Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 33(19): 10411-10425, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37550066

RESUMEN

Dietary polyphenols have beneficial effects in situations of impaired cognition in acute models of neurodegeneration. The possibility that they may have a direct effect on the electrical activity of neuronal populations has not been tested. We explored the electrophysiological action of protocatechuic acid (PCA) on CA1 pyramidal cells ex vivo and network activity in anesthetized female rats using pathway-specific field potential (FP) generators obtained from laminar FPs in cortex and hippocampus. Whole-cell recordings from CA1 pyramidal cells revealed increased synaptic potentials, particularly in response to basal dendritic excitation, while the associated evoked firing was significantly reduced. This counterintuitive result was attributed to a marked increase of the rheobase and voltage threshold, indicating a decreased ability to generate spikes in response to depolarizing current. Systemic administration of PCA only slightly altered the ongoing activity of some FP generators, although it produced a striking disengagement of infraslow activities between the cortex and hippocampus on a scale of minutes. To our knowledge, this is the first report showing the direct action of a dietary polyphenol on electrical activity, performing neuromodulatory roles at both the cellular and network levels.


Asunto(s)
Hipocampo , Neuronas , Ratas , Femenino , Animales , Potenciales de Acción/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Células Piramidales/fisiología
2.
Cereb Cortex ; 33(7): 3636-3650, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35972425

RESUMEN

The activity of neuron populations gives rise to field potentials (FPs) that extend beyond the sources. Their mixing in the volume dilutes the original temporal motifs in a site-dependent manner, a fact that has received little attention. And yet, it potentially rids of physiological significance the time-frequency parameters of individual waves (amplitude, phase, duration). This is most likely to happen when a single source or a local origin is erroneously assumed. Recent studies using spatial treatment of these signals and anatomically realistic modeling of neuron aggregates provide convincing evidence for the multisource origin and site-dependent blend of FPs. Thus, FPs generated in primary structures like the neocortex and hippocampus reach far and cross-contaminate each other but also, they add and even impose their temporal traits on distant regions. Furthermore, both structures house neurons that act as spatially distinct (but overlapped) FP sources whose activation is state, region, and time dependent, making the composition of so-called local FPs highly volatile and strongly site dependent. Since the spatial reach cannot be predicted without source geometry, it is important to assess whether waveforms and temporal motifs arise from a single source; otherwise, those from each of the co-active sources should be sought.


Asunto(s)
Atención , Neuronas , Neuronas/fisiología , Hipocampo
3.
Chaos ; 33(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38079645

RESUMEN

The correlation dimension (CD) is a nonlinear measure of the complexity of invariant sets. First introduced for describing low-dimensional chaotic attractors, it has been later extended to the analysis of experimental electroencephalographic (EEG), magnetoencephalographic (MEG), and local field potential (LFP) recordings. However, its direct application to high-dimensional (dozens of signals) and high-definition (kHz sampling rate) 2HD data revealed a controversy in the results. We show that the need for an exponentially long data sample is the main difficulty in dealing with 2HD data. Then, we provide a novel method for estimating CD that enables orders of magnitude reduction of the required sample size. The approach decomposes raw data into statistically independent components and estimates the CD for each of them separately. In addition, the method allows ongoing insights into the interplay between the complexity of the contributing components, which can be related to different anatomical pathways and brain regions. The latter opens new approaches to a deeper interpretation of experimental data. Finally, we illustrate the method with synthetic data and LFPs recorded in the hippocampus of a rat.


Asunto(s)
Electroencefalografía , Magnetoencefalografía , Ratas , Animales , Factores de Tiempo , Electroencefalografía/métodos , Encéfalo , Hipocampo
4.
J Neurosci ; 39(45): 8900-8915, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31548234

RESUMEN

Spontaneous correlated activity in cortical columns is critical for postnatal circuit refinement. We used spatial discrimination techniques to explore the late maturation of synaptic pathways through the laminar distribution of the field potential (FP) generators underlying spontaneous and evoked activities of the S1HL cortex in juvenile (P14-P16) and adult anesthetized rats. Juveniles exhibit an intermittent FP pattern resembling Up/Down states in adults, but with much reduced power and different laminar distribution. Whereas FPs in active periods are dominated by a layer VI generator in juveniles, in adults a developing multipart generator takes over, displaying current sinks in middle layers (III-V). The blockade of excitatory transmission in upper and middle layers of adults recovered the juvenile-like FP profiles. In addition to the layer VI generator, a gamma-specific generator in supragranular layers was the same in both age groups. While searching for dynamical coupling among generators in juveniles we found significant cross-correlation in ∼one-half of the tested pairs, whereas excessive coherence hindered their efficient separation in adults. Also, potentials evoked by tactile and electrical stimuli showed different short-latency dipoles between the two age groups, and the juveniles lacked the characteristic long latency UP state currents in middle layers. In addition, the mean firing rate of neurons was lower in juveniles. Thus, cortical FPs originate from different intra-columnar segments as they become active postnatally. We suggest that although some cortical segments are active early postnatally, a functional sensory-motor control relies on a delayed maturation and network integration of synaptic connections in middle layers.SIGNIFICANCE STATEMENT Early postnatal activity in the rodent cortex is mostly endogenous, whereas it becomes driven by peripheral input at later stages. The precise schedule for the maturation of synaptic pathways is largely unknown. We explored this in the somatosensory hindlimb cortex at an age when animals begin to use their limbs by uncovering the laminar distribution of the field potential generators underlying the dominant delta waves in juveniles and adults. Our results suggest that field potentials are mostly generated by a pathway in deep layers, whereas other pathways mature later in middle layers and take over in adults. We suggest that a functional sensory-motor control relies on a delayed maturation and network integration of synaptic connections in middle layers.


Asunto(s)
Potenciales Evocados Somatosensoriales , Neurogénesis , Corteza Somatosensorial/fisiología , Animales , Femenino , Ritmo Gamma , Masculino , Ratas , Ratas Wistar , Tiempo de Reacción , Corteza Somatosensorial/citología , Corteza Somatosensorial/crecimiento & desarrollo , Tacto
5.
Cereb Cortex ; 29(12): 5234-5254, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30941394

RESUMEN

Brain field potentials (FPs) can reach far from their sources, making difficult to know which waves come from where. We show that modern algorithms efficiently segregate the local and remote contributions to cortical FPs by recovering the generator-specific spatial voltage profiles. We investigated experimentally and numerically the local and remote origin of FPs in different cortical areas in anesthetized rats. All cortices examined show significant state, layer, and region dependent contribution of remote activity, while the voltage profiles help identify their subcortical or remote cortical origin. Co-activation of different cortical modules can be discriminated by the distinctive spatial features of the corresponding profiles. All frequency bands contain remote activity, thus influencing the FP time course, in cases drastically. The reach of different FP patterns is boosted by spatial coherence and curved geometry of the sources. For instance, slow cortical oscillations reached the entire brain, while hippocampal theta reached only some portions of the cortex. In anterior cortices, most alpha oscillations have a remote origin, while in the visual cortex the remote theta and gamma even surpass the local contribution. The quantitative approach to local and distant FP contributions helps to refine functional connectivity among cortical regions, and their relation to behavior.


Asunto(s)
Corteza Cerebral/fisiología , Potenciales Evocados/fisiología , Modelos Neurológicos , Animales , Electroencefalografía , Ratas , Ratas Wistar
6.
Bull Math Biol ; 81(11): 4856-4888, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-29556797

RESUMEN

Codifying memories is one of the fundamental problems of modern Neuroscience. The functional mechanisms behind this phenomenon remain largely unknown. Experimental evidence suggests that some of the memory functions are performed by stratified brain structures such as the hippocampus. In this particular case, single neurons in the CA1 region receive a highly multidimensional input from the CA3 area, which is a hub for information processing. We thus assess the implication of the abundance of neuronal signalling routes converging onto single cells on the information processing. We show that single neurons can selectively detect and learn arbitrary information items, given that they operate in high dimensions. The argument is based on stochastic separation theorems and the concentration of measure phenomena. We demonstrate that a simple enough functional neuronal model is capable of explaining: (i) the extreme selectivity of single neurons to the information content, (ii) simultaneous separation of several uncorrelated stimuli or informational items from a large set, and (iii) dynamic learning of new items by associating them with already "known" ones. These results constitute a basis for organization of complex memories in ensembles of single neurons. Moreover, they show that no a priori assumptions on the structural organization of neuronal ensembles are necessary for explaining basic concepts of static and dynamic memories.


Asunto(s)
Encéfalo/citología , Encéfalo/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Modelos Neurológicos , Neuronas/fisiología , Animales , Aprendizaje por Asociación/fisiología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/fisiología , Simulación por Computador , Humanos , Aprendizaje Automático , Conceptos Matemáticos , Redes Neurales de la Computación , Plasticidad Neuronal/fisiología , Estimulación Luminosa , Células Piramidales/citología , Células Piramidales/fisiología , Procesos Estocásticos
7.
Cereb Cortex ; 26(10): 4082-4100, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26400920

RESUMEN

Identifying the pathways contributing to local field potential (LFP) events and oscillations is essential to determine whether synchronous interregional patterns indicate functional connectivity. Here, we studied experimentally and numerically how different target structures receiving input from a common population shape their LFPs. We focused on the bilateral CA3 that sends gamma-paced excitatory packages to the bilateral CA1, the lateral septum, and itself (recurrent input). The CA3-specific contribution was isolated from multisite LFPs in target regions using spatial discrimination techniques. We found strong modulation of LFPs by target-specific features, including the morphology and population arrangement of cells, the timing of CA3 inputs, volume conduction from nearby targets, and co-activated inhibition. Jointly they greatly affect the LFP amplitude, profile, and frequency characteristics. For instance, ipsilateral (Schaffer) LFPs occluded contralateral ones, and septal LFPs arise mostly from remote sources while local contribution from CA3 input was minor. In the CA3 itself, gamma waves have dual origin from local networks: in-phase excitatory and nearly antiphase inhibitory. Also, waves may have different duration and varying phase in different targets. These results indicate that to explore the cellular basis of LFPs and the functional connectivity between structures, besides identifying the origin population/s, target modifiers should be considered.


Asunto(s)
Región CA3 Hipocampal/fisiología , Animales , Bicuculina/farmacología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/efectos de los fármacos , Catéteres de Permanencia , Simulación por Computador , Electrodos Implantados , Femenino , Lateralidad Funcional , Antagonistas de Receptores de GABA-A/farmacología , Ritmo Gamma/fisiología , Lidocaína/farmacología , Potenciales de la Membrana , Modelos Neurológicos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ratas Sprague-Dawley , Núcleos Septales/efectos de los fármacos , Núcleos Septales/fisiología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
8.
J Neurosci ; 33(39): 15518-32, 2013 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-24068819

RESUMEN

To determine why some pathways but not others produce sizable local field potentials (LFPs) and how far from the source can these be recorded, complementary experimental analyses and realistic modeling of specific brain structures are required. In the present study, we combined multiple in vivo linear recordings in rats and a tridimensional finite element model of the dentate gyrus, a curved structure displaying abnormally large positive LFPs. We demonstrate that the polarized dendritic arbour of granule cells (GCs), combined with the curved layered configuration of the population promote the spatial clustering of GC currents in the interposed hilus and project them through the open side at a distance from cell domains. LFPs grow up to 20 times larger than observed in synaptic sites. The dominant positive polarity of hilar LFPs was only produced by the synchronous activation of GCs in both blades by either somatic inhibition or dendritic excitation. Moreover, the corresponding anatomical pathways must project to both blades of the dentate gyrus as even a mild decrease in the spatial synchronization resulted in a dramatic reduction in LFP power in distant sites, yet not in the GC domains. It is concluded that the activation of layered structures may establish sharply delimited spatial domains where synaptic currents from one or another input appear to be segregated according to the topology of afferent pathways and the cytoarchitectonic features of the target population. These also determine preferred directions for volume conduction in the brain, of relevance for interpretation of surface EEG recordings.


Asunto(s)
Giro Dentado/fisiología , Modelos Neurológicos , Potenciales Sinápticos , Animales , Dendritas/fisiología , Giro Dentado/citología , Femenino , Ratas , Ratas Sprague-Dawley , Sinapsis/fisiología
9.
Exerc Immunol Rev ; 20: 135-64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24974725

RESUMEN

A large body of evidence indicates modified expression of protein-coding genes in response to different kinds of physical activity. Recent years have exposed another level of regulation of cellular processes mediated by non-coding RNAs. MicroRNAs (miRNAs) are one of the largest families of non-coding RNAs. MiRNAs mediate post-transcriptional regulation of gene expression. The amount of data supporting the key role of miRNAs in the adaptation of the immune and other body systems to exercise steadily grows. MiRNAs change their expression profiles after exercise and seem to be involved in regulation of exercise-responsive genes in immune and other cell types. Here we discuss existing data and future directions in the field.


Asunto(s)
Ejercicio Físico/fisiología , Sistema Inmunológico/fisiología , Leucocitos/metabolismo , MicroARNs/fisiología , Adulto , Animales , Biomarcadores , Enfermedad Coronaria/sangre , Enfermedad Coronaria/fisiopatología , Predicción , Perfilación de la Expresión Génica , Humanos , Inflamación/sangre , Inflamación/inmunología , Masculino , MicroARNs/sangre , MicroARNs/genética , Músculo Esquelético/metabolismo , Ratas , Traumatismos de la Médula Espinal/sangre , Traumatismos de la Médula Espinal/fisiopatología
10.
Toxins (Basel) ; 16(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38922143

RESUMEN

α-Latrotoxin (α-LTX) was found to form two-dimensional (2D) monolayer arrays in solution at relatively low concentrations (0.1 mg/mL), with the toxin tetramer constituting a unit cell. The crystals were imaged using cryogenic electron microscopy (cryoEM), and image analysis yielded a ~12 Å projection map. At this resolution, no major conformational changes between the crystalline and solution states of α-LTX tetramers were observed. Electrophysiological studies showed that, under the conditions of crystallization, α-LTX simultaneously formed multiple channels in biological membranes that displayed coordinated gating. Two types of channels with conductance levels of 120 and 208 pS were identified. Furthermore, we observed two distinct tetramer conformations of tetramers both when observed as monodisperse single particles and within the 2D crystals, with pore diameters of 11 and 13.5 Å, suggestive of a flickering pore in the middle of the tetramer, which may correspond to the two states of toxin channels with different conductance levels. We discuss the structural changes that occur in α-LTX tetramers in solution and propose a mechanism of α-LTX insertion into the membrane. The propensity of α-LTX tetramers to form 2D crystals may explain many features of α-LTX toxicology and suggest that other pore-forming toxins may also form arrays of channels to exert maximal toxic effect.


Asunto(s)
Microscopía por Crioelectrón , Animales , Venenos de Araña/química , Venenos de Araña/toxicidad , Membrana Celular/química , Multimerización de Proteína , Cristalización
11.
Biochimie ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942135

RESUMEN

Breast cancer recurrence is associated with the growth of disseminated cancer cells that separate from the primary tumor before surgical treatment and hormonal therapy and form a metastatic niche in distant organs. We previously demonstrated that IGFBP6 expression is associated with the risk of early relapse of luminal breast cancer. Knockdown of IGFBP6 in MDA-MB-231 breast cancer cells increased their invasiveness, proliferation, and metastatic potential. In addition, the knockdown of IGFBP6 leads to impaired lipid metabolism. In this study, we demonstrated that the knockdown of the IGFBP6 gene, a highly selective inhibitor of IGF-II, led to a significant decline in the number of secreted extracellular vesicles (EVs) and altered cholesterol metabolism in MDA-MB-231 cells. Knockdown of IGFBP6 led to a decrease in the essential proteins responsible for the biogenesis of cholesterol LDLR and LSS, which reduced the amount by more than 13 times. In addition, the knockdown of IGFBP6 led to a possible change in the profile of adhesion molecules on the surface of EVs. The expression of L1CAM, IGSF3, EpCAM, CD24, and CD44 decreased, and the expression of EGFR increased. We can conclude that the negative prognostic value of low expression of this gene could be associated with increased activity of IGF2 in tumor-associated fibroblasts due to low secretion of IGFBP6 by tumor cells. In addition, changing the profile of adhesion molecules on the surface of tumor EVs may contribute to the more efficient formation of metastatic niches.

12.
Front Mol Biosci ; 10: 1327985, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116380

RESUMEN

Since its original discovery over a decade ago, extracellular RNA (exRNA) has been found in all biological fluids. Furthermore, extracellular microRNA has been shown to be involved in communication between various cell types. Importantly, the exRNA is protected from RNases degradation by certain carriers including membrane vesicles and non-vesicular protein nanoparticles. Each type of carrier has its unique exRNA profile, which may vary depending on cell type and physiological conditions. To clarify putative mechanisms of intercellular communication mediated by exRNA, the RNA profile of each carrier has to be characterized. While current methods of biofluids fractionation are continuously improving, they fail to completely separate exRNA carriers. Likewise, most popular library preparation approaches for RNA sequencing do not allow obtaining exhaustive and unbiased data on exRNA transcriptome. In this mini review we discuss ongoing progress in the field of exRNA, with the focus on exRNA carriers, analyze the key methodological challenges and provide recommendations on how the latter could be overcome.

13.
Front Cell Neurosci ; 17: 1129097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37066073

RESUMEN

Field potential (FP) recording is an accessible means to capture the shifts in the activity of neuron populations. However, the spatial and composite nature of these signals has largely been ignored, at least until it became technically possible to separate activities from co-activated sources in different structures or those that overlap in a volume. The pathway-specificity of mesoscopic sources has provided an anatomical reference that facilitates transcending from theoretical analysis to the exploration of real brain structures. We review computational and experimental findings that indicate how prioritizing the spatial geometry and density of sources, as opposed to the distance to the recording site, better defines the amplitudes and spatial reach of FPs. The role of geometry is enhanced by considering that zones of the active populations that act as sources or sinks of current may arrange differently with respect to each other, and have different geometry and densities. Thus, observations that seem counterintuitive in the scheme of distance-based logic alone can now be explained. For example, geometric factors explain why some structures produce FPs and others do not, why different FP motifs generated in the same structure extend far while others remain local, why factors like the size of an active population or the strong synchronicity of its neurons may fail to affect FPs, or why the rate of FP decay varies in different directions. These considerations are exemplified in large structures like the cortex and hippocampus, in which the role of geometrical elements and regional activation in shaping well-known FP oscillations generally go unnoticed. Discovering the geometry of the sources in play will decrease the risk of population or pathway misassignments based solely on the FP amplitude or temporal pattern.

14.
Front Cell Neurosci ; 17: 1217081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576568

RESUMEN

The role of interhemispheric connections along successive segments of cortico-hippocampal circuits is poorly understood. We aimed to obtain a global picture of spontaneous transfer of activity during non-theta states across several nodes of the bilateral circuit in anesthetized rats. Spatial discrimination techniques applied to bilateral laminar field potentials (FP) across the CA1/Dentate Gyrus provided simultaneous left and right readouts in five FP generators that reflect activity in specific hippocampal afferents and associative pathways. We used a battery of correlation and coherence analyses to extract complementary aspects at different time scales and frequency bands. FP generators exhibited varying bilateral correlation that was high in CA1 and low in the Dentate Gyrus. The submillisecond delays indicate coordination but not support for synaptic dependence of one side on another. The time and frequency characteristics of bilateral coupling were specific to each generator. The Schaffer generator was strongly bilaterally coherent for both sharp waves and gamma waves, although the latter maintained poor amplitude co-variation. The lacunosum-moleculare generator was composed of up to three spatially overlapping activities, and globally maintained high bilateral coherence for long but not short (gamma) waves. These two CA1 generators showed no ipsilateral relationship in any frequency band. In the Dentate Gyrus, strong bilateral coherence was observed only for input from the medial entorhinal areas, while those from the lateral entorhinal areas were largely asymmetric, for both alpha and gamma waves. Granger causality testing showed strong bidirectional relationships between all homonymous bilateral generators except the lateral entorhinal input and a local generator in the Dentate Gyrus. It also revealed few significant relationships between ipsilateral generators, most notably the anticipation of lateral entorhinal cortex toward all others. Thus, with the notable exception of the lateral entorhinal areas, there is a marked interhemispheric coherence primarily for slow envelopes of activity, but not for pulse-like gamma waves, except in the Schafer segment. The results are consistent with essentially different streams of activity entering from and returning to the cortex on each side, with slow waves reflecting times of increased activity exchange between hemispheres and fast waves generally reflecting ipsilateral processing.

15.
Nat Commun ; 14(1): 7729, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007508

RESUMEN

Spreading depolarizations (SDs) are classically thought to be associated with spreading depression of cortical activity. Here, we found that SDs in patients with subarachnoid hemorrhage produce variable, ranging from depression to booming, changes in electrocorticographic activity, especially in the delta frequency band. In rats, depression of activity was characteristic of high-potassium-induced full SDs, whereas partial superficial SDs caused either little change or a boom of activity at the cortical vertex, supported by volume conduction of signals from spared delta generators in the deep cortical layers. Partial SDs also caused moderate neuronal depolarization and sustained excitation, organized in gamma oscillations in a narrow sub-SD zone. Thus, our study challenges the concept of homology between spreading depolarization and spreading depression by showing that SDs produce variable, from depression to booming, changes in activity at the cortical surface and in different cortical layers depending on the depth of SD penetration.


Asunto(s)
Depresión de Propagación Cortical , Hemorragia Subaracnoidea , Humanos , Ratas , Animales , Depresión de Propagación Cortical/fisiología , Electrocorticografía , Cabeza , Neuronas
16.
Biochimie ; 192: 91-101, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34637894

RESUMEN

In this study we analyzed expression of CD24 in a cohort of colorectal cancer patients using immunohistochemistry staining of CD24. We found a significant association between absence or low expression of CD24 (10% of membranous and 55% of cytoplasmic staining) and shortened patient survival. Protein localization played a crucial role in the prognosis: membranous form was the major and prognostic one in primary tumors, while cytoplasmic expression was elevated in liver metastases compared to the primary tumors and contained prognostic information. Then, using The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) RNA-seq data, we showed that CD24 mRNA level was two-fold decreased in primary colorectal cancers compared to adjacent normal mucosa. Like the protein staining data, ten percent of patients with the lowest mRNA expression levels of CD24 in primary tumors had reduced survival compared to the ones with higher expression. To explain these findings mechanistically, shRNA-mediated CD24 knockdown was performed in HT-29 colorectal cancer cells. It resulted in the increase of cell migration in vitro, no changes in proliferation and apoptosis, and a slight decrease in cell invasion. As increased cell migration is a hallmark of metastasis formation, this finding corroborates the association of a decreased CD24 expression with poor prognosis. Differential gene expression analysis revealed upregulation of genes involved in cell migration in the group of patients with low CD24 expression, including integrin subunit α3 and α3, ß3 subunits of laminin 332. Further co-expression analysis identified SPI1, STAT1 and IRF1 transcription factors as putative master-regulators in this group.


Asunto(s)
Antígeno CD24 , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias , Anciano , Antígeno CD24/biosíntesis , Antígeno CD24/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Supervivencia sin Enfermedad , Femenino , Células HT29 , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Tasa de Supervivencia
17.
BMC Genomics ; 12: 543, 2011 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-22047601

RESUMEN

BACKGROUND: Small nucleolar RNAs (snoRNAs) are a large group of non-coding RNAs (ncRNAs) that mainly guide 2'-O-methylation (C/D RNAs) and pseudouridylation (H/ACA RNAs) of ribosomal RNAs. The pattern of rRNA modifications and the set of snoRNAs that guide these modifications are conserved in vertebrates. Nearly all snoRNA genes in vertebrates are localized in introns of other genes and are processed from pre-mRNAs. Thus, the same promoter is used for the transcription of snoRNAs and host genes. RESULTS: The series of studies by Dahai Zhu and coworkers on snoRNAs and their genes were critically considered. We present evidence that dozens of species-specific snoRNAs that they described in vertebrates are experimental artifacts resulting from the improper use of Northern hybridization. The snoRNA genes with putative intrinsic promoters that were supposed to be transcribed independently proved to contain numerous substitutions and are, most likely, pseudogenes. In some cases, they are localized within introns of overlooked host genes. Finally, an increased number of snoRNA genes in mammalian genomes described by Zhu and coworkers is also an artifact resulting from two mistakes. First, numerous mammalian snoRNA pseudogenes were considered as genes, whereas most of them are localized outside of host genes and contain substitutions that question their functionality. Second, Zhu and coworkers failed to identify many snoRNA genes in non-mammalian species. As an illustration, we present 1352 C/D snoRNA genes that we have identified and annotated in vertebrates. CONCLUSIONS: Our results demonstrate that conclusions based only on databases with automatically annotated ncRNAs can be erroneous. Special investigations aimed to distinguish true RNA genes from their pseudogenes should be done. Zhu and coworkers, as well as most other groups studying vertebrate snoRNAs, give new names to newly described homologs of human snoRNAs, which significantly complicates comparison between different species. It seems necessary to develop a uniform nomenclature for homologs of human snoRNAs in other vertebrates, e.g., human gene names prefixed with several-letter code denoting the vertebrate species.


Asunto(s)
Evolución Molecular , Macaca mulatta/genética , ARN Nucleolar Pequeño/genética , Animales
18.
Front Immunol ; 12: 661204, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995383

RESUMEN

Hepatitis B virus (HBV)-associated hepatocellular carcinoma (HBV-HCC) pathogenesis is fueled by persistent HBV infection that stealthily maintains a delicate balance between viral replication and evasion of the host immune system. HBV is remarkably adept at using a combination of both its own, as well as host machinery to ensure its own replication and survival. A key tool in its arsenal, is the HBx protein which can manipulate the epigenetic landscape to decrease its own viral load and enhance persistence, as well as manage host genome epigenetic responses to the presence of viral infection. The HBx protein can initiate epigenetic modifications to dysregulate miRNA expression which, in turn, can regulate downstream epigenetic changes in HBV-HCC pathogenesis. We attempt to link the HBx and miRNA induced epigenetic modulations that influence both the HBV and host genome expression in HBV-HCC pathogenesis. In particular, the review investigates the interplay between CHB infection, the silencing role of miRNA, epigenetic change, immune system expression and HBV-HCC pathogenesis. The review demonstrates exactly how HBx-dysregulated miRNA in HBV-HCC pathogenesis influence and are influenced by epigenetic changes to modulate both viral and host genome expression. In particular, the review identifies a specific subset of HBx induced epigenetic miRNA pathways in HBV-HCC pathogenesis demonstrating the complex interplay between HBV infection, epigenetic change, disease and immune response. The wide-ranging influence of epigenetic change and miRNA modulation offers considerable potential as a therapeutic option in HBV-HCC.


Asunto(s)
Carcinoma Hepatocelular/inmunología , Epigénesis Genética/inmunología , Virus de la Hepatitis B/inmunología , Hepatitis B/inmunología , Neoplasias Hepáticas/inmunología , MicroARNs/inmunología , Transactivadores/inmunología , Proteínas Reguladoras y Accesorias Virales/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , Regulación Neoplásica de la Expresión Génica/inmunología , Hepatitis B/genética , Hepatitis B/virología , Virus de la Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , Interacciones Huésped-Patógeno/inmunología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , MicroARNs/genética , Transactivadores/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo
19.
J Neurophysiol ; 103(5): 2446-57, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20220074

RESUMEN

Spreading depression (SD) is a pathological wave of depolarization of the neural tissue producing a negative macroscopic field potential (V(o)), used as a marker for diagnostic purposes. The cellular basis of SD and neuronal mechanisms of generation of V(o) at the microscopic level are poorly understood. Using a CA1 mathematical model and experimental verification, we examined how transmembrane currents in single cells scale up in the extracellular space shaping V(o). The model includes an array of 17,000 realistically modeled neurons (responsible for generating transmembrane currents) dynamically coupled to a virtual aggregate/extracellular space (responsible for V(o)). The SD wave in different tissue bands is simulated by imposing membrane shunts in the corresponding dendritic elements as suggested by experimentally assessed drop in membrane resistance. We show that strong isopotential depolarization of wide domains (as in the main SD phase) produce broad central cancellation of axial and transmembrane currents in single cells. When depolarization is restricted to narrow dendritic domains (as in the late SD phase), the internal cancellation shrinks and the transmembrane current increases. This explains why in the laminated CA1 the V(o) is smaller in the main phase of SD, when both dendritic layers are seized, than in the SD tail restricted to an apical band. Moreover, scattering of the neuronal somatas (as in cortical regions) further decreases the aggregate V(o) due to the volume averaging. Although mechanistically the V(o) associated to SD is similar to customary transient fields, its changes maybe related to spatial factors in single cells rather than cell number or depolarization strength.


Asunto(s)
Región CA1 Hipocampal/fisiología , Depresión de Propagación Cortical/fisiología , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Neuronas/fisiología , Animales , Región CA1 Hipocampal/citología , Simulación por Computador , Dendritas/fisiología , Espacio Extracelular/fisiología , Retroalimentación Fisiológica , Microelectrodos , Neuronas/citología , Células Piramidales/citología , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
20.
J Comput Neurosci ; 29(3): 445-57, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20094907

RESUMEN

The spontaneous activity of working neurons yields synaptic currents that mix up in the volume conductor. This activity is picked up by intracerebral recording electrodes as local field potentials (LFPs), but their separation into original informative sources is an unresolved problem. Assuming that synaptic currents have stationary placing we implemented independent component model for blind source separation of LFPs in the hippocampal CA1 region. After suppressing contaminating sources from adjacent regions we obtained three main local LFP generators. The specificity of the information contained in isolated generators is much higher than in raw potentials as revealed by stronger phase-spike correlation with local putative interneurons. The spatial distribution of the population synaptic input corresponding to each isolated generator was disclosed by current-source density analysis of spatial weights. The found generators match with axonal terminal fields from subtypes of local interneurons and associational fibers from nearby subfields. The found distributions of synaptic currents were employed in a computational model to reconstruct spontaneous LFPs. The phase-spike correlations of simulated units and LFPs show laminar dependency that reflects the nature and magnitude of the synaptic currents in the targeted pyramidal cells. We propose that each isolated generator captures the synaptic activity driven by a different neuron subpopulation. This offers experimentally justified model of local circuits creating extracellular potential, which involves distinct neuron subtypes.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Potenciales de la Membrana/fisiología , Algoritmos , Animales , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Corteza Cerebral/fisiología , Interpretación Estadística de Datos , Giro Dentado/fisiología , Electroencefalografía , Femenino , Modelos Neurológicos , Terminales Presinápticos/fisiología , Análisis de Componente Principal , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA