Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Cell Sci ; 137(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38841902

RESUMEN

The model of RNA stability has undergone a transformative shift with the revelation of a cytoplasmic capping activity that means a subset of transcripts are recapped autonomously of their nuclear counterparts. The present study demonstrates nucleo-cytoplasmic shuttling of the mRNA-capping enzyme (CE, also known as RNA guanylyltransferase and 5'-phosphatase; RNGTT), traditionally acknowledged for its nuclear localization and functions, elucidating its contribution to cytoplasmic capping activities. A unique nuclear export sequence in CE mediates XPO1-dependent nuclear export of CE. Notably, during sodium arsenite-induced oxidative stress, cytoplasmic CE (cCE) congregates within stress granules (SGs). Through an integrated approach involving molecular docking and subsequent co-immunoprecipitation, we identify eIF3b, a constituent of SGs, as an interactive associate of CE, implying that it has a potential role in guiding cCE to SGs. We measured the cap status of specific mRNA transcripts from U2OS cells that were non-stressed, stressed and recovered from stress, which indicated that cCE-target transcripts lost their caps during stress but remarkably regained cap stability during the recovery phase. This comprehensive study thus uncovers a novel facet of cytoplasmic CE, which facilitates cellular recovery from stress by maintaining cap homeostasis of target mRNAs.


Asunto(s)
Citoplasma , Homeostasis , ARN Mensajero , Gránulos de Estrés , Humanos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Gránulos de Estrés/metabolismo , Citoplasma/metabolismo , Caperuzas de ARN/metabolismo , Arsenitos/farmacología , Estrés Oxidativo , Transporte Activo de Núcleo Celular , ARN Nucleotidiltransferasas/metabolismo , ARN Nucleotidiltransferasas/genética , Compuestos de Sodio/farmacología , Proteína Exportina 1 , Carioferinas/metabolismo , Carioferinas/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Gránulos Citoplasmáticos/metabolismo , Estabilidad del ARN , Núcleo Celular/metabolismo , Línea Celular Tumoral , Nucleotidiltransferasas
2.
Genes Dev ; 31(21): 2186-2198, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29212662

RESUMEN

Eukaryotic transfer RNAs (tRNAs) are exported from the nucleus, their site of synthesis, to the cytoplasm, their site of function for protein synthesis. The evolutionarily conserved ß-importin family member Los1 (Exportin-t) has been the only exporter known to execute nuclear export of newly transcribed intron-containing pre-tRNAs. Interestingly, LOS1 is unessential in all tested organisms. As tRNA nuclear export is essential, we previously interrogated the budding yeast proteome to identify candidates that function in tRNA nuclear export. Here, we provide molecular, genetic, cytological, and biochemical evidence that the Mex67-Mtr2 (TAP-p15) heterodimer, best characterized for its essential role in mRNA nuclear export, cofunctions with Los1 in tRNA nuclear export. Inactivation of Mex67 or Mtr2 leads to rapid accumulation of end-matured unspliced tRNAs in the nucleus. Remarkably, merely fivefold overexpression of Mex67-Mtr2 can substitute for Los1 in los1Δ cells. Moreover, in vivo coimmunoprecipitation assays with tagged Mex67 document that the Mex67 binds tRNAs. Our data also show that tRNA exporters surprisingly exhibit differential tRNA substrate preferences. The existence of multiple tRNA exporters, each with different tRNA preferences, may indicate that the proteome can be regulated by tRNA nuclear export. Thus, our data show that Mex67-Mtr2 functions in primary nuclear export for a subset of yeast tRNAs.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Proteoma/genética , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Silenciador del Gen , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
Exp Cell Res ; 429(2): 113671, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37276998

RESUMEN

Primary cilia (PCs) that are present in most human cells and perform sensory function or signal transduction are lost in many solid tumors. Previously, we identified VDAC1, best known to regulate mitochondrial bioenergetics, to negatively regulate ciliogenesis. Here, we show that downregulation of VDAC1 in pancreatic cancer-derived Panc1 and glioblastoma-derived U-87MG cells significantly increased ciliation. Those PCs were significantly longer than the control cells. Such increased ciliation possibly inhibited cell cycle, which contributed to reduced proliferation of these cells. VDAC1-depletion also led to longer PCs in quiescent RPE1 cells. Therefore, serum-induced PC disassembly was slower in VDAC1-depleted RPE1 cells. Overall, this study reiterates the importance of VDAC1 in modulating tumorigenesis, due to its novel role in regulating PC disassembly and cilia length.


Asunto(s)
Cilios , Glioblastoma , Humanos , Cilios/metabolismo , Transducción de Señal , Mitocondrias/metabolismo , División Celular , Glioblastoma/genética , Glioblastoma/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
4.
J Biol Chem ; 286(51): 43660-43667, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22045814

RESUMEN

Ufd2 is a U-box-containing ubiquitylation enzyme that promotes ubiquitin chain assembly on substrates. The physiological function of Ufd2 remains poorly understood. Here, we show that ubiquitylation and degradation of the cell cycle kinase Mps1, a known target of the anaphase-promoting complex E3, require Ufd2 enzyme. Yeast cells lacking UFD2 exhibit altered chromosome stability and several spindle-related phenotypes, expanding the biological function of Ufd2. We demonstrate that Ufd2-mediated Mps1 degradation is conserved in humans. Our results underscore the significance of Ufd2 in proteolysis and further suggest that Ufd2-like enzymes regulate far more substrates than previously envisioned.


Asunto(s)
Candida albicans/genética , Proteínas de Ciclo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Células de la Médula Ósea/metabolismo , Candida albicans/metabolismo , Línea Celular Tumoral , Humanos , Lectinas/química , Masculino , Ratones , Mitosis , Proteolisis , Ubiquitina/química , Complejos de Ubiquitina-Proteína Ligasa/química , Ubiquitina-Proteína Ligasas/química
5.
J Biosci ; 452020.
Artículo en Inglés | MEDLINE | ID: mdl-33051411

RESUMEN

Primary cilia are non-motile, microtubule-based, antennae-like organelle that protrude out from the cell surface and perform sensory function or transduce physiological signals in majority of the vertebrate cells. Cilia are assembled on basal bodies that are transformed centrioles. The assembly-disassembly of primary cilia may pose an additional measure on regulating cell cycle in vertebrate cells. While primary cilia are commonly found in differentiated or quiescent cells that are not cycling, disassembly of primary cilia may promote re-entry of these cells into the mitotic cycle, and support proliferation. Many cancer tissues or cancer-derived cells exhibit loss of primary cilia. However, primary cilia may also promote tumorigenesis in some contexts through growth-promoting signalling. This review will shed light on recent advancements of temporal coordination of ciliary disassembly and cell cycle progression, with a focus on how cilia loss may support tumorigenesis in various epithelial cancers.


Asunto(s)
Carcinogénesis/genética , Cilios/genética , Microtúbulos/genética , Neoplasias/genética , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Centriolos/genética , Cilios/patología , Humanos , Mitosis/genética , Neoplasias/patología , Transducción de Señal/genética
6.
Sci Rep ; 10(1): 13946, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811879

RESUMEN

KIF11 is a homotetrameric kinesin that peaks in protein expression during mitosis. It is a known mitotic regulator, and it is well-described that KIF11 is necessary for the formation and maintenance of the bipolar spindle. However, there has been a growing appreciation for non-mitotic roles for KIF11. KIF11 has been shown to function in such processes as axon growth and microtubule polymerization. We previously demonstrated that there is an interphase pool of KIF11 present in glioblastoma cancer stem cells that drives tumor cell invasion. Here, we identified a previously unknown association between KIF11 and primary cilia. We confirmed that KIF11 localized to the basal bodies of primary cilia in multiple cell types, including neoplastic and non-neoplastic cells. Further, we determined that KIF11 has a role in regulating cilia dynamics. Upon the reduction of KIF11 expression, the number of ciliated cells in asynchronously growing populations was significantly increased. We rescued this effect by the addition of exogenous KIF11. Lastly, we found that depleting KIF11 resulted in an increase in cilium length and an attenuation in the kinetics of cilia disassembly. These findings establish a previously unknown link between KIF11 and the dynamics of primary cilia and further support non-mitotic functions for this kinesin.


Asunto(s)
Cilios/metabolismo , Cinesinas/metabolismo , Animales , Cuerpos Basales/metabolismo , Línea Celular Tumoral , Cilios/genética , Glioblastoma/metabolismo , Xenoinjertos , Humanos , Interfase , Cinesinas/biosíntesis , Cinesinas/genética , Ratones , Ratones Desnudos , Ratones SCID , Microtúbulos/metabolismo , Mitosis , Células Madre Neoplásicas/metabolismo
7.
Mol Cancer Res ; 17(7): 1519-1530, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31036696

RESUMEN

Glioblastoma (GBM) is the most common and lethal primary brain tumor and remains incurable. This is in part due to the cellular heterogeneity within these tumors, which includes a subpopulation of treatment-resistant cells called cancer stem-like cells (CSC). We previously identified that the anaphase-promoting complex/cylosome (APC/C), a key cell-cycle regulator and tumor suppressor, had attenuated ligase activity in CSCs. Here, we assessed the mechanism of reduced activity, as well as the efficacy of pharmacologically targeting the APC/C in CSCs. We identified hyperphosphorylation of CDH1, but not pseudosubstrate inhibition by early mitotic inhibitor 1 (EMI1), as a major mechanism driving attenuated APC/CCDH1 activity in the G1-phase of the cell cycle in CSCs. Small-molecule inhibition of the APC/C reduced viability of both CSCs and nonstem tumor cells (NSTCs), with the combination of proTAME and apcin having the biggest impact. Combinatorial drug treatment also led to the greatest mitotic arrest and chromosomal abnormalities. IMPLICATIONS: Our findings demonstrate how the activity of the APC/CCDH1 tumor suppressor is reduced in CSCs and also validates small-molecule inhibition of the APC/C as a promising therapeutic target for the treatment of GBM.


Asunto(s)
Antígenos CD/genética , Cadherinas/genética , Proteínas Cdc20/genética , Proteínas de Ciclo Celular/genética , Proteínas F-Box/genética , Glioblastoma/genética , Ciclosoma-Complejo Promotor de la Anafase/antagonistas & inhibidores , Ciclosoma-Complejo Promotor de la Anafase/genética , Cadherinas/antagonistas & inhibidores , Carbamatos/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Diaminas/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Mitosis/efectos de los fármacos , Mitosis/genética , Células Madre Neoplásicas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
8.
Infect Immun ; 76(6): 2368-78, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18347041

RESUMEN

The formin family of proteins mediates dynamic changes in actin assembly in eukaryotes, and therefore it is important to understand the function of these proteins in Entamoeba histolytica, where actin forms the major cytoskeletal network. In this study we have identified the formin homologs encoded in the E. histolytica genome based on sequence analysis. Using multiple tools, we have analyzed the primary sequences of the eight E. histolytica formins and discovered three subsets: (i) E. histolytica formin-1 to -3 (Ehformin-1 to -3), (ii) Ehformin-4, and (iii) Ehformin-5 to -8. Two of these subsets (Ehformin-1 to -3 and Ehformin-4) showed significant sequence differences from their closest homologs, while Ehformin-5 to -8 were unique among all known formins. Since Ehformin-1 to -3 showed important sequence differences from Diaphanous-related formins (DRFs), we have studied the functions of Ehformin-1 and -2 in E. histolytica transformants. Like other DRFs, Ehformin-1 and -2 associated with F-actin in response to serum factors, in pseudopodia, in pinocytic and phagocytic vesicles, and at cell division sites. Ehformin-1 and -2 also localized with the microtubular assembly in the nucleus, indicating their involvement in genome segregation. While increased expression of Ehformin-1 and -2 did not affect phagocytosis or motility, it clearly showed an increase in the number of binucleated cells, the number of nuclei in multinucleated cells, and the average DNA content of each nucleus, suggesting that these proteins regulate both mitosis and cytokinesis in E. histolytica.


Asunto(s)
División Celular/genética , ADN Protozoario/genética , Entamoeba histolytica/metabolismo , Proteínas de Microfilamentos/genética , Proteínas Protozoarias/metabolismo , Animales , Entamoeba histolytica/genética , Regulación de la Expresión Génica/fisiología , Genoma de Protozoos , Proteínas de Microfilamentos/clasificación , Familia de Multigenes , Filogenia , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética
9.
Biosci Rep ; 27(6): 373-84, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17592766

RESUMEN

Heterogeneity of genome content is commonly observed in axenic cultures of Entamoeba histolytica. Cells with multiple nuclei and nuclei with heterogenous genome contents suggest that regulatory mechanisms that ensure alternation of DNA synthesis and mitosis are absent in this organism. Therefore, several endo-reduplicative cycles may occur without mitosis. The data also shows that unlike other endo-reduplicating organisms, E.histolytica does not undergo a precise number of endo-reduplicative cycles. We propose that irregular endo-reduplication and genome partitioning lead to heterogeneity in the genome content of E.histolytica trophozoites in their proliferative phase. The goal of future studies should be aimed at understanding the mechanisms that are involved in (a) accumulation of multiple genome contents in a single nucleus; (b) genome segregation in nuclei that contain multiple genome contents and (c) maintenance of genome fidelity in E. histolytica.


Asunto(s)
Núcleo Celular/genética , Replicación del ADN/genética , Entamoeba histolytica/genética , Genoma de Protozoos/genética , Mitosis/genética , Ploidias , Animales
10.
Cells ; 4(3): 331-53, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26264029

RESUMEN

Centrosomes are major microtubule-organizing centers of animal cells that consist of two centrioles. In mitotic cells, centrosomes are duplicated to serve as the poles of the mitotic spindle, while in quiescent cells, centrosomes move to the apical membrane where the oldest centriole is transformed into a basal body to assemble a primary cilium. We recently showed that mitochondrial outer membrane porin VDAC3 localizes to centrosomes where it negatively regulates ciliogenesis. We show here that the other two family members, VDAC1 and VDAC2, best known for their function in mitochondrial bioenergetics, are also found at centrosomes. Like VDAC3, centrosomal VDAC1 is predominantly localized to the mother centriole, while VDAC2 localizes to centriolar satellites in a microtubule-dependent manner. Down-regulation of VDAC1 leads to inappropriate ciliogenesis, while its overexpression suppresses cilia formation, suggesting that VDAC1 and VDAC3 both negatively regulate ciliogenesis. However, this negative effect on ciliogenesis is not shared by VDAC2, which instead appears to promote maturation of primary cilia. Moreover, because overexpression of VDAC3 cannot compensate for depletion of VDAC1, our data suggest that while the entire VDAC family localizes to centrosomes, they have non-redundant functions in cilogenesis.

11.
Mol Biol Cell ; 26(21): 3741-53, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26354417

RESUMEN

Centrins are a family of small, calcium-binding proteins with diverse cellular functions that play an important role in centrosome biology. We previously identified centrin 2 and centrin 3 (Cetn2 and Cetn3) as substrates of the protein kinase Mps1. However, although Mps1 phosphorylation sites control the function of Cetn2 in centriole assembly and promote centriole overproduction, Cetn2 and Cetn3 are not functionally interchangeable, and we show here that Cetn3 is both a biochemical inhibitor of Mps1 catalytic activity and a biological inhibitor of centrosome duplication. In vitro, Cetn3 inhibits Mps1 autophosphorylation at Thr-676, a known site of T-loop autoactivation, and interferes with Mps1-dependent phosphorylation of Cetn2. The cellular overexpression of Cetn3 attenuates the incorporation of Cetn2 into centrioles and centrosome reduplication, whereas depletion of Cetn3 generates extra centrioles. Finally, overexpression of Cetn3 reduces Mps1 Thr-676 phosphorylation at centrosomes, and mimicking Mps1-dependent phosphorylation of Cetn2 bypasses the inhibitory effect of Cetn3, suggesting that the biological effects of Cetn3 are due to the inhibition of Mps1 function at centrosomes.


Asunto(s)
Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Centriolos/metabolismo , Centrosoma/metabolismo , Células HEK293 , Células HeLa , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo
12.
J Vis Exp ; (94)2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25548932

RESUMEN

Centrosomes are small but important organelles that serve as the poles of mitotic spindle to maintain genomic integrity or assemble primary cilia to facilitate sensory functions in cells. The level of a protein may be regulated differently at centrosomes than at other .cellular locations, and the variation in the centrosomal level of several proteins at different points of the cell cycle appears to be crucial for the proper regulation of centriole assembly. We developed a quantitative fluorescence microscopy assay that measures relative changes in the level of a protein at centrosomes in fixed cells from different samples, such as at different phases of the cell cycle or after treatment with various reagents. The principle of this assay lies in measuring the background corrected fluorescent intensity corresponding to a protein at a small region, and normalize that measurement against the same for another protein that does not vary under the chosen experimental condition. Utilizing this assay in combination with BrdU pulse and chase strategy to study unperturbed cell cycles, we have quantitatively validated our recent observation that the centrosomal pool of VDAC3 is regulated at centrosomes during the cell cycle, likely by proteasome-mediated degradation specifically at centrosomes.


Asunto(s)
Centrosoma/química , Técnica del Anticuerpo Fluorescente , Microscopía Fluorescente/métodos , Proteínas/análisis , Ciclo Celular , Cilios/metabolismo , Humanos , Huso Acromático/metabolismo
13.
Cell Cycle ; 12(5): 849-58, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23388454

RESUMEN

Centrosomes serve to organize new centrioles in cycling cells, whereas in quiescent cells they assemble primary cilia. We have recently shown that the mitochondrial porin VDAC3 is also a centrosomal protein that is predominantly associated with the mother centriole and modulates centriole assembly by recruiting Mps1 to centrosomes. Here, we show that depletion of VDAC3 causes inappropriate ciliogenesis in cycling cells, while expression of GFP-VDAC3 suppresses ciliogenesis in quiescent cells. Mps1 also negatively regulates ciliogenesis, and the inappropriate ciliogenesis caused by VDAC3 depletion can be bypassed by targeting Mps1 to centrosomes independently of VDAC3. Thus, our data show that a VDAC3-Mps1 module at the centrosome promotes ciliary disassembly during cell cycle entry and suppresses cilia assembly in proliferating cells. Our data also suggests that VDAC3 might be a link between mitochondrial dysfunction and ciliopathies in mammalian cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cilios/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Organogénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Línea Celular , Centrosoma/metabolismo , Humanos , Mitocondrias/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Suero/metabolismo
14.
Cell Cycle ; 11(19): 3666-78, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22935710

RESUMEN

Centrioles are duplicated during S-phase to generate the two centrosomes that serve as mitotic spindle poles during mitosis. The centrosomal pool of the Mps1 kinase is important for centriole assembly, but how Mps1 is delivered to centrosomes is unknown. Here we have identified a centrosome localization domain within Mps1 and identified the mitochondrial porin VDAC3 as a protein that binds to this region of Mps1. Moreover, we show that VDAC3 is present at the mother centriole and modulates centriole assembly by recruiting Mps1 to centrosomes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/química , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Transporte de Proteínas , Proteínas Tirosina Quinasas/química , ARN Interferente Pequeño/metabolismo
15.
Mol Biol Cell ; 21(24): 4361-72, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20980622

RESUMEN

The nondegradable Mps1(Δ12/13) protein drives centriole overproduction, suggesting that Mps1 phosphorylates a subset of centrosomal proteins to drive the assembly of new centrioles. Here we identify three Mps1 phosphorylation sites within the centriolar protein Centrin 2 (Cetn2). Although centrioles can be assembled in the absence of Cetn2, centriole assembly is attenuated in the absence of Cetn2. While wild-type Cetn2 can compensate for this attenuation, a nonphosphorylatable version cannot. In addition, overexpressing Cetn2 causes Mps1-dependent centriole overproduction that requires each of the three Mps1 phosphorylation sites within Cetn2 and is greatly exacerbated by mimicking phosphorylation at any of these sites. Wild-type Cetn2 generates excess foci that are competent as mitotic spindle poles in HsSas-6-depleted cells, suggesting that Cetn2 can organize a subset of centriolar proteins independently of cartwheels. However, centriole overproduction caused by a phosphomimetic Cetn2 mutant requires HsSas-6, suggesting that Cetn2 phosphorylation stimulates the canonical centriole assembly pathway. Moreover, in the absence of Cetn2, Mps1(Δ12/13) cannot drive the production of mature centrioles capable of recruiting γ-Tubulin, and a nonphosphorylatable Cetn2 mutant cannot compensate for this defect and exacerbates Cetn2 depletion. Together, our data suggest that Mps1-dependent phosphorylation of Cetn2 stimulates the canonical centriole assembly pathway.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al Calcio/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Línea Celular , Centriolos/fisiología , Centriolos/ultraestructura , Centrosoma/metabolismo , Centrosoma/fisiología , Humanos , Datos de Secuencia Molecular , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Tirosina Quinasas , ARN Interferente Pequeño , Huso Acromático/metabolismo , Huso Acromático/fisiología , Tubulina (Proteína)/metabolismo
16.
PLoS Negl Trop Dis ; 3(4): e409, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19352422

RESUMEN

Accumulation of multiple copies of the genome in a single nucleus and several nuclei in a single cell has previously been noted in Entamoeba histolytica, contributing to the genetic heterogeneity of this unicellular eukaryote. In this study, we demonstrate that this genetic heterogeneity is an inherent feature of the cell cycle of this organism. Chromosome segregation occurs on a variety of novel microtubular assemblies including multi-polar spindles. Cytokinesis in E. histolytica is completed by the mechanical severing of a thin cytoplasmic bridge, either independently or with the help of neighboring cells. Importantly, cytokinesis is uncoupled from the nuclear division cycle, both temporally and spatially, leading to the formation of unequal daughter cells. Sorting of euploid and polyploid cells showed that each of these sub-populations acquired heterogeneous DNA content upon further growth. Our study conclusively demonstrates that genetic heterogeneity originates from the unique mode of cell division events in this protist.


Asunto(s)
Núcleo Celular/genética , Segregación Cromosómica , Citocinesis , ADN Protozoario/genética , Entamoeba histolytica/fisiología , Variación Genética , Animales , Entamoeba histolytica/genética , Ploidias
17.
Cell Microbiol ; 9(2): 316-28, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16925786

RESUMEN

Earlier studies have established two unusual features in the cell division cycle of Entamoeba histolytica. First, microtubules form a radial assembly instead of a bipolar mitotic spindle, and second, the genome content of E. histolytica cells varied from 1x to 6x or more. In this study, Eh Klp5 was identified as a divergent member of the BimC kinesin family that is known to regulate formation and stabilization of the mitotic spindle in other eukaryotes. In contrast to earlier studies, we show here that bipolar microtubular spindles were formed in E. histolytica but were visible only in 8-12% of the cells after treatment with taxol. The number of bipolar spindles was significantly increased in Eh Klp5 stable transformants (20-25%) whereas Eh Klp5 double-stranded RNA (dsRNA) transformants did not show any spindles (< 1%). The genome content of Eh Klp5 stable transformants was regulated between 1x and 2x unlike control cells. Binucleated cells accumulated in Eh Klp5 dsRNA transformants and after inhibition of Eh Klp5 with small molecule inhibitors in control cells, suggesting that cytokinesis was delayed in the absence of Eh Klp5. Taken together, our results indicate that Eh Klp5 regulates microtubular assembly, genome content and cell division in E. histolytica. Additionally, Eh Klp5 showed alterations in its drug-binding site compared with its human homologue, Hs Eg5 and this was reflected in its reduced sensitivity to Eg5 inhibitors - monastrol and HR22C16 analogues.


Asunto(s)
Entamoeba histolytica/metabolismo , Genoma de Protozoos/fisiología , Cinesinas/fisiología , Microtúbulos/fisiología , Huso Acromático/fisiología , Animales , Células Cultivadas , Entamoeba histolytica/genética , Entamoeba histolytica/fisiología , Regulación de la Expresión Génica , Genes Protozoarios/genética , Genes Protozoarios/fisiología , Cinesinas/antagonistas & inhibidores
18.
Appl Environ Microbiol ; 72(12): 7842-8, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17056697

RESUMEN

Clostridial glucosylating cytotoxins inactivate mammalian Rho GTPases by mono-O glucosylation of a conserved threonine residue located in the switch 1 region of the target protein. Here we report that EhRho1, a RhoA-like GTPase from the protozoan parasite Entamoeba histolytica, is glucosylated by clostridial cytotoxins. Recombinant glutathione S-transferase-EhRho1 and EhRho1 from cell lysate of Entamoeba histolytica were glucosylated by Clostridium difficile toxin B and Clostridium novyi alpha-toxin. In contrast, Clostridium difficile toxin A, which shares the same mammalian protein substrates with toxin B, did not modify EhRho1. Change of threonine 52 of EhRho1 to alanine prevented glucosylation by toxin B from Clostridium difficile and by alpha-toxin from Clostridium novyi, which suggests that the equivalent threonine residues are glucosylated in mammalian and Entamoeba Rho GTPases. Lethal toxin from Clostridium sordellii did not glucosylate EhRho1 but labeled several other substrate proteins in lysates from Entamoeba histolytica in the presence of UDP-[14C]glucose.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Entamoeba histolytica/enzimología , Fosfolipasas de Tipo C/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Secuencia de Aminoácidos , Animales , Clostridium/metabolismo , Medios de Cultivo , Entamoeba histolytica/crecimiento & desarrollo , Entamoeba histolytica/metabolismo , Glicosilación , Humanos , Datos de Secuencia Molecular , Especificidad por Sustrato , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA