Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(34): e2111932119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969762

RESUMEN

Glutamate-gated chloride channels (GluCls) are unique to invertebrates and are targeted by macrocyclic lactones. In this study, we cloned an AVR-14B GluCl subunit from adult Brugia malayi, a causative agent of lymphatic filariasis in humans. To elucidate this channel's pharmacological properties, we used Xenopus laevis oocytes for expression and performed two-electrode voltage-clamp electrophysiology. The receptor was gated by the natural ligand L-glutamate (effective concentration, 50% [EC50] = 0.4 mM) and ivermectin (IVM; EC50 = 1.8 nM). We also characterized the effects of nodulisporic acid (NA) on Bma-AVR-14B and NA-produced dual effects on the receptor as an agonist and a type II positive allosteric modulator. Here we report characterization of the complex activity of NA on a nematode GluCl. Bma-AVR-14B demonstrated some unique pharmacological characteristics. IVM did not produce potentiation of L-glutamate-mediated responses but instead, reduced the channel's sensitivity for the ligand. Further electrophysiological exploration showed that IVM (at a moderate concentration of 0.1 nM) functioned as an inhibitor of both agonist and positive allosteric modulatory effects of NA. This suggests that IVM and NA share a complex interaction. The pharmacological properties of Bma-AVR-14B indicate that the channel is an important target of IVM and NA. In addition, the unique electrophysiological characteristics of Bma-AVR-14B could explain the observed variation in drug sensitivities of various nematode parasites. We have also shown the inhibitory effects of IVM and NA on adult worm motility using Worminator. RNA interference (RNAi) knockdown suggests that AVR-14 plays a role in influencing locomotion in B. malayi.


Asunto(s)
Brugia Malayi , Canales de Cloruro , Indoles , Animales , Brugia Malayi/efectos de los fármacos , Brugia Malayi/genética , Brugia Malayi/metabolismo , Canales de Cloruro/efectos de los fármacos , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Ácido Glutámico/metabolismo , Indoles/farmacología , Ivermectina/farmacología , Ligandos
2.
PLoS Pathog ; 16(4): e1008396, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32243475

RESUMEN

Nematode parasites infect approximately 1.5 billion people globally and are a significant public health concern. There is an accepted need for new, more effective anthelmintic drugs. Nicotinic acetylcholine receptors on parasite nerve and somatic muscle are targets of the cholinomimetic anthelmintics, while glutamate-gated chloride channels in the pharynx of the nematode are affected by the avermectins. Here we describe a novel nicotinic acetylcholine receptor on the nematode pharynx that is a potential new drug target. This homomeric receptor is comprised of five non-α EAT-2 subunits and is not sensitive to existing cholinomimetic anthelmintics. We found that EAT-18, a novel auxiliary subunit protein, is essential for functional expression of the receptor. EAT-18 directly interacts with the mature receptor, and different homologs alter the pharmacological properties. Thus we have described not only a novel potential drug target but also a new type of obligate auxiliary protein for nAChRs.


Asunto(s)
Antinematodos/farmacología , Ascaris suum/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas del Helminto/metabolismo , Faringe/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacología , Animales , Ascaris suum/efectos de los fármacos , Ascaris suum/genética , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas del Helminto/genética , Faringe/efectos de los fármacos , Receptores Nicotínicos/genética
3.
Cell Microbiol ; 21(5): e12999, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30597708

RESUMEN

Ferlins mediate calcium-dependent vesicular fusion. Although conserved throughout eukaryotic evolution, their function in unicellular organisms including apicomplexan parasites is largely unknown. Here, we define a crucial role for a ferlin-like protein (FLP) in host-to-vector transmission of the rodent malaria parasite Plasmodium berghei. Infection of the mosquito vectors requires the formation of free gametes and their fertilisation in the mosquito midgut. Mature gametes will only emerge upon secretion of factors that stimulate the disruption of the red blood cell membrane and the parasitophorous vacuole membrane. Genetic depletion of FLP in sexual stages leads to a complete life cycle arrest in the mosquito. Although mature gametes form normally, mutants lacking FLP remain trapped in the red blood cell. The egress defect is rescued by detergent-mediated membrane lysis. In agreement with ferlin vesicular localisation, HA-tagged FLP labels intracellular speckles, which relocalise to the cell periphery during gamete maturation. Our data define FLP as a novel critical factor for Plasmodium fertilisation and transmission and suggest an evolutionarily conserved example of ferlin-mediated exocytosis.


Asunto(s)
Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Células Germinativas/metabolismo , Malaria/transmisión , Plasmodium berghei/crecimiento & desarrollo , Proteínas Protozoarias/metabolismo , Animales , Culicidae/parasitología , Detergentes/farmacología , Membrana Eritrocítica/efectos de los fármacos , Membrana Eritrocítica/genética , Membrana Eritrocítica/parasitología , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Exocitosis/genética , Femenino , Células Germinativas/citología , Células Germinativas/crecimiento & desarrollo , Células Germinativas/ultraestructura , Interacciones Huésped-Patógeno , Estadios del Ciclo de Vida/genética , Malaria/genética , Malaria/metabolismo , Malaria/parasitología , Ratones , Ratones Endogámicos C57BL , Mosquitos Vectores/genética , Mosquitos Vectores/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/patogenicidad , Dominios Proteicos/genética , Proteínas Protozoarias/genética
4.
Cell Microbiol ; 20(8): e12843, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29579782

RESUMEN

Compared with other eukaryotic cell types, malaria parasites appear to possess a more rudimentary Golgi apparatus being composed of dispersed, unstacked cis and trans-cisternae. Despite playing a central role in the secretory pathway of the parasite, few Plasmodium Golgi resident proteins have been characterised. We had previously identified a new Golgi resident protein of unknown function, which we had named Golgi Protein 1, and now show that it forms a complex with a previously uncharacterised transmembrane protein (Golgi Protein 2, GP2). The Golgi Protein complex localises to the cis-Golgi throughout the erythrocytic cycle and potentially also during the mosquito stages. Analysis of parasite strains where GP1 expression is conditionally repressed and/or the GP2 gene is inactivated reveals that though the Golgi protein complex is not essential at any stage of the parasite life cycle, it is important for optimal asexual development in the blood stages.


Asunto(s)
Eritrocitos/parasitología , Aparato de Golgi/metabolismo , Complejos Multiproteicos/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/metabolismo , Humanos
5.
Proc Natl Acad Sci U S A ; 113(26): 7183-8, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27303037

RESUMEN

Transmission of the malaria parasite from the mammalian host to the mosquito vector requires the formation of adequately adapted parasite forms and stage-specific organelles. Here we show that formation of the crystalloid-a unique and short-lived organelle of the Plasmodium ookinete and oocyst stage required for sporogony-is dependent on the precisely timed expression of the S-acyl-transferase DHHC10. DHHC10, translationally repressed in female Plasmodium berghei gametocytes, is activated translationally during ookinete formation, where the protein is essential for the formation of the crystalloid, the correct targeting of crystalloid-resident protein LAP2, and malaria parasite transmission.


Asunto(s)
Aciltransferasas/fisiología , Plasmodium berghei/patogenicidad , Proteínas Protozoarias/fisiología , Animales , Femenino , Malaria/transmisión , Ratones Endogámicos BALB C , Oocistos/fisiología , Orgánulos/fisiología , Plasmodium berghei/enzimología , Plasmodium berghei/fisiología
6.
PLoS Pathog ; 12(7): e1005734, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27427910

RESUMEN

Regulated protein secretion is required for malaria parasite life cycle progression and transmission between the mammalian host and mosquito vector. During transmission from the host to the vector, exocytosis of highly specialised secretory vesicles, such as osmiophilic bodies, is key to the dissolution of the red blood cell and parasitophorous vacuole membranes enabling gamete egress. The positioning of adhesins from the TRAP family, from micronemes to the sporozoite surface, is essential for gliding motility of the parasite and transmission from mosquito to mammalian host. Here we identify a conserved role for the putative pantothenate transporter PAT in Plasmodium berghei in vesicle fusion of two distinct classes of vesicles in gametocytes and sporozoites. PAT is a membrane component of osmiophilic bodies in gametocytes and micronemes in sporozoites. Despite normal formation and trafficking of osmiophilic bodies to the cell surface upon activation, PAT-deficient gametes fail to discharge their contents, remain intraerythrocytic and unavailable for fertilisation and further development in the mosquito. Sporozoites lacking PAT fail to secrete TRAP, are immotile and thus unable to infect the subsequent rodent host. Thus, P. berghei PAT appears to regulate exocytosis in two distinct populations of vesicles in two different life cycle forms rather than acting as pantothenic transporter during parasite transmission.


Asunto(s)
Anopheles/parasitología , Malaria/transmisión , Perilipinas/metabolismo , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Modelos Animales de Enfermedad , Exocitosis/fisiología , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Insectos Vectores/parasitología , Ratones , Microscopía Electrónica , Vesículas Secretoras/metabolismo , Esporozoítos/metabolismo , Transfección
7.
Mol Cell Proteomics ; 15(9): 2852-62, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27371728

RESUMEN

Malaria transmission from an infected host to the mosquito vector requires the uptake of intraerythrocytic sexual precursor cells into the mosquito midgut. For the release of mature extracellular gametes two membrane barriers-the parasite parasitophorous vacuole membrane and the host red blood cell membrane-need to be dissolved. Membrane lysis occurs after the release of proteins from specialized secretory vesicles including osmiophilic bodies. In this study we conducted proteomic analyses of the P. berghei gametocyte egressome and developed a vesicular bioID approach to identify hitherto unknown proteins with a potential function in gametocyte egress. This first Plasmodium gametocyte egressome includes the proteins released by the parasite during the lysis of the parasitophorous vacuole membrane and red blood cell membrane. BioID of the osmiophilic body protein MDV1/PEG3 revealed a vesicular proteome of these gametocyte-specific secretory vesicles. Fluorescent protein tagging and gene deletion approaches were employed to validate and identify a set of novel factors essential for this lysis and egress process. Our study provides the first in vivo bioID for a rodent malaria parasite and together with the first Plasmodium gametocyte egressome identifies MTRAP as a novel factor essential for mosquito transmission. Our data provide an important resource for proteins potentially involved in a key step of gametogenesis.


Asunto(s)
Malaria/transmisión , Plasmodium berghei/fisiología , Proteómica/métodos , Proteínas Protozoarias/metabolismo , Animales , Membrana Eritrocítica/parasitología , Estadios del Ciclo de Vida , Malaria/veterinaria , Espectrometría de Masas , Ratones , Plasmodium berghei/metabolismo
8.
Nucleic Acids Res ; 44(13): 6087-101, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27298255

RESUMEN

Sexual differentiation of malaria parasites into gametocytes in the vertebrate host and subsequent gamete fertilization in mosquitoes is essential for the spreading of the disease. The molecular processes orchestrating these transitions are far from fully understood. Here, we report the first transcriptome analysis of male and female Plasmodium falciparum gametocytes coupled with a comprehensive proteome analysis. In male gametocytes there is an enrichment of proteins involved in the formation of flagellated gametes; proteins involved in DNA replication, chromatin organization and axoneme formation. On the other hand, female gametocytes are enriched in proteins required for zygote formation and functions after fertilization; protein-, lipid- and energy-metabolism. Integration of transcriptome and proteome data revealed 512 highly expressed maternal transcripts without corresponding protein expression indicating large scale translational repression in P. falciparum female gametocytes for the first time. Despite a high degree of conservation between Plasmodium species, 260 of these 'repressed transcripts' have not been previously described. Moreover, for some of these genes, protein expression is only reported in oocysts and sporozoites indicating that repressed transcripts can be partitioned into short- and long-term storage. Finally, these data sets provide an essential resource for identification of vaccine/drug targets and for further mechanistic studies.


Asunto(s)
Malaria Falciparum/genética , Plasmodium falciparum/genética , Proteoma/genética , Transcriptoma/genética , Cromatina/genética , Replicación del ADN/genética , Femenino , Gametogénesis/genética , Regulación de la Expresión Génica/genética , Humanos , Malaria Falciparum/parasitología , Masculino , Redes y Vías Metabólicas/genética , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad , Biosíntesis de Proteínas , Caracteres Sexuales
9.
Cell Microbiol ; 16(5): 751-67, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24471657

RESUMEN

Malaria parasites have two actin isoforms, ubiquitous actin1 and specialized actin2. Actin2 is essential for late male gametogenesis, prior to egress from the host erythrocyte. Here, we examined whether the two actins fulfil overlapping functions in Plasmodium berghei. Replacement of actin2 with actin1 resulted in partial complementation of the defects in male gametogenesis and, thus, viable ookinetes were formed, able to invade the midgut epithelium and develop into oocysts. However, these remained small and their DNA was undetectable at day 8 after infection. As a consequence sporogony did not occur, resulting in a complete block of parasite transmission. Furthermore, we show that expression of actin2 is tightly controlled in female stages. The actin2 transcript is translationally repressed in female gametocytes, but translated in female gametes. The protein persists until mature ookinetes; this expression is strictly dependent on the maternally derived expression. Genetic crosses revealed that actin2 functions at an early stage of ookinete formation and that parasites lacking actin2 are unable to undergo sporogony in the mosquito midgut. Our results provide insights into the specialized role of actin2 in Plasmodium development in the mosquito and suggest that the two actin isoforms have distinct biological functions.


Asunto(s)
Actinas/metabolismo , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/genética , Esporas Protozoarias/crecimiento & desarrollo , Esporas Protozoarias/genética , Actinas/genética , Animales , Cruzamientos Genéticos , Culicidae/parasitología , Prueba de Complementación Genética , Mucosa Intestinal/parasitología , Plasmodium berghei/citología , Esporas Protozoarias/citología
10.
Mol Microbiol ; 88(2): 318-38, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23490234

RESUMEN

Rhomboid-like proteases cleave membrane-anchored proteins within their transmembrane domains. In apicomplexan parasites substrates include molecules that function in parasite motility and host cell invasion. While two Plasmodium rhomboids, ROM1 and ROM4, have been examined, the roles of the remaining six rhomboids during the malaria parasite's life cycle are unknown. We present systematic gene deletion analyses of all eight Plasmodium rhomboid-like proteins as a means to discover stage-specific phenotypes and potential functions in the rodent malaria model, P. berghei. Four rhomboids (ROM4, 6, 7 and 8) are refractory to gene deletion, suggesting an essential role during asexual blood stage development. In contrast ROM1, 3, 9 and 10 were dispensable for blood stage development and exhibited no, subtle or severe defects in mosquito or liver development. Parasites lacking ROM9 and ROM10 showed no major phenotypic defects. Parasites lacking ROM1 presented a delay in blood stage patency following liver infection, but in contrast to a previous study blood stage parasites had similar growth and virulence characteristics as wild type parasites. Parasites lacking ROM3 in mosquitoes readily established oocysts but failed to produce sporozoites. ROM3 is the first apicomplexan rhomboid identified to play a vital role in sporogony.


Asunto(s)
Péptido Hidrolasas/metabolismo , Plasmodium berghei/enzimología , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo , Animales , Sangre/parasitología , Culicidae/parasitología , Femenino , Eliminación de Gen , Estadios del Ciclo de Vida , Hígado/parasitología , Malaria/parasitología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Péptido Hidrolasas/genética , Plasmodium berghei/genética , Plasmodium berghei/patogenicidad , Proteínas Protozoarias/genética , Esporozoítos/fisiología , Virulencia
11.
bioRxiv ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38405843

RESUMEN

Plasmodium parasites, which are the causative agents of malaria, undergo closed mitosis without breakdown of the nuclear envelope. Unlike the closed mitosis in yeast, P. berghei parasites undergo multiple rounds of asynchronous nuclear divisions in a shared cytoplasm result in a multinucleated (8-24) organism prior to formation of daughter cells within an infected red blood cell. During this replication process, intact nuclear pore complexes (NPCs) and their component nucleoporins are likely to play critical roles in parasite growth, facilitating selective bi-directional nucleocytoplasmic transport and genome organization. Here we utilize ultrastructure expansion microscopy (U-ExM) to investigate P. berghei Nup138, Nup221, and Nup313 at the single nucleus level throughout the 24 hour blood-stage replication cycle. Our findings reveal that these Nups are evenly distributed around the nuclei and organized in a rosette structure previously undescribed around the centriolar plaque, which is responsible for intranuclear microtubule nucleation during mitosis. We also detect an increased number of NPCs compared with previously reported, highlighting the power of U-ExM. By adapting the recombination-induced tag exchange (RITE) system to P. berghei, we provide evidence of NPC maintenance, demonstrating Nup221 turnover during parasite asexual replication. Our data shed light on the distribution of NPCs and their homeostasis during the blood-stage replication of P. berghei parasites. Further studies into the nuclear surface of these parasites will allow for a better understanding of parasites nuclear mechanics and organization.

12.
PLoS Pathog ; 7(5): e1002046, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21625527

RESUMEN

Many eukaryotic developmental and cell fate decisions that are effected post-transcriptionally involve RNA binding proteins as regulators of translation of key mRNAs. In malaria parasites (Plasmodium spp.), the development of round, non-motile and replicating exo-erythrocytic liver stage forms from slender, motile and cell-cycle arrested sporozoites is believed to depend on environmental changes experienced during the transmission of the parasite from the mosquito vector to the vertebrate host. Here we identify a Plasmodium member of the RNA binding protein family PUF as a key regulator of this transformation. In the absence of Pumilio-2 (Puf2) sporozoites initiate EEF development inside mosquito salivary glands independently of the normal transmission-associated environmental cues. Puf2- sporozoites exhibit genome-wide transcriptional changes that result in loss of gliding motility, cell traversal ability and reduction in infectivity, and, moreover, trigger metamorphosis typical of early Plasmodium intra-hepatic development. These data demonstrate that Puf2 is a key player in regulating sporozoite developmental control, and imply that transformation of salivary gland-resident sporozoites into liver stage-like parasites is regulated by a post-transcriptional mechanism.


Asunto(s)
Malaria/parasitología , Plasmodium berghei/crecimiento & desarrollo , Proteínas Protozoarias/metabolismo , Proteínas de Unión al ARN/metabolismo , Esporozoítos/crecimiento & desarrollo , Animales , Anopheles/parasitología , Perfilación de la Expresión Génica , Hígado/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Análisis por Micromatrices , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium berghei/patogenicidad , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/genética , Proteínas de Unión al ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Glándulas Salivales/parasitología , Esporozoítos/metabolismo , Esporozoítos/ultraestructura
13.
PLoS Pathog ; 6(2): e1000767, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20169188

RESUMEN

A universal feature of metazoan sexual development is the generation of oocyte P granules that withhold certain mRNA species from translation to provide coding potential for proteins during early post-fertilization development. Stabilisation of translationally quiescent mRNA pools in female Plasmodium gametocytes depends on the RNA helicase DOZI, but the molecular machinery involved in the silencing of transcripts in these protozoans is unknown. Using affinity purification coupled with mass-spectrometric analysis we identify a messenger ribonucleoprotein (mRNP) from Plasmodium berghei gametocytes defined by DOZI and the Sm-like factor CITH (homolog of worm CAR-I and fly Trailer Hitch). This mRNP includes 16 major factors, including proteins with homologies to components of metazoan P granules and archaeal proteins. Containing translationally silent transcripts, this mRNP integrates eIF4E and poly(A)-binding protein but excludes P body RNA degradation factors and translation-initiation promoting eIF4G. Gene deletion mutants of 2 core components of this mRNP (DOZI and CITH) are fertilization-competent, but zygotes fail to develop into ookinetes in a female gametocyte-mutant fashion. Through RNA-immunoprecipitation and global expression profiling of CITH-KO mutants we highlight CITH as a crucial repressor of maternally supplied mRNAs. Our data define Plasmodium P granules as an ancient mRNP whose protein core has remained evolutionarily conserved from single-cell organisms to germ cells of multi-cellular animals and stores translationally silent mRNAs that are critical for early post-fertilization development during the initial stages of mosquito infection. Therefore, translational repression may offer avenues as a target for the generation of transmission blocking strategies and contribute to limiting the spread of malaria.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Plasmodium berghei/fisiología , Proteínas Protozoarias/fisiología , Interferencia de ARN/fisiología , Animales , Southern Blotting , Western Blotting , Femenino , Citometría de Flujo , Expresión Génica , Perfilación de la Expresión Génica , Células Germinativas , Inmunoprecipitación , Filogenia , ARN Mensajero/genética , Ribonucleoproteínas/fisiología , Desarrollo Sexual , Cigoto
14.
Cell Microbiol ; 13(12): 1956-74, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21899698

RESUMEN

Human FACT (facilitates chromatin transcription) consists of the proteins SPT16 and SSRP1 and acts as a histone chaperone in the (dis)assembly of nucleosome (and thereby chromatin) structure during transcription and DNA replication. We identified a Plasmodium berghei protein, termed FACT-L, with homology to the SPT16 subunit of FACT. Epitope tagging of FACT-L showed nuclear localization with high expression in the nuclei of (activated) male gametocytes. The gene encoding FACT-L could not be deleted indicating an essential role during blood-stage development. Using a 'promoter-swap' approach whereby the fact-l promoter was replaced by an 'asexual blood stage-specific' promoter that is silent in gametocytes, transcription of fact-l in promoter-swap mutant gametocytes was downregulated compared with wild-type gametocytes. These mutant male gametocytes showed delayed DNA replication and gamete formation. Male gamete fertility was strongly reduced while female gamete fertility was unaffected; residual ookinetes generated oocysts that arrested early in development and failed to enter sporogony. Therefore FACT is critically involved in the formation of fertile male gametes and parasite transmission. 'Promoter swapping' is a powerful approach for the functional analysis of proteins in gametocytes (and beyond) that are essential during asexual blood-stage development.


Asunto(s)
Células Germinativas/fisiología , Chaperonas de Histonas/metabolismo , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo , Animales , Anopheles/parasitología , Núcleo Celular/metabolismo , Replicación del ADN , ADN Protozoario/genética , ADN Protozoario/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Mapeo Epitopo , Femenino , Fertilidad , Flagelos/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Células Germinativas/metabolismo , Chaperonas de Histonas/genética , Ratones , Oocistos/metabolismo , Oocistos/fisiología , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , Proteínas Protozoarias/genética , Transcripción Genética
15.
mBio ; 13(5): e0181522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36040030

RESUMEN

Twenty years since the publication of the Plasmodium falciparum and P. berghei genomes one-third of their protein-coding genes still lack functional annotation. In the absence of sequence and structural homology, protein-protein interactions can facilitate functional prediction of such orphan genes by mapping protein complexes in their natural cellular environment. The Plasmodium nuclear pore complex (NPC) is a case in point: it remains poorly defined; its constituents lack conservation with the 30+ proteins described in the NPC of many opisthokonts, a clade of eukaryotes that includes fungi and animals, but not Plasmodium. Here, we developed a labeling methodology based on TurboID fusion proteins, which allows visualization of the P. berghei NPC and facilitates the identification of its components. Following affinity purification and mass spectrometry, we identified 4 known nucleoporins (Nups) (138, 205, 221, and the bait 313), and verify interaction with the putative phenylalanine-glycine (FG) Nup637; we assigned 5 proteins lacking annotation (and therefore meaningful homology with proteins outside the genus) to the NPC, which is confirmed by green fluorescent protein (GFP) tagging. Based on gene deletion attempts, all new Nups - Nup176, 269, 335, 390, and 434 - are essential to parasite survival. They lack primary sequence homology with proteins outside the Plasmodium genus; albeit 2 incorporate short domains with structural homology to human Nup155 and yeast Nup157, and the condensin SMC (Structural Maintenance Of Chromosomes 4). The protocols developed here showcase the power of proximity labeling for elucidating protein complex composition and annotation of taxonomically restricted genes in Plasmodium. It opens the door to exploring the function of the Plasmodium NPC and understanding its evolutionary position. IMPORTANCE The nuclear pore complex (NPC) is a platform for constant evolution and has been used to study the evolutionary patterns of early-branching eukaryotes. The Plasmodium NPC is poorly defined due to its evolutionary divergent nature making it impossible to characterize it via homology searches. Although 2 decades have passed since the publication of the Plasmodium genome, 30% of the genes still lack functional annotation. Our study demonstrates the ability of proximity labeling using TurboID to assign function to orphan proteins in the malaria parasite. We have identified a total of 10 Nups that will allow further study of NPC dynamics, structural elements, involvement in nucleocytoplasmic transport, and unique non-transport functions of nucleoporins that provide adaptability to this malaria parasite.


Asunto(s)
Malaria , Poro Nuclear , Humanos , Transporte Activo de Núcleo Celular/genética , Glicina/metabolismo , Proteínas Fluorescentes Verdes/análisis , Malaria/metabolismo , Poro Nuclear/química , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Fenilalanina/química , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Saccharomyces cerevisiae/metabolismo
16.
mBio ; 13(6): e0309622, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36445080

RESUMEN

During vertebrate infection, obligate intracellular malaria parasites develop within a parasitophorous vacuole, which constitutes the interface between the parasite and its hepatocyte or erythrocyte host cells. To traverse this barrier, Plasmodium spp. utilize a dual-function pore formed by EXP2 for nutrient transport and, in the context of the PTEX translocon, effector protein export across the vacuole membrane. While critical to blood-stage survival, less is known about EXP2/PTEX function in the liver stage, although major differences in the export mechanism are suggested by absence of the PTEX unfoldase HSP101 in the intrahepatic vacuole. Here, we employed the glucosamine-activated glmS ribozyme to study the role of EXP2 during Plasmodium berghei liver-stage development in hepatoma cells. Insertion of the glmS sequence into the exp2 3' untranslated region (UTR) enabled glucosamine-dependent depletion of EXP2 after hepatocyte invasion, allowing separation of EXP2 function during intrahepatic development from a recently reported role in hepatocyte invasion. Postinvasion EXP2 knockdown reduced parasite size and largely abolished expression of the mid- to late-liver-stage marker LISP2. As an orthogonal approach to monitor development, EXP2-glmS parasites and controls were engineered to express nanoluciferase. Activation of glmS after invasion substantially decreased luminescence in hepatoma monolayers and in culture supernatants at later time points corresponding to merosome detachment, which marks the culmination of liver-stage development. Collectively, our findings extend the utility of the glmS ribozyme to study protein function in the liver stage and reveal that EXP2 is important for intrahepatic parasite development, indicating that PTEX components also function at the hepatocyte-parasite interface. IMPORTANCE After the mosquito bite that initiates a Plasmodium infection, parasites first travel to the liver and develop in hepatocytes. This liver stage is asymptomatic but necessary for the parasite to transition to the merozoite form, which infects red blood cells and causes malaria. To take over their host cells, avoid immune defenses, and fuel their growth, these obligately intracellular parasites must import nutrients and export effector proteins across a vacuole membrane in which they reside. In the blood stage, these processes depend on a translocon called PTEX, but it is unclear if PTEX also functions during the liver stage. Here, we adapted the glmS ribozyme to control expression of EXP2, the membrane pore component of PTEX, during the liver stage of the rodent malaria parasite Plasmodium berghei. Our results show that EXP2 is important for intracellular development in the hepatocyte, revealing that PTEX components are also functionally important during liver-stage infection.


Asunto(s)
Eritrocitos , Hepatocitos , Malaria , Plasmodium berghei , Proteínas Protozoarias , Carcinoma Hepatocelular , Eritrocitos/metabolismo , Eritrocitos/parasitología , Neoplasias Hepáticas , Malaria/genética , Malaria/metabolismo , Malaria/parasitología , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN Catalítico/metabolismo , Animales , Ratones , Hepatocitos/metabolismo , Hepatocitos/parasitología
17.
Nucleic Acids Res ; 37(11): 3788-98, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19380379

RESUMEN

Techniques for targeted genetic disruption in Plasmodium, the causative agent of malaria, are currently intractable for those genes that are essential for blood stage development. The ability to use RNA interference (RNAi) to silence gene expression would provide a powerful means to gain valuable insight into the pathogenic blood stages but its functionality in Plasmodium remains controversial. Here we have used various RNA-based gene silencing approaches to test the utility of RNAi in malaria parasites and have undertaken an extensive comparative genomics search using profile hidden Markov models to clarify whether RNAi machinery exists in malaria. These investigative approaches revealed that Plasmodium lacks the enzymology required for RNAi-based ablation of gene expression and indeed no experimental evidence for RNAi was observed. In its absence, the most likely explanations for previously reported RNAi-mediated knockdown are either the general toxicity of introduced RNA (with global down-regulation of gene expression) or a specific antisense effect mechanistically distinct from RNAi, which will need systematic analysis if it is to be of use as a molecular genetic tool for malaria parasites.


Asunto(s)
Genoma de Protozoos , Plasmodium berghei/genética , Plasmodium falciparum/genética , Interferencia de ARN , Animales , Genes Protozoarios , Genómica , Plasmodium berghei/metabolismo , Plasmodium falciparum/enzimología , Plasmodium falciparum/metabolismo , ARN sin Sentido/metabolismo , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/genética
18.
Mol Biochem Parasitol ; 241: 111347, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33347893

RESUMEN

Substrate-dependent gliding motility is key to malaria transmission. It mediates host cell traversal, invasion and infection by Plasmodium and related apicomplexan parasites. The 110 amino acid-long cell surface protein LIMP is essential for P. berghei sporozoites where it is required for the invasion of the mosquito's salivary glands and the liver cells of the rodent host. Here we define an additional role for LIMP during mosquito invasion by the ookinete. limp mRNA is provided as a translationally repressed mRNP (messenger ribonucleoprotein) by the female gametocyte and the protein translated in the ookinete. Parasites depleted of limp (Δlimp) develop ookinetes with apparent normal morphology and no defect during in vitro gliding motility, and yet display a pronounced reduction in oocyst numbers; compared to wildtype 82 % more Δlimp ookinetes remain within the mosquito blood meal explaining the decrease in oocysts. As in the sporozoite, LIMP exerts a profound role on ookinete infection of the mosquito.


Asunto(s)
Culicidae/metabolismo , Culicidae/parasitología , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/parasitología , Proteínas de Membrana de los Lisosomas/genética , Plasmodium berghei , Proteínas Protozoarias/genética , Animales , Expresión Génica , Genes Reporteros , Proteínas de Membrana de los Lisosomas/metabolismo , Malaria/parasitología , Malaria/transmisión , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo
19.
Mol Microbiol ; 71(6): 1402-14, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19220746

RESUMEN

Gene expression in Plasmodium parasites undergoes significant changes in each developmental stage, but the transcription factors (TFs) regulating these changes have not been identified. We report here a Plasmodium TF (AP2-O) that activates gene expression in ookinetes, the mosquito-invasive form, and has a DNA-binding domain structurally related to that of a plant TF, Apetala2 (AP2). AP2-O mRNA is pre-synthesized by intraerythrocytic female gametocytes and translated later during ookinete development in the mosquito. The Plasmodium TF activates a set of genes, including all genes reported to be required for midgut invasion, by binding to specific six-base sequences on the proximal promoter. These results indicate that AP2 family TFs have important roles in stage-specific gene regulation in Plasmodium parasites.


Asunto(s)
Culicidae/parasitología , Plasmodium berghei/genética , Proteínas Protozoarias/metabolismo , Factor de Transcripción AP-2/metabolismo , Secuencia de Aminoácidos , Animales , ADN Protozoario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Plasmodium berghei/metabolismo , Regiones Promotoras Genéticas , Proteínas Protozoarias/genética , Factor de Transcripción AP-2/genética
20.
PLoS Pathog ; 4(10): e1000195, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18974882

RESUMEN

Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito -- early and late oocysts containing midgut sporozoites, and the mature, infectious salivary gland sporozoites. Despite the morphological similarity between midgut and salivary gland sporozoites, their proteomes are markedly different, in agreement with their increase in hepatocyte infectivity. The different sporozoite proteomes contain a large number of stage specific proteins whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may be essential for sporozoite infectivity to humans.


Asunto(s)
Plasmodium falciparum/química , Plasmodium falciparum/crecimiento & desarrollo , Proteoma/análisis , Proteínas Protozoarias/análisis , Animales , Anopheles/parasitología , Bases de Datos Genéticas , Humanos , Malaria Falciparum/parasitología , Ratones , Ratones Noqueados , Oocistos/química , Oocistos/crecimiento & desarrollo , Plasmodium berghei/química , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Proteómica , Proteínas Protozoarias/genética , Glándulas Salivales/parasitología , Esporozoítos/química , Esporozoítos/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA