Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Malar J ; 23(1): 228, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39090658

RESUMEN

BACKGROUND: Biological control is a promising alternative or complementary approach for controlling vector populations in response to the spread of insecticide resistance in malaria vectors. This study evaluated the efficacy of three selected potential predators on the density and fitness parameters of Anopheles funestus larvae in rural Tanzania. METHODS: Common predator families Aeshnidae (dragonflies), Coenagrionidae (damselflies), and Notonectidae (backswimmers) and An. funestus group larvae were collected from natural aquatic habitats in rural south-eastern Tanzania. Predators were starved for 12-h while An. funestus larvae were given fish food before starting the experiment. Anopheles funestus larvae were placed into artificial habitats containing predators, exposing them to potential predation. The number of surviving An. funestus larvae were counted every 24-h. An emergence traps were placed at the top of artificial habitats to capture emerging mosquitoes. Emerged mosquitoes were monitored until they died. Female wings were measured and used as a proxy for body size. Generalized linear mixed models (GLMM) with binomial variates at 95% CI and Cox proportional hazard models were used to assess the proportion of dead mosquitoes and the daily survival determined. RESULTS: There were significant differences in the number of emerged mosquitoes between the treatment and control groups (P < 0.001). Thus, all predator species played a significant role in reducing the density of An. funestus mosquitoes (P < 0.001). Furthermore, these predators had notable effects on the fitness parameters and survival of emerged mosquitoes (P < 0.001). Among the three predators studied, Coenagrionidae (damselflies) were most efficient followed by Notonectidae (backswimmers), with Aeshnidae (dragonflies) being the least efficient. CONCLUSION: Selected aquatic predators have the potential to reduce the survival and density of An. funestus larvae. They might eventually be included within an integrated malaria vector control strategy, ultimately leading to a reduction in malaria transmission.


Asunto(s)
Anopheles , Larva , Control de Mosquitos , Animales , Anopheles/fisiología , Tanzanía , Control de Mosquitos/métodos , Larva/fisiología , Larva/crecimiento & desarrollo , Femenino , Mosquitos Vectores/fisiología , Odonata/fisiología , Conducta Predatoria , Control Biológico de Vectores/métodos , Población Rural , Malaria/prevención & control , Malaria/transmisión
2.
Malar J ; 23(1): 213, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020392

RESUMEN

BACKGROUND: Livestock keeping is one of the potential factors related to malaria transmission. To date, the impact of livestock keeping on malaria transmission remains inconclusive, as some studies suggest a zooprophylactic effect while others indicate a zoopotentiation effect. This study assessed the impact of livestock management on malaria transmission risks in rural Tanzania. Additionally, the study explored the knowledge and perceptions of residents about the relationships between livestock keeping and malaria transmission risks in a selected village. METHODS: In a longitudinal entomological study in Minepa village, South Eastern Tanzania, 40 households were randomly selected (20 with livestock, 20 without). Weekly mosquito collection was performed from January to April 2023. Indoor and outdoor collections used CDC-Light traps, Prokopack aspirators, human-baited double-net traps, and resting buckets. A subsample of mosquitoes was analysed using PCR and ELISA for mosquito species identification and blood meal detection. Livestock's impact on mosquito density was assessed using negative binomial GLMMs. Additionally, in-depth interviews explored community knowledge and perceptions of the relationship between livestock keeping and malaria transmission risks. RESULTS: A total of 48,677 female Anopheles mosquitoes were collected. Out of these, 89% were Anopheles gambiae sensu lato (s.l.) while other species were Anopheles funestus s.l., Anopheles pharoensis, Anopheles coustani, and Anopheles squamosus. The findings revealed a statistically significant increase in the overall number of An. gambiae s.l. outdoors (RR = 1.181, 95%CI 1.050-1.862, p = 0.043). Also, there was an increase of the mean number of An. funestus s.l. mosquitoes collected in households with livestock indoors (RR = 2.866, 95%CI: 1.471-5.582, p = 0.002) and outdoors (RR = 1.579,95%CI 1.080-2.865, p = 0.023). The human blood index of Anopheles arabiensis mosquitoes from houses with livestock was less than those without livestock (OR = 0.149, 95%CI 0.110-0.178, p < 0.001). The majority of participants in the in-depth interviews reported a perceived high density of mosquitoes in houses with livestock compared to houses without livestock. CONCLUSION: Despite the potential for zooprophylaxis, this study indicates a higher malaria transmission risk in livestock-keeping communities. It is crucial to prioritize and implement targeted interventions to control vector populations within these communities. Furthermore, it is important to enhance community education and awareness regarding covariates such as livestock that influence malaria transmission.


Asunto(s)
Anopheles , Ganado , Malaria , Mosquitos Vectores , Población Rural , Tanzanía , Animales , Mosquitos Vectores/fisiología , Anopheles/fisiología , Malaria/prevención & control , Malaria/transmisión , Población Rural/estadística & datos numéricos , Femenino , Humanos , Estudios Longitudinales , Crianza de Animales Domésticos/métodos , Mordeduras y Picaduras de Insectos/prevención & control , Masculino , Conocimientos, Actitudes y Práctica en Salud , Adulto
3.
PLoS One ; 18(6): e0287655, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37363899

RESUMEN

BACKGROUND: The role of larval predators in regulating the Anopheles funestus population in various malaria-endemic countries remains relatively unknown. This study aimed to investigate the common predators that co-exist with Anopheles funestus group larvae and evaluate factors that influence their abundance in rural south-eastern Tanzania. METHODS: Mosquito larvae and predators were sampled concurrently using standard dipper (350 ml) or 10 L bucket in previously identified aquatic habitats in selected villages in southern Tanzania. Predators and mosquito larvae were identified using standard identification keys. All positive habitats were geo-located and their physical features characterized. Water physicochemical parameters such as dissolved oxygen (DO), pH, electrical conductivity (EC), total dissolved solids (TDS) and temperature were also recorded. RESULTS: A total of 85 previously identified An. funestus aquatic habitats in nine villages were sampled for larvae and potential predators. A total of 8,295 predators were sampled. Of these Coenagrionidae 57.7% (n = 4785), Corixidae 12.8% (n = 1,060), Notonectidae 9.9% (n = 822), Aeshnidae 4.9% (n = 405), Amphibian 4.5% (n = 370), Dytiscidae 3.8% (n = 313) were common. A total of 5,260 mosquito larvae were sampled, whereby Anopheles funestus group were 60.3% (n = 3,170), Culex spp. 24.3% (n = 1,279), An. gambie s.l. 8.3% (n = 438) and other anophelines 7.1% (n = 373). Permanent and aquatic habitats larger than 100m2 were positively associated with An. funestus group larvae (P<0.05) and predator abundance (P<0.05). Habitats with submerged vegetation were negatively associated with An. funestus group larvae (P<0.05). Only dissolved oxygen (DO) was positively and significantly affect the abundance of An. funestus group larvae (P<0.05). While predators' abundance was not impacted by all physicochemical parameters. CONCLUSION: Six potential predator families were common in aquatic habitats of An. funestus group larvae. Additional studies are needed to demonstrate the efficacy of different predators on larval density and adult fitness traits. Interventions leveraging the interaction between mosquitoes and predators can be established to disrupt the transmission potential and survival of the An. funestus mosquitoes.


Asunto(s)
Anopheles , Malaria , Humanos , Animales , Anopheles/fisiología , Tanzanía/epidemiología , Ecosistema , Malaria/epidemiología , Temperatura , Larva , Mosquitos Vectores/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA