Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 26(1): 51-62, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31855146

RESUMEN

The 2016-2017 introduction of peste des petits ruminants virus (PPRV) into livestock in Mongolia was followed by mass mortality of the critically endangered Mongolian saiga antelope and other rare wild ungulates. To assess the nature and population effects of this outbreak among wild ungulates, we collected clinical, histopathologic, epidemiologic, and ecological evidence. Molecular characterization confirmed that the causative agent was PPRV lineage IV. The spatiotemporal patterns of cases among wildlife were similar to those among livestock affected by the PPRV outbreak, suggesting spillover of virus from livestock at multiple locations and time points and subsequent spread among wild ungulates. Estimates of saiga abundance suggested a population decline of 80%, raising substantial concerns for the species' survival. Consideration of the entire ungulate community (wild and domestic) is essential for elucidating the epidemiology of PPRV in Mongolia, addressing the threats to wild ungulate conservation, and achieving global PPRV eradication.


Asunto(s)
Animales Salvajes/virología , Antílopes/virología , Brotes de Enfermedades/veterinaria , Especies en Peligro de Extinción , Peste de los Pequeños Rumiantes/epidemiología , Virus de la Peste de los Pequeños Rumiantes , Animales , Especies en Peligro de Extinción/estadística & datos numéricos , Femenino , Genoma Viral/genética , Masculino , Mongolia/epidemiología , Peste de los Pequeños Rumiantes/patología , Virus de la Peste de los Pequeños Rumiantes/genética , Filogenia
2.
J Gen Virol ; 100(5): 804-811, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30990405

RESUMEN

Foot-and-mouth disease virus (FMDV) displays various epitopes on the capsid outer surface. In addition to the five neutralizing antigenic sites, there is evidence of the existence of other, yet unidentified, epitopes that are believed to play a role in antibody-mediated protection. Previous attempts to identify these epitopes revealed two additional substitutions at positions VP2-74 and -191 (5M2/5 virus) to be of antigenic significance. However, complete resistance to neutralization was not obtained in the neutralization assay, indicating the existence of other, undisclosed epitopes. Results from this study provides evidence of at least two new neutralizing epitopes involving residues VP3-116 and -195 around the threefold axis that have significant impact on the antigenic nature of the virus. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and should help with rational vaccine design.


Asunto(s)
Epítopos/inmunología , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/genética , Antígenos Virales/genética , Cápside/inmunología , Proteínas de la Cápside/genética , Fiebre Aftosa/virología , Pruebas de Neutralización/métodos , Serogrupo
3.
Bioinformatics ; 31(6): 834-40, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25414361

RESUMEN

MOTIVATION: In vitro and in vivo selection of vaccines is time consuming, expensive and the selected vaccines may not be able to provide protection against broad-spectrum viruses because of emerging antigenically novel disease strains. A powerful computational model that incorporates these protein/DNA or RNA level fluctuations can effectively predict antigenically variant strains, and can minimize the amount of resources spent on exclusive serological testing of vaccines and make wide spectrum vaccines possible for many diseases. However, in silico vaccine prediction remains a grand challenge. To address the challenge, we investigate the use of linear and non-linear regression models to predict the antigenic similarity in foot-and-mouth disease virus strains and in influenza strains, where the structure and parameters of the non-linear model are optimized using an evolutionary algorithm (EA). In addition, we examine two different scoring methods for weighting the type of amino acid substitutions in the linear and non-linear models. We also test our models with some unseen data. RESULTS: We achieved the best prediction results on three datasets of SAT2 (Foot-and-Mouth disease), two datasets of serotype A (Foot-and-Mouth disease) and two datasets of influenza when the scoring method based on biochemical properties of amino acids is employed in combination with a non-linear regression model. Models based on substitutions in the antigenic areas performed better than those that took the entire exposed viral capsid proteins. A majority of the non-linear regression models optimi Z: ed with the EA: performed better than the linear and non-linear models whose parameters are estimated using the least-squares method. In addition, for the best models, optimi Z: ed non-linear regression models consist of more terms than their linear counterparts, implying a non-linear nature of influences of amino acid substitutions. Our models were also tested on five recently generated FMDV datasets and the best model was able to achieve an 80% agreement rate.


Asunto(s)
Variación Antigénica/genética , Evolución Biológica , Virus de la Fiebre Aftosa/genética , Fiebre Aftosa/inmunología , Vacunas contra la Influenza/inmunología , Dinámicas no Lineales , Algoritmos , Animales , Anticuerpos Neutralizantes/inmunología , Antígenos Virales , Proteínas de la Cápside/inmunología , Biología Computacional , Simulación por Computador , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/inmunología
4.
Small Rumin Res ; 142: 16-21, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27695194

RESUMEN

PPR is an important infectious viral disease of domestic and wild small ruminants, that threatens the food security and sustainable livelihood of farmers across Africa, the Middle East and Asia. Europe is free of the disease except in Thrace (European part of Turkey) and Israel where outbreaks occur. Following the successful eradication of RPV, PPR has been targeted by the OIE and FAO as the next viral pathogen to be eradicated by 2030. However, the recent outbreaks in Northen Africa and Thrace (European part of Turkey) represent a significant threat to mainland Europe, as a source of disease spread. We have discussed here the emergence of PPR worldwide since its discovery with particular reference to the recent outbreaks in Northen Africa and Thrace, and the potential for spread of the disease into Europe.

6.
J Gen Virol ; 96(Pt 5): 1033-1041, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25614587

RESUMEN

Epitopes on the surface of the foot-and-mouth disease virus (FMDV) capsid have been identified by monoclonal antibody (mAb) escape mutant studies leading to the designation of four antigenic sites in serotype A FMDV. Previous work focused on viruses isolated mainly from Asia, Europe and Latin America. In this study we report on the prediction of epitopes in African serotype A FMDVs and testing of selected epitopes using reverse genetics. Twenty-four capsid amino acid residues were predicted to be of antigenic significance by analysing the capsid sequences (n = 56) using in silico methods, and six residues by correlating capsid sequence with serum-virus neutralization data. The predicted residues were distributed on the surface-exposed capsid regions, VP1-VP3. The significance of residue changes at eight of the predicted epitopes was tested by site-directed mutagenesis using a cDNA clone resulting in the generation of 12 mutant viruses involving seven sites. The effect of the amino acid substitutions on the antigenic nature of the virus was assessed by virus neutralization (VN) test. Mutations at four different positions, namely VP1-43, VP1-45, VP2-191 and VP3-132, led to significant reduction in VN titre (P value = 0.05, 0.05, 0.001 and 0.05, respectively). This is the first time, to our knowledge, that the antigenic regions encompassing amino acids VP1-43 to -45 (equivalent to antigenic site 3 in serotype O), VP2-191 and VP3-132 have been predicted as epitopes and evaluated serologically for serotype A FMDVs. This identifies novel capsid epitopes of recently circulating serotype A FMDVs in East Africa.


Asunto(s)
Proteínas de la Cápside/inmunología , Epítopos/inmunología , Virus de la Fiebre Aftosa/inmunología , África Oriental , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/genética , Línea Celular , Epítopos/genética , Virus de la Fiebre Aftosa/genética , Mutagénesis Sitio-Dirigida , Pruebas de Neutralización , Genética Inversa , Serogrupo
7.
Emerg Infect Dis ; 20(12): 2023-33, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25418782

RESUMEN

Despite safe and efficacious vaccines against peste des petits ruminants virus (PPRV), this virus has emerged as the cause of a highly contagious disease with serious economic consequences for small ruminant agriculture across Asia, the Middle East, and Africa. We used complete and partial genome sequences of all 4 lineages of the virus to investigate evolutionary and epidemiologic dynamics of PPRV. A Bayesian phylogenetic analysis of all PPRV lineages mapped the time to most recent common ancestor and initial divergence of PPRV to a lineage III isolate at the beginning of 20th century. A phylogeographic approach estimated the probability for root location of an ancestral PPRV and individual lineages as being Nigeria for PPRV, Senegal for lineage I, Nigeria/Ghana for lineage II, Sudan for lineage III, and India for lineage IV. Substitution rates are critical parameters for understanding virus evolution because restrictions in genetic variation can lead to lower adaptability and pathogenicity.


Asunto(s)
Evolución Molecular , Peste de los Pequeños Rumiantes/virología , Virus de la Peste de los Pequeños Rumiantes/genética , África , Animales , Biología Computacional , Variación Genética , Genoma Viral , Sistemas de Lectura Abierta , Peste de los Pequeños Rumiantes/epidemiología , Virus de la Peste de los Pequeños Rumiantes/clasificación , Filogenia , Filogeografía , Análisis de Secuencia de ADN
8.
J Gen Virol ; 95(Pt 5): 1104-1116, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24584474

RESUMEN

Five neutralizing antigenic sites have been described for serotype O foot-and-mouth disease viruses (FMDV) based on monoclonal antibody (mAb) escape mutant studies. However, a mutant virus selected to escape neutralization of mAb binding at all five sites was previously shown to confer complete cross-protection with the parental virus in guinea pig challenge studies, suggesting that amino acid residues outside the mAb binding sites contribute to antibody-mediated in vivo neutralization of FMDV. Comparison of the ability of bovine antisera to neutralize a panel of serotype O FMDV identified three novel putative sites at VP2-74, VP2-191 and VP3-85, where amino acid substitutions correlated with changes in sero-reactivity. The impact of these positions was tested using site-directed mutagenesis to effect substitutions at critical amino acid residues within an infectious copy of FMDV O1 Kaufbeuren (O1K). Recovered viruses containing additional mutations at VP2-74 and VP2-191 exhibited greater resistance to neutralization with both O1K guinea pig and O BFS bovine antisera than a virus that was engineered to include only mutations at the five known antigenic sites. The changes at VP2-74 and VP3-85 are adjacent to critical amino acids that define antigenic sites 2 and 4, respectively. However VP2-191 (17 Å away from VP2-72), located at the threefold axis and more distant from previously identified antigenic sites, exhibited the most profound effect. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and will improve our strategies for vaccine strain selection and rational vaccine design.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/inmunología , Epítopos/inmunología , Virus de la Fiebre Aftosa/inmunología , Animales , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Proteínas de la Cápside/genética , Bovinos , Análisis Mutacional de ADN , Epítopos/genética , Virus de la Fiebre Aftosa/genética , Cobayas , Datos de Secuencia Molecular , Pruebas de Neutralización , Unión Proteica , Análisis de Secuencia de ADN
9.
Sci Rep ; 13(1): 14787, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684280

RESUMEN

Peste des petits ruminants (PPR) is an infectious viral disease, primarily of small ruminants such as sheep and goats, but is also known to infect a wide range of wild and domestic Artiodactyls including African buffalo, gazelle, saiga and camels. The livestock-wildlife interface, where free-ranging animals can interact with captive flocks, is the subject of scrutiny as its role in the maintenance and spread of PPR virus (PPRV) is poorly understood. As seroconversion to PPRV indicates previous infection and/or vaccination, the availability of validated serological tools for use in both typical (sheep and goat) and atypical species is essential to support future disease surveillance and control strategies. The virus neutralisation test (VNT) and enzyme-linked immunosorbent assay (ELISA) have been validated using sera from typical host species. Still, the performance of these assays in detecting antibodies from atypical species remains unclear. We examined a large panel of sera (n = 793) from a range of species from multiple countries (sourced 2015-2022) using three tests: VNT, ID VET N-ELISA and AU-PANVAC H-ELISA. A sub-panel (n = 30) was also distributed to two laboratories and tested using the luciferase immunoprecipitation system (LIPS) and a pseudotyped virus neutralisation assay (PVNA). We demonstrate a 75.0-88.0% agreement of positive results for detecting PPRV antibodies in sera from typical species between the VNT and commercial ELISAs, however this decreased to 44.4-62.3% in sera from atypical species, with an inter-species variation. The LIPS and PVNA strongly correlate with the VNT and ELISAs for typical species but vary when testing sera from atypical species.


Asunto(s)
Antílopes , Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes , Animales , Ovinos , Seroconversión , Peste de los Pequeños Rumiantes/diagnóstico , Anticuerpos , Animales Salvajes , Búfalos , Camelus , Cabras
10.
Viruses ; 14(4)2022 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-35458564

RESUMEN

Animal diseases such as peste des petits ruminants (PPR) and foot and mouth disease (FMD) cause significant economic losses in endemic countries and fast, accurate in-field diagnostics would assist with surveillance and outbreak control. The detection of these pathogens is usually performed at reference laboratories, tested using assays that are recommended by The World Organisation for Animal Health (OIE), leading to delays in pathogen detection. This study seeks to demonstrate a proof-of-concept approach for a molecular diagnostic assay that is compatible with material direct from nasal swab sampling, without the need for a prior nucleic acid extraction step, that could potentially be applied at pen-side for both PPR and FMD. The use of such a rapid, low-cost assay without the need for a cold chain could permit testing capacity to be established in remote, resource limited areas and support the surveillance activities necessary to meet the goal of eradication of PPR by 2030. Two individual assays were developed that detect > 99% of PPR and FMD sequences available in GenBank, demonstrating pan-serotype FMD and pan-lineage PPR assays. The ability for the BioGene XF reagent that was used in this study to lyse FMD and PPR viruses and amplify their nucleic acids in the presence of unprocessed nasal swab eluate was evaluated. The reagent was shown to be capable of detecting the viral RNA present in nasal swabs collected from naïve and infected target animals. A study was performed comparing the relative specificity and sensitivity of the new assays to the reference assays. The study used nasal swabs collected from animals before and after infection (12 cattle infected with FMDV and 5 goats infected with PPRV) and both PPR and FMD viral RNA were successfully detected two to four days post-infection in all animals using either the XF or reference assay reagents. These data suggest that the assays are at least as sensitive as the reference assays and support the need for further studies in a field setting.


Asunto(s)
Fiebre Aftosa , Enfermedades de las Cabras , Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes , Animales , Bovinos , Fiebre Aftosa/diagnóstico , Cabras , Virus de la Peste de los Pequeños Rumiantes/genética , ARN Viral/genética
11.
Transbound Emerg Dis ; 69(5): 3041-3046, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34331827

RESUMEN

Livestock markets are considered vital parts of the agricultural economy, particularly in developing countries where livestock keeping contributes to both food security and economic stability. Animals from diverse sources are moved to markets, they mix while they are there and are subsequently redistributed over wide geographic areas. Consequently, markets provide an opportunity for targeted surveillance for circulating pathogens. This study investigated the use of environmental sampling at a live goat market in Nepal for the detection of foot-and-mouth disease virus (FMDV) and peste des petits ruminants virus (PPRV), both of which are endemic. Five visits to the market were carried out between November 2016 and April 2018, with FMDV RNA detected on four visits and PPRV RNA detected on all five visits. Overall, 4.1% of samples (nine out of 217) were positive for FMDV RNA and 60.8% (132 out of 217) were positive for PPRV RNA, though the proportion of positive samples varied amongst visits. These results demonstrate that non-invasive, environmental sampling methods have the potential to be used to detect circulation of high priority livestock diseases at a live animal market and, hence, to contribute to their surveillance and control.


Asunto(s)
Virus de la Fiebre Aftosa , Enfermedades de las Cabras , Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes , Animales , Virus de la Fiebre Aftosa/genética , Enfermedades de las Cabras/diagnóstico , Enfermedades de las Cabras/epidemiología , Cabras , Nepal/epidemiología , Peste de los Pequeños Rumiantes/diagnóstico , Peste de los Pequeños Rumiantes/epidemiología , Virus de la Peste de los Pequeños Rumiantes/genética , ARN Viral/genética
12.
Viruses ; 13(11)2021 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-34835126

RESUMEN

Across Africa, the Middle East, and Asia, peste des petits ruminants virus (PPRV) places a huge disease burden on agriculture, affecting, in particular, small ruminant production. The recent PPR outbreaks in Northern Africa, the European part of Turkey, and Bulgaria represent a significant threat to mainland Europe, as a source of disease. Although two safe and efficacious live attenuated vaccines (Sungri/96 and Nigeria/75/1) are available for the control of PPR, current serological tests do not enable the differentiation between naturally infected and vaccinated animals (DIVA). The vaccinated animals develop a full range of immune responses to viral proteins and, therefore, cannot be distinguished serologically from those that have recovered from a natural infection. This poses a serious problem for the post-vaccinal sero-surveillance during the ongoing PPR eradication program. Furthermore, during the latter stages of any eradication program, vaccination is only possible if the vaccine used is fully DIVA compliant. Using reverse genetics, we have developed two live attenuated PPR DIVA vaccines (Sungri/96 DIVA and Nigeria/75/1 DIVA), in which the C-terminal variable region of the PPRV N-protein has been replaced with dolphin morbillivirus (DMV). As a proof of principle, both the DIVA vaccines were evaluated in goats in pilot studies for safety and efficacy, and all the animals were clinically protected against the intranasal virulent virus challenge, similar to the parent vaccines. Furthermore, it is possible to differentiate between infected animals and vaccinated animals using two newly developed ELISAs. Therefore, these DIVA vaccines and associated tests can facilitate the sero-monitoring process and speed up the implementation of global PPR eradication through vaccination.


Asunto(s)
Enfermedades de los Animales , Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes/inmunología , Rumiantes/virología , Vacunación/veterinaria , Vacunas Virales/inmunología , Enfermedades de los Animales/inmunología , Enfermedades de los Animales/prevención & control , Enfermedades de los Animales/virología , Animales , Peste de los Pequeños Rumiantes/inmunología , Peste de los Pequeños Rumiantes/prevención & control , Peste de los Pequeños Rumiantes/virología
13.
Viruses ; 13(9)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34578467

RESUMEN

Foot and mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals with serious economic consequences. FMD is endemic in Southeast Asia (SEA) and East Asia (EA) with the circulation of multiple serotypes, posing a threat to Australia and other FMD-free countries. Although vaccination is one of the most important control measures to prevent FMD outbreaks, the available vaccines may not be able to provide enough cross-protection against the FMD viruses (FMDVs) circulating in these countries due to the incursion of new lineages and sub-lineages as experienced in South Korea during 2010, a FMD-free country, when a new lineage of serotype O FMDV (Mya-98) spread to the country, resulting in devastating economic consequences. In this study, a total of 62 serotype O (2013-2018) viruses selected from SEA and EA countries were antigenically characterized by virus neutralization tests using three existing (O/HKN/6/83, O/IND/R2/75 and O/PanAsia-2) and one putative (O/MYA/2009) vaccine strains and full capsid sequencing. The Capsid sequence analysis revealed three topotypes, Cathay, SEA and Middle East-South Asia (ME-SA) of FMDVs circulating in the region. The vaccines used in this study showed a good match with the SEA and ME-SA viruses. However, none of the recently circulating Cathay topotype viruses were protected by any of the vaccine strains, including the existing Cathay topotype vaccine (O/HKN/6/83), indicating an antigenic drift and, also the urgency to monitor this topotype in the region and develop a new vaccine strain if necessary, although currently the presence of this topotype is mainly restricted to China, Hong Kong, Taiwan and Vietnam. Further, the capsid sequences of these viruses were analyzed that identified several capsid amino acid substitutions involving neutralizing antigenic sites 1, 2 and 5, which either individually or together could underpin the observed antigenic drift.


Asunto(s)
Deriva y Cambio Antigénico , Antígenos Virales/inmunología , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/virología , Sustitución de Aminoácidos , Animales , Asia Sudoriental , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/genética , Genotipo , Pruebas de Neutralización , Filogenia , Serogrupo , Vacunas Virales/inmunología
14.
Animals (Basel) ; 11(11)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34827902

RESUMEN

Peste des petits ruminants (PPR) is a highly contagious viral disease of small ruminants caused by PPR virus (PPRV). PPR is endemic in Asia, the Middle East and across large areas of Africa and is currently targeted for global eradication by 2030. The virus exists as four different lineages that are usually limited to specific geographical areas. However, recent reports of spread of PPRV, in particular of lineage IV viruses to infection-free countries and previously PPR endemic areas are noteworthy. A rapid and accurate laboratory diagnosis and reports on its epidemiological linkage for virus spread play a major role in the effective control and eradication of the disease. Currently, molecular assays, including conventional reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR (RT-qPCR) are usually used for diagnosis of PPR while the sequencing of part of the nucleocapsid gene is usually carried out for the viral lineage identification. However, it is difficult to diagnose and sequence the genetic material if the animal excreted a low level of virus at the initial stage of infection or if the PPRV is degraded during the long-distance transportation of samples to the reference laboratories. This study describes the development of a novel nested RT-PCR assay for the detection of the PPRV nucleic acid by targeting the N-protein gene, compares the performance of the assay with the existing conventional RT-PCR and also provides good-quality DNA suitable for sequencing in order to identify circulating lineages. The assay was evaluated using cell culture propagated PPRVs, field samples from clinically infected animals and samples from experimentally infected animals encompassing all four lineages (I-IV) of PPRV. This assay provides a solution with an easy, accurate, rapid and cost-effective PPR diagnostic and partial genome sequencing for use in resource-limited settings.

15.
Viruses ; 13(11)2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34834951

RESUMEN

Understanding the evolution of viral pathogens is critical to being able to define how viruses emerge within different landscapes. Host susceptibility, which is spread between different species and is a contributing factor to the subsequent epidemiology of a disease, is defined by virus detection and subsequent characterization. Peste des petits ruminants virus is a plague of small ruminant species that is a considerable burden to the development of sustainable agriculture across Africa and much of Asia. The virus has also had a significant impact on populations of endangered species in recent years, highlighting its significance as a pathogen of high concern across different regions of the globe. Here, we have re-evaluated the molecular evolution of this virus using novel genetic data to try and further resolve the molecular epidemiology of this disease. Viral isolates are genetically characterized into four lineages (I-IV), and the historic origin of these lineages is of considerable interest to the molecular evolution of the virus. Our re-evaluation of viral emergence using novel genome sequences has demonstrated that lineages I, II and IV likely originated in West Africa, in Senegal (I) and Nigeria (II and IV). Lineage III sequences predicted emergence in either East Africa (Ethiopia) or in the Arabian Peninsula (Oman and/or the United Arab Emirates), with a paucity of data precluding a more refined interpretation. Continual refinements of evolutionary emergence, following the generation of new data, is key to both understanding viral evolution from a historic perspective and informing on the ongoing genetic emergence of this virus.


Asunto(s)
Evolución Molecular , Genes Virales , Peste de los Pequeños Rumiantes/epidemiología , Peste de los Pequeños Rumiantes/virología , Virus de la Peste de los Pequeños Rumiantes/clasificación , Virus de la Peste de los Pequeños Rumiantes/genética , África Oriental/epidemiología , África Occidental/epidemiología , Animales , Asia/epidemiología , Brotes de Enfermedades , Etiopía/epidemiología , Genoma Viral , Enfermedades de las Cabras/virología , Cabras/virología , Epidemiología Molecular , Filogenia , Rumiantes/virología , Senegal/epidemiología , Análisis de Secuencia de ADN , Emiratos Árabes Unidos/epidemiología , Secuenciación Completa del Genoma
16.
Viruses ; 13(12)2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34960642

RESUMEN

Peste des petits ruminants (PPR) is an acute, contagious viral disease of small ruminants, goats and sheep. The Democratic Republic of the Congo (DRC) was a PPR-free country until 2007, although in 2006, scare alerts were received from the east and the southwest of the country, reporting repeated mortalities, specifically in goats. In 2008, PPR outbreaks were seen in several villages in the west, leading to structured veterinary field operations. Blood, swabs and pathological specimens consisting of tissues from lungs, spleens, lymph nodes, kidneys, livers and hearts were ethically collected from clinically infected and/or dead animals, as appropriate, in 35 districts. Epidemiological information relating to major risk factors and socio-economic impact was progressively collected, revealing the deaths of 744,527 goats, which converted to a trade value of USD 35,674,600. Samples from infected and dead animals were routinely analyzed by the Central Veterinary Laboratory at Kinshasa for diagnosis, and after official declaration of PPR outbreaks by the FAO in July 2012, selected tissue samples were sent to The Pirbright Institute, United Kingdom, for genotyping. As a result of surveys undertaken between 2008 and 2012, PPR virus (PPRV)-specific antibodies were detected in 25 locations out of 33 tested (75.7%); PPRV nucleic acid was detected in 25 locations out of 35 (71.4%); and a typical clinical picture of PPR was observed in 23 locations out of 35 (65.7%). Analysis of the partial and full genome sequences of PPR viruses (PPRVs) obtained from lymphoid tissues of dead goats collected in Tshela in the DRC in 2012 confirmed the circulation of lineage IV PPRV, showing the highest homology (99.6-100%) with the viruses circulating in the neighboring countries of Gabon, in the Aboumi outbreak in 2011, and Nigeria (99.3% homology) in 2013, although recent outbreaks in 2016 and 2018 in the western part of the DRC that borders with East Africa demonstrated circulation of lineage II and lineage III PPRV.


Asunto(s)
Brotes de Enfermedades/veterinaria , Genoma Viral/genética , Enfermedades de las Cabras/epidemiología , Peste de los Pequeños Rumiantes/epidemiología , Virus de la Peste de los Pequeños Rumiantes/aislamiento & purificación , Enfermedades de las Ovejas/epidemiología , Animales , República Democrática del Congo/epidemiología , Enfermedades de las Cabras/virología , Cabras , Peste de los Pequeños Rumiantes/virología , Virus de la Peste de los Pequeños Rumiantes/genética , Filogenia , Estudios Retrospectivos , Rumiantes , Ovinos , Enfermedades de las Ovejas/virología
17.
Animals (Basel) ; 11(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34438664

RESUMEN

Peste des petits ruminants virus (PPRV) causes a highly devastating disease, peste des petits ruminants (PPR) of sheep and goats, that threatens food security, small ruminant production, and the conservation of wild small ruminants in many developing countries, especially in Africa. Robust serological and molecular diagnostic tools are available to detect PPRV infection, but they were mainly developed for domestic sheep and goats. The presence of a wide host range for PPRV does present serological diagnostic challenges. New innovative diagnostic tools are needed to detect PPRV in atypical hosts (e.g., Camelidae, Suidae, and Bovinae), in wildlife ecosystems and in complex field situations. Interestingly, single-domain antigen binding fragments (nanobodies) derived from heavy-chain-only camelid antibodies have emerged as a new hope in the development of accurate, rapid, and cost-effective diagnostic tools in veterinary and biomedical fields that are suitable for low-income countries. The main objective of this study was to construct an immune nanobody library to retrieve PPRV-reactive nanobodies that enable the development of diagnostic and therapeutic nanobodies in the future. Here, a strategy was developed whereby an alpaca (Vicugna pacos) was immunized with a live attenuated vaccine strain (PPRV/N/75/1) to raise an affinity-matured immune response in the heavy-chain-only antibody classes. The nanobody gene repertoire was engineered in pMECS-GG phagemid, whereby a ccdB gene (encoding a lethal protein) was substituted by the nanobody gene. An immune nanobody library with approximately sixty-four million independent transformants was constructed, of which 100% contained an insert with the proper size of nanobody gene. Following phage display and biopanning, nine nanobodies that specifically recognise completely inactivated PPRV were identified on enzyme-linked immunosorbent assay. They showed superb potency in rapidly identifying PPRV, which is likely to open a new perspective in the diagnosis and possible treatment of PPR infection.

18.
Animals (Basel) ; 11(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34679994

RESUMEN

Peste des petits ruminants virus (PPRV) causes a highly devastating disease of sheep and goats that threatens food security, small ruminant production and susceptible endangered wild ruminants. With policy directed towards achieving global PPR eradication, the establishment of cost-effective genomic surveillance tools is critical where PPR is endemic. Genomic data can provide sufficient in-depth information to identify the pockets of endemicity responsible for PPRV persistence and viral evolution, and direct an appropriate vaccination response. Yet, access to the required sequencing technology is low in resource-limited settings and is compounded by the difficulty of transporting clinical samples from wildlife across international borders due to the Convention on International Trade in Endangered Species (CITES) of Wild Fauna and Flora, and Nagoya Protocol regulations. Oxford nanopore MinION sequencing technology has recently demonstrated an extraordinary performance in the sequencing of PPRV due to its rapidity, utility in endemic countries and comparatively low cost per sample when compared to other whole-genome (WGS) sequencing platforms. In the present study, Oxford nanopore MinION sequencing was utilised to generate complete genomes of PPRV isolates collected from infected goats in Ngorongoro and Momba districts in the northern and southern highlands of Tanzania during 2016 and 2018, respectively. The tiling multiplex polymerase chain reaction (PCR) was carried out with twenty-five pairs of long-read primers. The resulting PCR amplicons were used for nanopore library preparation and sequencing. The analysis of output data was complete genomes of PPRV, produced within four hours of sequencing (accession numbers: MW960272 and MZ322753). Phylogenetic analysis of the complete genomes revealed a high nucleotide identity, between 96.19 and 99.24% with lineage III PPRV currently circulating in East Africa, indicating a common origin. The Oxford nanopore MinION sequencer can be deployed to overcome diagnostic and surveillance challenges in the PPR Global Control and Eradication program. However, the coverage depth was uneven across the genome and amplicon dropout was observed mainly in the GC-rich region between the matrix (M) and fusion (F) genes of PPRV. Thus, larger field studies are needed to allow the collection of sufficient data to assess the robustness of nanopore sequencing technology.

19.
Viruses ; 13(5)2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066336

RESUMEN

Peste des petits ruminants (PPR) is a viral disease of goats and sheep that occurs in Africa, the Middle East and Asia with a severe impact on livelihoods and livestock trade. Many wild artiodactyls are susceptible to PPR virus (PPRV) infection, and some outbreaks have threatened endangered wild populations. The role of wild species in PPRV epidemiology is unclear, which is a knowledge gap for the Global Strategy for the Control and Eradication of PPR. These studies aimed to investigate PPRV infection in wild artiodactyls in the Greater Serengeti and Amboseli ecosystems of Kenya and Tanzania. Out of 132 animals purposively sampled in 2015-2016, 19.7% were PPRV seropositive by ID Screen PPR competition enzyme-linked immunosorbent assay (cELISA; IDvet, France) from the following species: African buffalo, wildebeest, topi, kongoni, Grant's gazelle, impala, Thomson's gazelle, warthog and gerenuk, while waterbuck and lesser kudu were seronegative. In 2018-2019, a cross-sectional survey of randomly selected African buffalo and Grant's gazelle herds was conducted. The weighted estimate of PPRV seroprevalence was 12.0% out of 191 African buffalo and 1.1% out of 139 Grant's gazelles. All ocular and nasal swabs and faeces were negative by PPRV real-time reverse transcription-polymerase chain reaction (RT-qPCR). Investigations of a PPR-like disease in sheep and goats confirmed PPRV circulation in the area by rapid detection test and/or RT-qPCR. These results demonstrated serological evidence of PPRV infection in wild artiodactyl species at the wildlife-livestock interface in this ecosystem where PPRV is endemic in domestic small ruminants. Exposure to PPRV could be via spillover from infected small ruminants or from transmission between wild animals, while the relatively low seroprevalence suggests that sustained transmission is unlikely. Further studies of other major wild artiodactyls in this ecosystem are required, such as impala, Thomson's gazelle and wildebeest.


Asunto(s)
Animales Salvajes/virología , Ecosistema , Ganado/virología , Peste de los Pequeños Rumiantes/epidemiología , Peste de los Pequeños Rumiantes/virología , Virus de la Peste de los Pequeños Rumiantes/fisiología , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/historia , Enfermedades de los Animales/virología , Animales , Estudios Transversales , Brotes de Enfermedades , Geografía Médica , Historia del Siglo XXI , Kenia/epidemiología , Peste de los Pequeños Rumiantes/historia , Virus de la Peste de los Pequeños Rumiantes/clasificación , Vigilancia en Salud Pública , Estudios Seroepidemiológicos , Tanzanía/epidemiología
20.
Vaccines (Basel) ; 8(2)2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32268574

RESUMEN

Following the successful eradication of rinderpest, the World Organization of Animal Health (OIE) and the Food and Agriculture Organization (FAO) have set a goal to eradicate peste des petits ruminants (PPR) globally by 2030. Vaccination is being taken forward as the key strategy along with epidemiological surveillance to target vaccination efforts and eradicate the disease. PPR is highly contagious and is generally spread by aerosolized droplets and close contact. Currently, two live attenuated vaccines (Nigeria 75/1 and Sungri 96) are in use, and administered subcutaneously to prevent transmission of PPR and protect vaccinated animals. Though the target cells that support primary replication of PPR vaccine strains are largely unknown, it is hypothesized that the immune response could be intensified following intranasal vaccine delivery as this route mimics the natural route of infection. This study aims to compare the immunogenicity and protective efficacy of the two currently available live attenuated PPR vaccines following subcutaneous and intranasal routes of vaccination in target species. Groups of five goats were vaccinated with live attenuated PPR vaccines (Nigeria 75/1 and Sungri 96) by either the subcutaneous or intranasal route, and 28 days later challenged intranasally with virulent PPR virus. All vaccinated animals regardless of vaccination route produced PPRV-specific antibodies post-vaccination. Following challenge, all goats were protected from clinical disease, and vaccination was considered to have induced sterilizing immunity. This study demonstrates that the intranasal route of vaccination is as effective as the subcutaneous route of vaccination when using available live attenuated PPR vaccines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA