rev Biotechnol ; 38(2): 272-293, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28683572

RESUMEN

BACKGROUND: The increasing market demand for oligosaccharides has intensified the need for efficient biocatalysts. Glycosyl hydrolases (GHs) are still gaining popularity as biocatalyst for oligosaccharides synthesis owing to its simple reaction and high selectivity. PURPOSE: Over the years, research has advanced mainly directing to one goal; to reduce hydrolysis activity of GHs for increased transglycosylation activity in achieving high production of oligosaccharides. DESIGN AND METHODS: This review concisely presents the strategies to increase transglycosylation activity of GHs for oligosaccharides synthesis, focusing on controlling the reaction equilibrium, and protein engineering. Various modifications of the subsites of GHs have been demonstrated to significantly modulate the hydrolysis and transglycosylation activity of the enzymes. The clear insight of the roles of each amino acid in these sites provides a platform for designing an enzyme that could synthesize a specific oligosaccharide product. CONCLUSIONS: The key strategies presented here are important for future improvement of GHs as a biocatalyst for oligosaccharide synthesis.


Asunto(s)
Hidrolasas/química , Oligosacáridos/química , Glicosilación
4.
Extremophiles ; 22(4): 607-616, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29556723

RESUMEN

Dienelactone hydrolase, an α/ß hydrolase enzyme, catalyzes the hydrolysis of dienelactone to maleylacetate, an intermediate for the Krebs cycle. Genome sequencing of the psychrophilic yeast, Glaciozyma antarctica predicted a putative open reading frame (ORF) for dienelactone hydrolase (GaDlh) with 52% sequence similarity to that from Coniophora puteana. Phylogenetic tree analysis showed that GaDlh is closely related to other reported dienelactone hydrolases, and distantly related to other α/ß hydrolases. Structural prediction using MODELLER 9.14 showed that GaDlh has the same α/ß hydrolase fold as other dienelactone hydrolases and esterase/lipase enzymes, with a catalytic triad consisting of Cys-His-Asp and a G-x-C-x-G-G motif. Based on the predicted structure, GaDlh exhibits several characteristics of cold-adapted proteins such as glycine clustering in the binding pocket, reduced protein core hydrophobicity, and the absence of proline residues in loops. The putative ORF was amplified, cloned, and overexpressed in an Escherichia coli expression system. The recombinant protein was overexpressed as soluble proteins and was purified via Ni-NTA affinity chromatography. Biochemical characterization of GaDlh revealed that it has an optimal temperature at 10 °C and that it retained almost 90% of its residual activity when incubated for 90 min at 10 °C. The optimal pH was at pH 8.0 and it was stable between pH 5-9 when incubated for 60 min (more than 50% residual activity). Its Km value was 256 µM and its catalytic efficiency was 81.7 s-1. To our knowledge, this is the first report describing a novel cold-active dienelactone hydrolase-like protein.


Asunto(s)
Basidiomycota/enzimología , Frío , Esterasas/química , Lactonas/metabolismo , Aclimatación , Basidiomycota/genética , Esterasas/genética , Esterasas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Dominios Proteicos
5.
Biotechnol Appl Biochem ; 63(5): 690-698, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26265428

RESUMEN

The gene encoding a cellobiohydrolase 7B (CBH7B) of the thermophilic fungus Thielavia terrestris was identified, subcloned, and expressed in Pichia pastoris. CBH7B encoded 455 amino acid residues with a molecular mass of 51.8 kDa. Domain analysis indicated that CBH7B contains a family 7 glycosyl hydrolase catalytic core but lacks a carbohydrate-binding module. Purified CBH7B exhibited optimum catalytic activity at pH 5.0 and 55 °C with 4-methylumbelliferryl-cellobioside as the substrate and retained 85% of its activity following 24 H incubation at 50 °C. Despite the lack of activity toward microcrystalline substrates, this enzyme worked synergistically with the commercial enzyme cocktail Cellic® CTec2 to enhance saccharification by 39% when added to a reaction mixture containing 0.25% alkaline pretreated oil palm empty fruit bunch (OPEFB). Attenuated total reflectance Fourier transform infrared spectroscopy suggested a reduction of lignin and crystalline cellulose in OPEFB samples supplemented with CBH7B. Scanning electron microscopy revealed greater destruction extent of OPEFB strands in samples supplemented with CBH7B as compared with the nonsupplemented control. Therefore, CBH7B has the potential to complement commercial enzymes in hydrolyzing lignocellulosic biomass.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/genética , Ingeniería Genética/métodos , Pichia/genética , Sordariales/enzimología , Celulosa 1,4-beta-Celobiosidasa/biosíntesis , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Expresión Génica , Genoma Fúngico/genética , Hidrólisis , Lignina/metabolismo , Metales/farmacología , Desnaturalización Proteica/efectos de los fármacos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sordariales/genética
6.
Biotechnol Lett ; 38(5): 825-32, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26830095

RESUMEN

OBJECTIVES: To express and determine the hydrolytic activity of a cellobiohydrolase (TTCBH6B) from the thermophilic fungus Thielavia terrestris in Pichia pastoris. RESULTS: Ttcbh6B encodes a protein of 507 amino acid residues with a predicted molecular mass of 54 kDa. TTCBH6B contains a familial 6-glycosyl hydrolase catalytic domain and a type I carbohydrate-binding module. TTCBH6B was expressed and purified to homogeneity but the purified enzyme was inactive against Avicel. It could, however, digest Celluclast-treated Avicel producing cellobiose (0.27 µmol min(-1) mg(-1)). To determine the substrate preferences of TTCBH6B, oligosaccharides of varying numbers of subunits were generated by acid hydrolysis of Avicel and fluorescently tagged. Peaks corresponding to oligosaccharides containing three to six glucose units were reduced to cellobiose after addition of TTCBH6B. CONCLUSION: TTCBH6B is active against shorter oligosaccharides rather than polysaccharides.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/metabolismo , Oligosacáridos/metabolismo , Pichia/metabolismo , Sordariales/enzimología , Celobiosa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/aislamiento & purificación , Peso Molecular , Pichia/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Sordariales/genética , Especificidad por Sustrato
7.
BMC Struct Biol ; 14: 11, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24641837

RESUMEN

BACKGROUND: At least a quarter of any complete genome encodes for hypothetical proteins (HPs) which are largely non-similar to other known, well-characterized proteins. Predicting and solving their structures and functions is imperative to aid understanding of any given organism as a complete biological system. The present study highlights the primary effort to classify and cluster 1202 HPs of Bacillus lehensis G1 alkaliphile to serve as a platform to mine and select specific HP(s) to be studied further in greater detail. RESULTS: All HPs of B. lehensis G1 were grouped according to their predicted functions based on the presence of functional domains in their sequences. From the metal-binding group of HPs of the cluster, an HP termed Bleg1_2507 was discovered to contain a thioredoxin (Trx) domain and highly-conserved metal-binding ligands represented by Cys69, Cys73 and His159, similar to all prokaryotic and eukaryotic Sco proteins. The built 3D structure of Bleg1_2507 showed that it shared the ßαßαßß core structure of Trx-like proteins as well as three flanking ß-sheets, a 310 -helix at the N-terminus and a hairpin structure unique to Sco proteins. Docking simulations provided an interesting view of Bleg1_2507 in association with its putative cytochrome c oxidase subunit II (COXII) redox partner, Bleg1_2337, where the latter can be seen to hold its partner in an embrace, facilitated by hydrophobic and ionic interactions between the proteins. Although Bleg1_2507 shares relatively low sequence identity (47%) to BsSco, interestingly, the predicted metal-binding residues of Bleg1_2507 i.e. Cys-69, Cys-73 and His-159 were located at flexible active loops similar to other Sco proteins across biological taxa. This highlights structural conservation of Sco despite their various functions in prokaryotes and eukaryotes. CONCLUSIONS: We propose that HP Bleg1_2507 is a Sco protein which is able to interact with COXII, its redox partner and therefore, may possess metallochaperone and redox functions similar to other documented bacterial Sco proteins. It is hoped that this scientific effort will help to spur the search for other physiologically relevant proteins among the so-called "orphan" proteins of any given organism.


Asunto(s)
Bacillus/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Bacillus/clasificación , Sitios de Unión , Cobre/metabolismo , Cisteína/genética , Cisteína/metabolismo , Bases de Datos Genéticas , Histidina/genética , Histidina/metabolismo , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Alineación de Secuencia
8.
ScientificWorldJournal ; 2014: 642891, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24982972

RESUMEN

Lactococcus lactis is the most studied mesophilic fermentative lactic acid bacterium. It is used extensively in the food industry and plays a pivotal role as a cell factory and also as vaccine delivery platforms. The proteome of the Malaysian isolated L. lactis M4 dairy strain, obtained from the milk of locally bred cows, was studied to elucidate the physiological changes occurring between the growth phases of this bacterium. In this study, ultraperformance liquid chromatography nanoflow electrospray ionization tandem mass spectrometry (UPLC- nano-ESI-MS(E)) approach was used for qualitative proteomic analysis. A total of 100 and 121 proteins were identified from the midexponential and early stationary growth phases, respectively, of the L. lactis strain M4. During the exponential phase, the most important reaction was the generation of sufficient energy, whereas, in the early stationary phase, the metabolic energy pathways decreased and the biosynthesis of proteins became more important. Thus, the metabolism of the cells shifted from energy production in the exponential phase to the synthesis of macromolecules in the stationary phase. The resultant proteomes are essential in providing an improved view of the cellular machinery of L. lactis during the transition of growth phases and hence provide insight into various biotechnological applications.


Asunto(s)
Lactococcus lactis/crecimiento & desarrollo , Lactococcus lactis/metabolismo , Proteoma , Proteómica , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Microbiología de Alimentos , Lactococcus lactis/genética , Proteómica/métodos
9.
BMC Evol Biol ; 13: 213, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-24073945

RESUMEN

BACKGROUND: Recurring dengue outbreaks occur in cyclical pattern in most endemic countries. The recurrences of dengue virus (DENV) infection predispose the population to increased risk of contracting the severe forms of dengue. Understanding the DENV evolutionary mechanism underlying the recurring dengue outbreaks has important implications for epidemic prediction and disease control. RESULTS: We used a set of viral envelope (E) gene to reconstruct the phylogeny of DENV-1 isolated between the periods of 1987-2011 in Malaysia. Phylogenetic analysis of DENV-1 E gene revealed that genotype I virus clade replacements were associated with the cyclical pattern of major DENV-1 outbreaks in Malaysia. A total of 9 non-conservative amino acid substitutions in the DENV-1 E gene consensus were identified; 4 in domain I, 3 in domain II and 2 in domain III. Selection pressure analyses did not reveal any positively selected codon site within the full length E gene sequences (1485 nt, 495 codons). A total of 183 (mean dN/dS = 0.0413) negatively selected sites were found within the Malaysian isolates; neither positive nor negative selection was noted for the remaining 312 codons. All the viruses were cross-neutralized by the respective patient sera suggesting no strong support for immunological advantage of any of the amino acid substitutions. CONCLUSION: DENV-1 clade replacement is associated with recurrences of major DENV-1 outbreaks in Malaysia. Our findings are consistent with those of other studies that the DENV-1 clade replacement is a stochastic event independent of positive selection.


Asunto(s)
Virus del Dengue/clasificación , Virus del Dengue/genética , Dengue/epidemiología , Dengue/virología , Brotes de Enfermedades , Evolución Molecular , Productos del Gen env/genética , Sustitución de Aminoácidos , Dengue/genética , Virus del Dengue/aislamiento & purificación , Productos del Gen env/química , Genotipo , Humanos , Filogenia , Estructura Terciaria de Proteína , Procesos Estocásticos
10.
Extremophiles ; 17(1): 63-73, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23132550

RESUMEN

The psychrophilic yeast Glaciozyma antarctica demonstrated high antifreeze activity in its culture filtrate. The culture filtrate exhibited both thermal hysteresis (TH) and ice recrystallization inhibition (RI) properties. The TH of 0.1 °C was comparable to that previously reported for bacteria and fungi. A genome sequence survey of the G. antarctica genome identified a novel antifreeze protein gene. The cDNA encoded a 177 amino acid protein with 30 % similarity to a fungal antifreeze protein from Typhula ishikariensis. The expression levels of AFP1 were quantified via real time-quantitative polymerase chain reaction (RT-qPCR), and the highest expression levels were detected within 6 h of growth at -12 °C. The cDNA of the antifreeze protein was cloned into an Escherichia coli expression system. Expression of recombinant Afp1 in E. coli resulted in the formation of inclusion bodies that were subsequently denatured by treatment with urea and allowed to refold in vitro. Activity assays of the recombinant Afp1 confirmed the antifreeze protein properties with a high TH value of 0.08 °C.


Asunto(s)
Proteínas Anticongelantes , Basidiomycota , Frío , Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica/fisiología , Levaduras , Proteínas Anticongelantes/biosíntesis , Proteínas Anticongelantes/química , Proteínas Anticongelantes/genética , Proteínas Anticongelantes/aislamiento & purificación , Basidiomycota/química , Basidiomycota/genética , Basidiomycota/metabolismo , Clonación Molecular/métodos , ADN Complementario/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Homología de Secuencia de Aminoácido , Levaduras/química , Levaduras/genética , Levaduras/metabolismo
11.
ScientificWorldJournal ; 2013: 634317, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24381522

RESUMEN

The ease with which auxotrophic strains and genes that complement them can be manipulated, as well as the stability of auxotrophic selection systems, are amongst the advantages of using auxotrophic markers to produce heterologous proteins. Most auxotrophic markers in Aspergillus oryzae originate from chemical or physical mutagenesis that may yield undesirable mutations along with the mutation of interest. An auxotrophic A. oryzae strain S1 was generated by deleting the orotidine-5'-monophosphate decarboxylase gene (pyrG) by targeted gene replacement. The uridine requirement of the resulting strain GR6 pyrGΔ0 was complemented by plasmids carrying a pyrG gene from either Aspergillus nidulans or A. oryzae. ß -Galactosidase expression by strain GR6 pyrGΔ0 transformed with an A. niger plasmid encoding a heterologous ß -galactosidase was at least 150 times more than that obtained with the untransformed strain. Targeted gene replacement is thus an efficient way of developing auxotrophic mutants in A. oryzae and the auxotrophic strain GR6 pyrGΔ0 facilitated the production of a heterologous protein in this fungus.


Asunto(s)
Aspergillus oryzae/fisiología , Proteínas Fúngicas/fisiología , Mejoramiento Genético/métodos , Mutagénesis Sitio-Dirigida/métodos , Orotidina-5'-Fosfato Descarboxilasa/genética , Ingeniería de Proteínas/métodos
12.
J Comput Aided Mol Des ; 26(8): 947-61, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22710891

RESUMEN

The structure of psychrophilic chitinase (CHI II) from Glaciozyma antarctica PI12 has yet to be studied in detail. Due to its low sequence identity (<30 %), the structural prediction of CHI II is a challenge. A 3D model of CHI II was built by first using a threading approach to search for a suitable template and to generate an optimum target-template alignment, followed by model building using MODELLER9v7. Analysis of the catalytic insertion domain structure in CHI II revealed an increase in the number of aromatic residues and longer loops compared to mesophilic and thermophilic chitinases. A molecular dynamics simulation was used to examine the stability of the CHI II structure at 273, 288 and 300 K. Structural analysis of the substrate-binding cleft revealed a few exposed aromatic residues. Substitutions of certain amino acids in the surface and loop regions of CHI II conferred an increased flexibility to the enzyme, allowing for an adaptation to cold temperatures. A substrate binding comparison of CHI II with the mesophilic chitinase from Coccidioides immitis, 1D2K, suggested that the psychrophilic adaptation and catalytic activity at low temperatures were achieved through a reduction in the number of salt bridges, fewer hydrogen bonds and an increase in the exposure of the hydrophobic side chains to the solvent.


Asunto(s)
Adaptación Fisiológica , Basidiomycota/enzimología , Quitinasas/química , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Dominio Catalítico , Frío , Enlace de Hidrógeno , Conformación Molecular , Datos de Secuencia Molecular
13.
ScientificWorldJournal ; 2012: 545784, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22666136

RESUMEN

The cyclic AMP- (cAMP-) dependent protein kinase A signaling pathway is one of the major signaling pathways responsible for regulation of the morphogenesis and pathogenesis of several pathogenic fungi. To evaluate the role of this pathway in the plant pathogenic fungus, Colletotrichum gloeosporioides, the gene encoding the catalytic subunit of cAMP-dependent protein kinase A, CgPKAC, was cloned, inactivated, and the mutant was analyzed. Analysis of the Cgpkac mutant generated via gene replacement showed that the mutants were able to form appressoria; however, their formation was delayed compared to the wild type. In addition, the mutant conidia underwent bipolar germination after appressoria formation, but no appressoria were generated from the second germ tube. The mutants also showed reduced ability to adhere to a hydrophobic surface and to degrade lipids localized in the appressoria. Based on the number of lesions produced during a pathogenicity test, the mutant's ability to cause disease in healthy mango fruits was reduced, which may be due to failure to penetrate into the fruit. These findings indicate that cAMP-dependent protein kinase A has an important role in regulating morphogenesis and is required for pathogenicity of C. gloeosporioides.


Asunto(s)
Colletotrichum/patogenicidad , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Secuencia de Bases , Dominio Catalítico , Colletotrichum/enzimología , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Cartilla de ADN
14.
Int J Biol Macromol ; 222(Pt B): 2353-2367, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36209910

RESUMEN

Cutinases are hydrolytic enzymes secreted by phytopathogens to degrade cutin, the main polymeric component of plant cuticles. The multifaceted functionality of cutinases has allowed for their exploitation for catalytic reactions beyond their natural purpose. To diversify and expand the cutinase enzyme class, we identified five cutinase homologs from the saprotroph Aspergillus niger. One of these cutinases, AnCUT3, was over-expressed in Pichia pastoris and its biophysicochemical properties characterized. The purified recombinant AnCUT3 possessed an optimum temperature of 25 °C, an optimum pH of 5, and was stable at temperatures up to 50 °C (1 h incubation, melting point of 45.6 °C) and in a wide pH range. Kinetic studies of AnCUT3 using pNP ester substrates showed the highest catalytic efficiency, kcat/Km of 859 mM-1 s-1 toward p-nitrophenyl decanoate (C10). Although its calculated molecular mass is 27 kDa, AnCUT3 was expressed as two glycosylated proteins of molecular weights 24 and 50 kDa. Glycan profiling detected the presence of atypical paucimannose N-glycans (≤Man1-5GlcNAc) from recombinant AnCUT3, suggesting protein-dependent glycan processing of AnCUT3 in P. pastoris. AnCUT3 was also able to degrade and modify the surface of polycaprolactone and polyethylene terephthalate. Taken together, these features poise AnCUT3 as a potential biocatalyst for industrial applications.


Asunto(s)
Aspergillus niger , Plásticos , Cinética , Plásticos/metabolismo , Proteínas Recombinantes/química , Concentración de Iones de Hidrógeno , Pichia/genética , Pichia/metabolismo , Temperatura , Clonación Molecular
15.
Microb Cell Fact ; 10: 94, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-22050784

RESUMEN

BACKGROUND: Cold-adapted enzymes are proteins produced by psychrophilic organisms that display a high catalytic efficiency at extremely low temperatures. Chitin consists of the insoluble homopolysaccharide ß-(1, 4)-linked N-acetylglucosamine, which is the second most abundant biopolymer found in nature. Chitinases (EC 3.2.1.14) play an important role in chitin recycling in nature. Biodegradation of chitin by the action of cold-adapted chitinases offers significant advantages in industrial applications such as the treatment of chitin-rich waste at low temperatures, the biocontrol of phytopathogens in cold environments and the biocontrol of microbial spoilage of refrigerated food. RESULTS: A gene encoding a cold-adapted chitinase (CHI II) from Glaciozyma antarctica PI12 was isolated using Rapid Amplification of cDNA Ends (RACE) and RT-PCR techniques. The isolated gene was successfully expressed in the Pichia pastoris expression system. Analysis of the nucleotide sequence revealed the presence of an open reading frame of 1,215 bp, which encodes a 404 amino acid protein. The recombinant chitinase was secreted into the medium when induced with 1% methanol in BMMY medium at 25°C. The purified recombinant chitinase exhibited two bands, corresponding to the non-glycosylated and glycosylated proteins, by SDS-PAGE with molecular masses of approximately 39 and 50 kDa, respectively. The enzyme displayed an acidic pH characteristic with an optimum pH at 4.0 and an optimum temperature at 15°C. The enzyme was stable between pH 3.0-4.5 and was able to retain its activity from 5 to 25°C. The presence of K+, Mn2+ and Co2+ ions increased the enzyme activity up to 20%. Analysis of the insoluble substrates showed that the purified recombinant chitinase had a strong affinity towards colloidal chitin and little effect on glycol chitosan. CHI II recombinant chitinase exhibited higher Vmax and Kcat values toward colloidal chitin than other substrates at low temperatures. CONCLUSION: By taking advantage of its high activity at low temperatures and its acidic pH optimum, this recombinant chitinase will be valuable in various biotechnological applications under low temperature and acidic pH conditions.


Asunto(s)
Basidiomycota/enzimología , Quitinasas/química , Quitinasas/genética , Clonación Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Expresión Génica , Secuencia de Aminoácidos , Basidiomycota/química , Basidiomycota/clasificación , Basidiomycota/genética , Quitinasas/metabolismo , Frío , Estabilidad de Enzimas , Proteínas Fúngicas/metabolismo , Cinética , Datos de Secuencia Molecular , Filogenia , Pichia/genética , Pichia/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
16.
Biotechnol Lett ; 33(5): 999-1005, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21234789

RESUMEN

L-Asparaginase II signal peptide was used for the secretion of recombinant cyclodextrin glucanotransferase (CGTase) into the periplasmic space of E. coli. Despite its predominant localisation in the periplasm, CGTase activity was also detected in the extracellular medium, followed by cell lysis. Five mutant signal peptides were constructed to improve the periplasmic levels of CGTase. N1R3 is a mutated signal peptide with the number of positively charged amino acid residues in the n-region increased to a net charge of +5. This mutant peptide produced a 1.7-fold enhancement of CGTase activity in the periplasm and significantly decreased cell lysis to 7.8% of the wild-type level. The formation of intracellular inclusion bodies was also reduced when this mutated signal peptide was used as judged by SDS-PAGE. Therefore, these results provide evidence of a cost-effective means of expression of recombinant proteins in E. coli.


Asunto(s)
Asparaginasa/genética , Escherichia coli/enzimología , Escherichia coli/metabolismo , Glucosiltransferasas/metabolismo , Viabilidad Microbiana , Señales de Clasificación de Proteína/genética , Medios de Cultivo/química , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Glucosiltransferasas/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Periplasma/enzimología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
J Ind Microbiol Biotechnol ; 38(9): 1587-97, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21336875

RESUMEN

Direct transport of recombinant protein from cytosol to extracellular medium offers great advantages, such as high specific activity and a simple purification step. This work presents an investigation on the potential of an ABC (ATP-binding cassette) transporter system, the hemolysin transport system, for efficient protein secretion in Escherichia coli (E. coli). A higher secretory production of recombinant cyclodextrin glucanotransferase (CGTase) was achieved by a new plasmid design and subsequently by optimization of culture conditions via central composite design. An improvement of at least fourfold extracellular recombinant CGTase was obtained using the new plasmid design. The optimization process consisted of 20 experiments involving six star points and six replicates at the central point. The predicted optimum culture conditions for maximum recombinant CGTase secretion were found to be 25.76 µM IPTG, 1.0% (w/v) arabinose and 34.7°C post-induction temperature, with a predicted extracellular CGTase activity of 68.76 U/ml. Validation of the model gave an extracellular CGTase activity of 69.15 ± 0.71 U/ml, resulting in a 3.45-fold increase compared to the initial conditions. This corresponded to an extracellular CGTase yield of about 0.58 mg/l. We showed that a synergistic balance of transported protein and secretory pathway is important for efficient protein transport. In addition, we also demonstrated the first successful removal of the C-terminal secretion signal from the transported fusion protein by thrombin proteolytic cleavage.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Escherichia coli/metabolismo , Glucosiltransferasas/metabolismo , Modelos Estadísticos , Transportadoras de Casetes de Unión a ATP/genética , Escherichia coli/genética , Glucosiltransferasas/genética , Proteínas Hemolisinas/metabolismo , Plásmidos/genética , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vías Secretoras
19.
Public Underst Sci ; 20(5): 674-89, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22164706

RESUMEN

Despite considerable research in advanced countries on public perceptions of and attitudes to modern biotechnology, limited effort has been geared towards developing a structural model of public attitudes to modern biotechnology. The purpose of this paper is to identify the relevant factors influencing public attitudes towards genetically modified (GM) soybean, and to analyze the relationship between all the attitudinal factors. A survey was carried out on 1,017 respondents from various stakeholder groups in the Klang Valley region. Results of the survey have confirmed that attitudes towards complex issues such as biotechnology should be seen as a multifaceted process. The most important factors predicting support for GM soybean are the specific application-linked perceptions about the benefits, acceptance of risk and moral concern while risk and familiarity are significant predictors of benefit and risk acceptance. Attitudes towards GM soybean are also predicted by several general classes of attitude.


Asunto(s)
Agricultura/métodos , Biotecnología/métodos , Alimentos Modificados Genéticamente , Glycine max , Opinión Pública , Actitud , Humanos , Malasia , Medición de Riesgo
20.
J Biotechnol ; 329: 118-127, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33539893

RESUMEN

Dehydroquinase or 3-dehydroquinate dehydratase (DHQD) reversibly cleaves 3-dehydroquinate to form 3-dehydroshikimate. Here, we describe the functional and structural features of a cold active type II 3-dehydroquinate dehydratase from the psychrophilic yeast, Glaciozyma antarctica PI12 (GaDHQD). Functional studies showed that the enzyme was active at low temperatures (10-30 °C), but displayed maximal activity at 40 °C. Yet the enzyme was stable over a wide range of temperatures (10-70 °C) and between pH 6.0-10.0 with an optimum pH of 8.0. Interestingly, the enzyme was highly thermo-tolerant, denaturing only at approximately 84 °C. Three-dimensional structure analyses showed that the G. antarctica dehydroquinase (GaDHQD) possesses psychrophilic features in comparison with its mesophilic and thermophilic counterparts such as higher numbers of non-polar residues on the surface, lower numbers of arginine and higher numbers of glycine-residues with lower numbers of hydrophobic interactions. On the other hand, GaDHQD shares some traits (i.e. total number of hydrogen bonds, number of proline residues and overall folding) with its mesophilic and thermophilic counterparts. Combined, these features contribute synergistically towards the enzyme's ability to function at both low and high temperatures.


Asunto(s)
Frío , Calor , Secuencia de Aminoácidos , Basidiomycota , Hidroliasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA