Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(22): e2221483120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216508

RESUMEN

The enzymatic decarboxylation of fatty acids (FAs) represents an advance toward the development of biological routes to produce drop-in hydrocarbons. The current mechanism for the P450-catalyzed decarboxylation has been largely established from the bacterial cytochrome P450 OleTJE. Herein, we describe OleTPRN, a poly-unsaturated alkene-producing decarboxylase that outrivals the functional properties of the model enzyme and exploits a distinct molecular mechanism for substrate binding and chemoselectivity. In addition to the high conversion rates into alkenes from a broad range of saturated FAs without dependence on high salt concentrations, OleTPRN can also efficiently produce alkenes from unsaturated (oleic and linoleic) acids, the most abundant FAs found in nature. OleTPRN performs carbon-carbon cleavage by a catalytic itinerary that involves hydrogen-atom transfer by the heme-ferryl intermediate Compound I and features a hydrophobic cradle at the distal region of the substrate-binding pocket, not found in OleTJE, which is proposed to play a role in the productive binding of long-chain FAs and favors the rapid release of products from the metabolism of short-chain FAs. Moreover, it is shown that the dimeric configuration of OleTPRN is involved in the stabilization of the A-A' helical motif, a second-coordination sphere of the substrate, which contributes to the proper accommodation of the aliphatic tail in the distal and medial active-site pocket. These findings provide an alternative molecular mechanism for alkene production by P450 peroxygenases, creating new opportunities for biological production of renewable hydrocarbons.


Asunto(s)
Alquenos , Ácidos Grasos , Ácidos Grasos/metabolismo , Alquenos/química , Descarboxilación , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidación-Reducción
2.
Proc Natl Acad Sci U S A ; 119(39): e2210908119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122239

RESUMEN

Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of para-aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen Chlamydia trachomatis. The pathway used by Chlamydiae for pABA synthesis differs from the canonical multi-enzyme pathway used by most bacteria that relies on chorismate as a metabolic precursor. Rather, recent work showed pABA formation by CADD derives from l-tyrosine. As a member of the emerging superfamily of heme oxygenase-like diiron oxidases (HDOs), CADD was proposed to use a diiron cofactor for catalysis. However, we report maximal pABA formation by CADD occurs upon the addition of both iron and manganese, which implicates a heterobimetallic Fe:Mn cluster is the catalytically active form. Isotopic labeling experiments and proteomics studies show that CADD generates pABA from a protein-derived tyrosine (Tyr27), a residue that is ∼14 Šfrom the dimetal site. We propose that this self-sacrificial reaction occurs through O2 activation by a probable Fe:Mn cluster through a radical relay mechanism that connects to the "substrate" Tyr, followed by amination and direct oxygen insertion. These results provide the molecular basis for pABA formation in C. trachomatis, which will inform the design of novel therapeutics.


Asunto(s)
Proteínas Bacterianas , Chlamydia trachomatis , Oxigenasas , Tirosina , para-Aminobenzoatos , Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/enzimología , Ácido Fólico , Hierro/metabolismo , Manganeso/metabolismo , Oxígeno/metabolismo , Oxigenasas/metabolismo , Tirosina/metabolismo , para-Aminobenzoatos/metabolismo
3.
Biochemistry ; 62(22): 3276-3282, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37936269

RESUMEN

Chlamydia protein associating with death domains (CADD), the founding member of a recently discovered class of nonheme dimetal enzymes termed hemeoxygenase-like dimetaloxidases (HDOs), plays an indispensable role in pathogen survival. CADD orchestrates the biosynthesis of p-aminobenzoic acid (pABA) for integration into folate via the self-sacrificial excision of a protein-derived tyrosine (Tyr27) and several additional processing steps, the nature and timing of which have yet to be fully clarified. Nuclear magnetic resonance (NMR) and proteomics approaches reveal the source and probable timing of amine installation by a neighboring lysine (Lys152). Turnover studies using limiting O2 have identified a para-aminobenzaldehyde (pABCHO) metabolic intermediate that is formed on the path to pABA formation. The use of pABCHO and other probe substrates shows that the heterobimetallic Fe/Mn form of the enzyme is capable of oxygen insertion to generate the pABA-carboxylate.


Asunto(s)
Ácido 4-Aminobenzoico , para-Aminobenzoatos , para-Aminobenzoatos/metabolismo , Ácido 4-Aminobenzoico/metabolismo , Ácido Fólico/metabolismo
4.
J Am Chem Soc ; 145(35): 19256-19264, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37611404

RESUMEN

The cytochrome P450 (CYP) AspB is involved in the biosynthesis of the diketopiperazine (DKP) aspergilazine A. Tryptophan-linked dimeric DKP alkaloids are a large family of natural products that are found in numerous species and exhibit broad and often potent bioactivity. The proposed mechanisms for C-N bond formation by AspB, and similar C-C bond formations by related CYPs, have invoked the use of a ferryl-intermediate as an oxidant to promote substrate dimerization. Here, the parallel application of steady-state and transient kinetic approaches reveals a very different mechanism that involves a ferric-superoxide species as a primary oxidant to initiate DKP-assembly. Single turnover kinetic isotope effects and a substrate analog suggest the probable nature and site for abstraction. The direct observation of CYP-superoxide reactivity rationalizes the atypical outcome of AspB and reveals a new reaction manifold in heme enzymes.


Asunto(s)
Hierro , Superóxidos , Dimerización , Sistema Enzimático del Citocromo P-450 , Oxidantes , Dicetopiperazinas , Dipéptidos , Electrólitos , Catálisis
5.
J Am Chem Soc ; 144(10): 4457-4468, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35138840

RESUMEN

Tuning metal oxidation states in metal-organic framework (MOF) nodes by switching between two discrete linker photoisomers via an external stimulus was probed for the first time. On the examples of three novel photochromic copper-based frameworks, we demonstrated the capability of switching between +2 and +1 oxidation states, on demand. In addition to crystallographic methods used for material characterization, the role of the photochromic moieties for tuning the oxidation state was probed via conductivity measurements, cyclic voltammetry, and electron paramagnetic resonance, X-ray photoelectron, and diffuse reflectance spectroscopies. We confirmed the reversible photoswitching activity including photoisomerization rate determination of spiropyran- and diarylethene-containing linkers in extended frameworks, resulting in changes in metal oxidation states as a function of alternating excitation wavelengths. To elucidate the switching process between two states, the photoisomerization quantum yield of photochromic MOFs was determined for the first time. Overall, the introduced noninvasive concept of metal oxidation state modulation on the examples of stimuli-responsive MOFs foreshadows a new pathway for alternation of material properties toward targeted applications.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Metales , Oxidación-Reducción
6.
J Am Chem Soc ; 143(50): 21416-21424, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34898198

RESUMEN

BesC catalyzes the iron- and O2-dependent cleavage of 4-chloro-l-lysine to form 4-chloro-l-allylglycine, formaldehyde, and ammonia. This process is a critical step for a biosynthetic pathway that generates a terminal alkyne amino acid which can be leveraged as a useful bio-orthogonal handle for protein labeling. As a member of an emerging family of diiron enzymes that are typified by their heme oxygenase-like fold and a very similar set of coordinating ligands, recently termed HDOs, BesC performs an unusual type of carbon-carbon cleavage reaction that is a significant departure from reactions catalyzed by canonical dinuclear-iron enzymes. Here, we show that BesC activates O2 in a substrate-gated manner to generate a diferric-peroxo intermediate. Examination of the reactivity of the peroxo intermediate with a series of lysine derivatives demonstrates that BesC initiates this unique reaction trajectory via cleavage of the C4-H bond; this process represents the rate-limiting step in a single turnover reaction. The observed reactivity of BesC represents the first example of a dinuclear-iron enzyme that utilizes a diferric-peroxo intermediate to capably cleave a C-H bond as part of its native function, thus circumventing the formation of a high-valent intermediate more commonly associated with substrate monooxygenations.


Asunto(s)
Carbono/metabolismo , Compuestos Férricos/química , Oxidorreductasas/metabolismo , Oxígeno/química , Carbono/química , Espectroscopía de Mossbauer , Streptomyces/enzimología , Especificidad por Sustrato
7.
J Biol Chem ; 294(33): 12444-12458, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31248989

RESUMEN

Iron-sulfur (Fe-S) clusters are necessary for the proper functioning of numerous metalloproteins. Fe-S cluster (Isc) and sulfur utilization factor (Suf) pathways are the key biosynthetic routes responsible for generating these Fe-S cluster prosthetic groups in Escherichia coli Although Isc dominates under normal conditions, Suf takes over during periods of iron depletion and oxidative stress. Sulfur acquisition via these systems relies on the ability to remove sulfur from free cysteine using a cysteine desulfurase mechanism. In the Suf pathway, the dimeric SufS protein uses the cofactor pyridoxal 5'-phosphate (PLP) to abstract sulfur from free cysteine, resulting in the production of alanine and persulfide. Despite much progress, the stepwise mechanism by which this PLP-dependent enzyme operates remains unclear. Here, using rapid-mixing kinetics in conjunction with X-ray crystallography, we analyzed the pre-steady-state kinetics of this process while assigning early intermediates of the mechanism. We employed H123A and C364A SufS variants to trap Cys-aldimine and Cys-ketimine intermediates of the cysteine desulfurase reaction, enabling direct observations of these intermediates and associated conformational changes of the SufS active site. Of note, we propose that Cys-364 is essential for positioning the Cys-aldimine for Cα deprotonation, His-123 acts to protonate the Ala-enamine intermediate, and Arg-56 facilitates catalysis by hydrogen bonding with the sulfhydryl of Cys-aldimine. Our results, along with previous SufS structural findings, suggest a detailed model of the SufS-catalyzed reaction from Cys binding to C-S bond cleavage and indicate that Arg-56, His-123, and Cys-364 are critical SufS residues in this C-S bond cleavage pathway.


Asunto(s)
Escherichia coli/enzimología , Liasas/química , Modelos Moleculares , Sustitución de Aminoácidos , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/genética , Liasas/genética , Liasas/metabolismo , Mutación Missense
8.
J Am Chem Soc ; 141(22): 8684-8688, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31083991

RESUMEN

UndA is a nonheme iron enzyme that activates oxygen to catalyze the decarboxylation of dodecanoic acid to undecene and carbon dioxide. We report the first optical and Mössbauer spectroscopic characterization of UndA, revealing that the enzyme harbors a coupled dinuclear iron cluster. Single turnover studies confirm that the reaction of the diferrous enzyme with dioxygen produces stoichiometric product per cluster. UndA is the first characterized example of a diiron decarboxylase, thus expanding the repertoire of reactions catalyzed by dinuclear iron enzymes.


Asunto(s)
Carboxiliasas/metabolismo , Coenzimas/metabolismo , Hierro/metabolismo , Carboxiliasas/química , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica
9.
Biomacromolecules ; 20(8): 2973-2988, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31282651

RESUMEN

The objective of this work was to engineer self-assembled nanoparticles (NPs) for on-demand release of bone morphogenetic protein-2 (BMP2) and vascular endothelial growth factor (VEGF) in response to enzymes secreted by the migrating human mesenchymal stem cells (hMSCs) and human endothelial colony forming cells (ECFCs) to induce osteogenesis and vasculogenesis. Gene expression profiling experiments revealed that hMSCs and ECFCs, encapsulated in osteogenic/vasculogenic hydrogels, expressed considerable levels of plasminogen, urokinase plasminogen activator and its receptor uPAR, and tissue plasminogen activator. Therefore, the plasmin-cleavable lysine-phenylalanine-lysine-threonine (KFKT) was used to generate enzymatically cleavable NPs. The acetyl-terminated, self-assembling peptide glycine-(phenylalanine)3GFFF-ac and the plasmin-cleavable GGKFKTGG were reacted with the cysteine-terminated CGGK(Fmoc/MTT) peptide through the MTT and Fmoc termini, respectively. The difunctional peptide was conjugated to polyethylene glycol diacrylate (PEGDA) with molecular weights (MW) ranging from 0.5 to 7.5 kDa, and the chain ends of the PEG-peptide conjugate were terminated with succinimide groups. After self-assembly in aqueous solution, BMP2 was grafted to the self-assembled, plasmin-cleavable PEG-based (PxSPCP) NPs for on-demand release. The NPs' stability in aqueous solution and that of the grafted BMP2 were strongly dependent on PEG MW. P2SPCP NPs showed high particle size stability, BMP2 grafting efficiency, grafted protein stability, and high extent of osteogenic differentiation of hMSCs. The localized and on-demand release of BMP2 from PxSPCP NPs coencapsulated with hMSCs in the linear polyethylene glycol-co-lactide acrylate patterned hydrogel with microchannels encapsulating hMSCs + ECFCs and VEGF-conjugated nanogels resulted in the highest extent of osteogenic and vasculogenic differentiation of the encapsulated cells compared to directly added BMP2/VEGF. The on-demand release of BMP2 from PxSPCP NPs not only enhances osteogenesis and vasculogenesis but also potentially reduces many undesired side effects of BMP2 therapy in bone regeneration.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular , Endotelio Vascular/citología , Fibrinolisina/metabolismo , Células Madre Mesenquimatosas/citología , Nanopartículas/metabolismo , Osteogénesis , Proteína Morfogenética Ósea 2/química , Regeneración Ósea , Células Cultivadas , Endotelio Vascular/metabolismo , Humanos , Hidrogeles/química , Células Madre Mesenquimatosas/metabolismo , Nanopartículas/química , Polietilenglicoles/química , Activador de Tejido Plasminógeno/metabolismo , Factor A de Crecimiento Endotelial Vascular/química , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Biochemistry ; 57(3): 344-353, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29227633

RESUMEN

Cytochrome P450 OleT utilizes hydrogen peroxide (H2O2) to catalyze the decarboxylation or hydroxylation of fatty acid (FA) substrates. Both reactions are initiated through the abstraction of a substrate hydrogen atom by the high-valent iron-oxo intermediate known as Compound I. Here, we specifically probe the influence of substrate coordination on OleT reaction partitioning through the combined use of fluorescent and electron paramagnetic resonance (EPR)-active FA probes and mutagenesis of a structurally disordered F-G loop that is distal from the heme-iron active site. Both probes are efficiently metabolized by OleT and efficiently trigger the formation of Compound I. Transient fluorescence and EPR reveal a slow product release step, mediated by the F-G loop, that limits OleT turnover. A single-amino acid change or excision of the loop reveals that this region establishes critical interactions to anchor FA substrates in place. The stabilization afforded by the F-G loop is essential for regulating regiospecific C-H abstraction and allowing for efficient decarboxylation to occur. These results highlight a regulatory strategy whereby the fate of activated oxygen species can be controlled at distances far removed from the site of chemistry.


Asunto(s)
Carboxiliasas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Secuencia de Bases , Carboxiliasas/química , Carboxiliasas/genética , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Descarboxilación , Espectroscopía de Resonancia por Spin del Electrón , Ácidos Grasos/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Peróxido de Hidrógeno/metabolismo , Hidroxilación , Mutagénesis Sitio-Dirigida , Conformación Proteica , Espectrofotometría Ultravioleta , Especificidad por Sustrato
11.
Biochem Soc Trans ; 46(1): 183-196, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29432141

RESUMEN

The cytochromes P450 (P450s or CYPs) constitute a large heme enzyme superfamily, members of which catalyze the oxidative transformation of a wide range of organic substrates, and whose functions are crucial to xenobiotic metabolism and steroid transformation in humans and other organisms. The P450 peroxygenases are a subgroup of the P450s that have evolved in microbes to catalyze the oxidative metabolism of fatty acids, using hydrogen peroxide as an oxidant rather than NAD(P)H-driven redox partner systems typical of the vast majority of other characterized P450 enzymes. Early members of the peroxygenase (CYP152) family were shown to catalyze hydroxylation at the α and ß carbons of medium-to-long-chain fatty acids. However, more recent studies on other CYP152 family P450s revealed the ability to oxidatively decarboxylate fatty acids, generating terminal alkenes with potential applications as drop-in biofuels. Other research has revealed their capacity to decarboxylate and to desaturate hydroxylated fatty acids to form novel products. Structural data have revealed a common active site motif for the binding of the substrate carboxylate group in the peroxygenases, and mechanistic and transient kinetic analyses have demonstrated the formation of reactive iron-oxo species (compounds I and II) that are ultimately responsible for hydroxylation and decarboxylation of fatty acids, respectively. This short review will focus on the biochemical properties of the P450 peroxygenases and on their biotechnological applications with respect to production of volatile alkenes as biofuels, as well as other fine chemicals.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Peroxidasas/metabolismo , Secuencia de Aminoácidos , Biocombustibles , Ácidos Carboxílicos/metabolismo , Catálisis , Dominio Catalítico , Sistema Enzimático del Citocromo P-450/química , Ácidos Grasos/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Hidroxilación , Oxidación-Reducción , Peroxidasas/química , Relación Estructura-Actividad , Especificidad por Sustrato
12.
Chemistry ; 24(20): 5225-5237, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29193386

RESUMEN

Acireductone dioxygenase (ARD) is an intriguing enzyme from the methionine salvage pathway that is capable of catalysing two different oxidation reactions with the same substrate depending on the type of the metal ion in the active site. To date, the structural information regarding the ARD-acireductone complex is limited and possible reaction mechanisms are still under debate. The results of joint experimental and computational studies undertaken to advance knowledge about ARD are reported. The crystal structure of an ARD from Homo sapiens was determined with selenomethionine. EPR spectroscopy suggested that binding acireductone triggers one protein residue to dissociate from Fe2+ , which allows NO (and presumably O2 ) to bind directly to the metal. Mössbauer spectroscopic data (interpreted with the aid of DFT calculations) was consistent with bidentate binding of acireductone to Fe2+ and concomitant dissociation of His88 from the metal. Major features of Fe vibrational spectra obtained for the native enzyme and upon addition of acireductone were reproduced by QM/MM calculations for the proposed models. A computational (QM/MM) study of the reaction mechanisms suggests that Fe2+ promotes O-O bond homolysis, which elicits cleavage of the C1-C2 bond of the substrate. Higher M3+ /M2+ redox potentials of other divalent metals do not support this pathway, and instead the reaction proceeds similarly to the key reaction step in the quercetin 2,3-dioxygenase mechanism.


Asunto(s)
Dioxigenasas/química , Hierro/química , Catálisis , Dominio Catalítico , Humanos , Iones , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Selenometionina/química , Transducción de Señal
13.
Biomacromolecules ; 19(3): 918-925, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29461819

RESUMEN

A novel N-oxygenase-coated core-shell nanoparticle was generated through the coassembly of poly(4-vinylpyridine) (P4VP) and arylamine N-oxygenase CmlI. The resulting enzyme-hybridized particles, P4VP-CmlI, showed excellent catalytic activities on the oxidation of two arylamine substrates, i.e., p-aminophenol ( pAP) and p-aminobenzoic acid ( pABA), using a surrogate redox system or a peroxide shunt as co-oxidants. In comparison with the free enzyme, P4VP-CmlI particles exhibited a significantly enhanced catalytic efficiency when using pyridine nucleotide (NADH) and proper redox mediators. Products at different oxygenation stages were observed. On the contrary, the activity of the enzyme-containing nanoparticles was very similar to the free enzyme when using the peroxide shunt. The enhanced catalytic efficiency of the P4VP-CmlI assemblies is attributed to a more efficient electron delivery.


Asunto(s)
Proteínas Bacterianas/química , Electrones , Oxigenasas de Función Mixta/química , Polivinilos/química , Streptomyces/enzimología , Biocatálisis , Estabilidad de Enzimas , Especificidad por Sustrato
14.
Biochemistry ; 56(26): 3347-3357, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28603981

RESUMEN

OleT is a cytochrome P450 enzyme that catalyzes the removal of carbon dioxide from variable chain length fatty acids to form 1-alkenes. In this work, we examine the binding and metabolic profile of OleT with shorter chain length (n ≤ 12) fatty acids that can form liquid transportation fuels. Transient kinetics and product analyses confirm that OleT capably activates hydrogen peroxide with shorter substrates to form the high-valent intermediate Compound I and largely performs C-C bond scission. However, the enzyme also produces fatty alcohol side products using the high-valent iron oxo chemistry commonly associated with insertion of oxygen into hydrocarbons. When presented with a short chain fatty acid that can initiate the formation of Compound I, OleT oxidizes the diagnostic probe molecules norcarane and methylcyclopropane in a manner that is reminiscent of reactions of many CYP hydroxylases with radical clock substrates. These data are consistent with a decarboxylation mechanism in which Compound I abstracts a substrate hydrogen atom in the initial step. Positioning of the incipient substrate radical is a crucial element in controlling the efficiency of activated OH rebound.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caproatos/metabolismo , Caprilatos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Decanoicos/metabolismo , Ácidos Láuricos/metabolismo , Micrococcus/enzimología , Modelos Moleculares , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Biocombustibles/análisis , Caprilatos/química , Carboxiliasas/química , Carboxiliasas/genética , Carboxiliasas/metabolismo , Dominio Catalítico , Ciclopropanos/química , Ciclopropanos/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Ácidos Decanoicos/química , Descarboxilación , Guayacol/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Ácidos Láuricos/química , Conformación Molecular , Oxidación-Reducción , Especificidad por Sustrato , Terpenos/química , Terpenos/metabolismo
15.
J Biol Inorg Chem ; 22(2-3): 221-235, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28004185

RESUMEN

Increasing levels of energy consumption, dwindling resources, and environmental considerations have served as compelling motivations to explore renewable alternatives to petroleum-based fuels, including enzymatic routes for hydrocarbon synthesis. Phylogenetically diverse species have long been recognized to produce hydrocarbons, but many of the enzymes responsible have been identified within the past decade. The enzymatic conversion of Cn chain length fatty aldehydes (or acids) to Cn-1 hydrocarbons, alkanes or alkenes, involves a C-C scission reaction. Surprisingly, the enzymes involved in hydrocarbon synthesis utilize non-heme mononuclear iron, dinuclear iron, and thiolate-ligated heme cofactors that are most often associated with monooxygenation reactions. In this review, we examine the mechanisms of several enzymes involved in hydrocarbon biosynthesis, with specific emphasis on the structural and electronic changes that enable this functional switch.


Asunto(s)
Enzimas/química , Enzimas/metabolismo , Hidrocarburos/metabolismo , Hierro/metabolismo , Hidrocarburos/química
16.
Chemistry ; 23(34): 8315-8319, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28423212

RESUMEN

UV-irradiation of a self-assembled benzophenone bis-urea macrocycle generates µm amounts of radicals that persist for weeks under ambient conditions. High-field EPR and variable-temperature X-band EPR studies suggest a resonance stabilized radical pair through H-abstraction. These endogenous radicals were applied as a polarizing agent for magic angle spinning (MAS) dynamic nuclear polarization (DNP) NMR enhancement. The field-stepped DNP enhancement profile exhibits a sharp peak with a maximum enhancement of ϵon/off =4 superimposed on a nearly constant DNP enhancement of ϵon/off =2 over a broad field range. This maximum coincides with the high field EPR absorption spectrum, consistent with an Overhauser effect mechanism. DNP enhancement was observed for both the host and guests, suggesting that even low levels of endogenous radicals can facilitate the study of host-guest relationships in the solid-state.

17.
Inorg Chem ; 56(19): 11798-11803, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28902998

RESUMEN

A new pathway of activation of C-H bonds of alkyl- and arylnitriles by a cooperative action of TaCl5 and PPh3 under mild conditions is reported. Coordination of nitriles to the highly Lewis acidic Ta(V) center resulted in an activation of their aliphatic and aromatic C-H bonds, allowing nucleophilic attack and deprotonation by the relatively weak base PPh3. The propensity of Ta(V) to form multiple bonds to nitrogen-containing ligands is an important driving force of the reaction as it led to a sequence of bond rearrangements and the emergence of, in the case of benzonitrile, a zwitterionic enediimido complex of Ta(V) through C═C double bond formation between two activated nitrile fragments. These transformations highlight the special role of the high-valent transition metal halide in substrate activation and distinguish the reactivity of the TaCl5-PPh3 system from both non-metal- and late transition metal-based frustrated Lewis pairs.

18.
Biochem Biophys Res Commun ; 476(4): 462-466, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27246733

RESUMEN

The efficient hydrogen peroxide-dependent hydroxylation and epoxidation of hydrocarbons is catalysed by a P450 fatty acid decarboxylase (OleT) active-site variant. The introduction of an acidic functionality in the protein framework circumvents the necessity for a carboxylate that is typically provided by the substrate for efficient H2O2 heterolysis. Spectroscopic and turnover studies show that the mutation eliminates the binding and metabolism of prototypical fatty acid substrates, but permits the oxidation of a broad range of inert hydrocarbon substrates.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Staphylococcaceae/enzimología , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico/genética , Sistema Enzimático del Citocromo P-450/genética , Ácidos Grasos/metabolismo , Peróxido de Hidrógeno/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Staphylococcaceae/genética , Especificidad por Sustrato
19.
J Am Chem Soc ; 137(15): 4940-3, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25843451

RESUMEN

OleT(JE), a cytochrome P450, catalyzes the conversion of fatty acids to terminal alkenes using hydrogen peroxide as a cosubstrate. Analytical studies with an eicosanoic acid substrate show that the enzyme predominantly generates nonadecene and that carbon dioxide is the one carbon coproduct of the reaction. The addition of hydrogen peroxide to a deuterated substrate-enzyme (E-S) complex results in the transient formation of an iron(IV) oxo π cation radical (Compound I) intermediate which is spectroscopically indistinguishable from those that perform oxygen insertion chemistries. A kinetic isotope effect for Compound I decay suggests that it abstracts a substrate hydrogen atom to initiate fatty acid decarboxylation. Together, these results indicate that the initial mechanism for alkene formation, which does not result from oxygen rebound, is similar to that widely suggested for P450 monooxygenation reactions.


Asunto(s)
Alquenos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Grasos/metabolismo , Alquenos/química , Sistema Enzimático del Citocromo P-450/química , Descarboxilación , Ácidos Grasos/química , Estructura Molecular
20.
J Am Chem Soc ; 137(4): 1608-17, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25564306

RESUMEN

Streptomyces venezuelae CmlI catalyzes the six-electron oxygenation of the arylamine precursor of chloramphenicol in a nonribosomal peptide synthetase (NRPS)-based pathway to yield the nitroaryl group of the antibiotic. Optical, EPR, and Mössbauer studies show that the enzyme contains a nonheme dinuclear iron cluster. Addition of O(2) to the diferrous state of the cluster results in an exceptionally long-lived intermediate (t(1/2) = 3 h at 4 °C) that is assigned as a peroxodiferric species (CmlI-peroxo) based upon the observation of an (18)O(2)-sensitive resonance Raman (rR) vibration. CmlI-peroxo is spectroscopically distinct from the well characterized and commonly observed cis-µ-1,2-peroxo (µ-η(1):η(1)) intermediates of nonheme diiron enzymes. Specifically, it exhibits a blue-shifted broad absorption band around 500 nm and a rR spectrum with a ν(O-O) that is at least 60 cm(-1) lower in energy. Mössbauer studies of the peroxo state reveal a diferric cluster having iron sites with small quadrupole splittings and distinct isomer shifts (0.54 and 0.62 mm/s). Taken together, the spectroscopic comparisons clearly indicate that CmlI-peroxo does not have a µ-η(1):η(1)-peroxo ligand; we propose that a µ-η(1):η(2)-peroxo ligand accounts for its distinct spectroscopic properties. CmlI-peroxo reacts with a range of arylamine substrates by an apparent second-order process, indicating that CmlI-peroxo is the reactive species of the catalytic cycle. Efficient production of chloramphenicol from the free arylamine precursor suggests that CmlI catalyzes the ultimate step in the biosynthetic pathway and that the precursor is not bound to the NRPS during this step.


Asunto(s)
Cloranfenicol/metabolismo , Oxigenasas/metabolismo , Peróxidos/metabolismo , Streptomyces/enzimología , Vías Biosintéticas , Cloranfenicol/química , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Oxigenasas/química , Peróxidos/química , Espectroscopía de Mossbauer , Espectrometría Raman , Streptomyces/química , Streptomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA