Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2315804121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38294937

RESUMEN

Spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs) are fundamental electrophysiological events produced by quantal vesicular transmitter release at synapses. Their analysis can provide important information regarding pre- and postsynaptic function. However, the small signal relative to recording noise requires expertise and considerable time for their identification. Furthermore, many mEPSCs smaller than ~8 pA are not well resolved (e.g., those produced at distant synapses or synapses with few receptor channels). Here, we describe an automated approach to detect mEPSCs using a machine learning-based tool. This method, which can be easily generalized to other one-dimensional signals, eliminates inter-observer bias, provides an estimate of its sensitivity and specificity and permits reliable detection of small (e.g., 5 pA) spontaneous unitary synaptic events.


Asunto(s)
Sinapsis , Transmisión Sináptica , Sinapsis/fisiología , Transmisión Sináptica/fisiología
2.
Proc Natl Acad Sci U S A ; 117(5): 2656-2662, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31941713

RESUMEN

Slow response to the standard treatment for depression increases suffering and risk of suicide. Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, can rapidly alleviate depressive symptoms and reduce suicidality, possibly by decreasing hyperactivity in the lateral habenula (LHb) brain nucleus. Here we find that in a rat model of human depression, opioid antagonists abolish the ability of ketamine to reduce the depression-like behavioral and LHb hyperactive cellular phenotypes. However, activation of opiate receptors alone is not sufficient to produce ketamine-like effects, nor does ketamine mimic the hedonic effects of an opiate, indicating that the opioid system does not mediate the actions of ketamine but rather is permissive. Thus, ketamine does not act as an opiate but its effects require both NMDA and opiate receptor signaling, suggesting that interactions between these two neurotransmitter systems are necessary to achieve an antidepressant effect.


Asunto(s)
Antidepresivos/administración & dosificación , Depresión/tratamiento farmacológico , Ketamina/administración & dosificación , Antagonistas de Narcóticos/administración & dosificación , Animales , Depresión/genética , Depresión/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides/genética , Receptores Opioides/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(6): 3214-3219, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31974314

RESUMEN

Which neural circuits undergo synaptic changes when an animal learns? Although it is widely accepted that changes in synaptic strength underlie many forms of learning and memory, it remains challenging to connect changes in synaptic strength at specific neural pathways to specific behaviors and memories. Here we introduce SYNPLA (synaptic proximity ligation assay), a synapse-specific, high-throughput, and potentially brain-wide method capable of detecting circuit-specific learning-induced synaptic plasticity.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Mapeo de Interacción de Proteínas/métodos , Sinapsis , Animales , Corteza Auditiva/química , Corteza Auditiva/citología , Corteza Auditiva/metabolismo , Células Cultivadas , Condicionamiento Psicológico/fisiología , Cuerpos Geniculados/química , Cuerpos Geniculados/citología , Cuerpos Geniculados/metabolismo , Hipocampo/química , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Ratas , Sinapsis/química , Sinapsis/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(25): 12488-12493, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31152135

RESUMEN

Neuronal activity in the lateral habenula (LHb), a brain region implicated in depression [C. D. Proulx, O. Hikosaka, R. Malinow, Nat. Neurosci. 17, 1146-1152 (2014)], decreases during reward and increases during punishment or reward omission [M. Matsumoto, O. Hikosaka, Nature 447, 1111-1115 (2007)]. While stress is a major risk factor for depression and strongly impacts the LHb, its effect on LHb reward signals is unknown. Here we image LHb neuronal activity in behaving mice and find that acute stress transforms LHb reward responses into punishment-like neural signals; punishment-like responses to reward omission also increase. These neural changes matched the onset of anhedonic behavior and were specific to LHb neurons that distinguished reward and its omission. Thus, stress distorts LHb responsivity to positive and negative feedback, which could bias individuals toward negative expectations, a key aspect of the proposed pathogenesis of depression [A. T. Beck, Depression: Clinical, Experimental, and Theoretical Aspects, sixth Ed (1967)].


Asunto(s)
Habénula/fisiología , Castigo , Recompensa , Estrés Psicológico , Animales , Ratones , Neuronas/fisiología
5.
Proc Natl Acad Sci U S A ; 115(22): 5792-5797, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29752382

RESUMEN

The neural mechanisms conferring reduced motivation, as observed in depressed individuals, is poorly understood. Here, we examine in rodents if reduced motivation to exert effort is controlled by transmission from the lateral habenula (LHb), a nucleus overactive in depressed-like states, to the rostromedial tegmental nucleus (RMTg), a nucleus that inhibits dopaminergic neurons. In an aversive test wherein immobility indicates loss of effort, LHb→RMTg transmission increased during transitions into immobility, driving LHb→RMTg increased immobility, and inhibiting LHb→RMTg produced the opposite effects. In an appetitive test, driving LHb→RMTg reduced the effort exerted to receive a reward, without affecting the reward's hedonic property. Notably, LHb→RMTg stimulation only affected specific aspects of these motor tasks, did not affect all motor tasks, and promoted avoidance, indicating that LHb→RMTg activity does not generally reduce movement but appears to carry a negative valence that reduces effort. These results indicate that LHb→RMTg activity controls the motivation to exert effort and may contribute to the reduced motivation in depression.


Asunto(s)
Habénula/fisiología , Motivación/fisiología , Vías Nerviosas/fisiología , Tegmento Mesencefálico/fisiología , Animales , Depresión , Humanos , Movimiento/fisiología , Optogenética , Fotometría , Ratas , Análisis y Desempeño de Tareas
6.
Nature ; 511(7509): 348-52, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24896183

RESUMEN

It has been proposed that memories are encoded by modification of synaptic strengths through cellular mechanisms such as long-term potentiation (LTP) and long-term depression (LTD). However, the causal link between these synaptic processes and memory has been difficult to demonstrate. Here we show that fear conditioning, a type of associative memory, can be inactivated and reactivated by LTD and LTP, respectively. We began by conditioning an animal to associate a foot shock with optogenetic stimulation of auditory inputs targeting the amygdala, a brain region known to be essential for fear conditioning. Subsequent optogenetic delivery of LTD conditioning to the auditory input inactivates memory of the shock. Then subsequent optogenetic delivery of LTP conditioning to the auditory input reactivates memory of the shock. Thus, we have engineered inactivation and reactivation of a memory using LTD and LTP, supporting a causal link between these synaptic processes and memory.


Asunto(s)
Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Memoria/fisiología , Sinapsis/fisiología , Amígdala del Cerebelo/fisiología , Animales , Condicionamiento Psicológico/fisiología , Estimulación Eléctrica , Electrofisiología , Miedo/fisiología , Miedo/psicología , Masculino , Optogenética , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica
7.
Proc Natl Acad Sci U S A ; 113(42): E6526-E6534, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27708157

RESUMEN

Amyloid-ß (Aß) is a prime suspect for causing cognitive deficits during the early phases of Alzheimer's disease (AD). Experiments in AD mouse models have shown that soluble oligomeric clusters of Aß degrade synapses and impair memory formation. We show that all Aß-driven effects measured in these mice depend on AMPA receptor (AMPAR) subunit GluA3. Hippocampal neurons that lack GluA3 were resistant against Aß-mediated synaptic depression and spine loss. In addition, Aß oligomers blocked long-term synaptic potentiation only in neurons that expressed GluA3. Furthermore, although Aß-overproducing mice showed significant memory impairment, memories in GluA3-deficient congenics remained unaffected. These experiments indicate that the presence of GluA3-containing AMPARs is critical for Aß-mediated synaptic and cognitive deficits.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Memoria , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/mortalidad , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Análisis de Varianza , Animales , Conducta Animal , Células CHO , Condicionamiento Psicológico , Cricetulus , Espinas Dendríticas , Miedo/psicología , Femenino , Hipocampo/citología , Hipocampo/fisiología , Potenciación a Largo Plazo , Masculino , Potenciales de la Membrana , Ratones , Ratones Noqueados , Ratones Transgénicos , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patología , Células Piramidales/citología , Células Piramidales/metabolismo , Receptores AMPA/genética
8.
J Neurosci ; 37(25): 6021-6030, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28539417

RESUMEN

The lateral habenula (LHb) is a small part of the epithalamus that projects to monoamine centers in the brain. Previously, neurotransmission onto the LHb was shown to be abnormally potentiated in animal models of depression. However, synaptic plasticity in this brain area and the effect of stressor exposure on synaptic plasticity of the LHb have not been investigated. Thus, we explored whether the LHb undergoes dynamic changes in synaptic efficacy or not. First, we observed that a moderate LTP occurs in a fraction of LHb neurons obtained from naive Sprague Dawley rats. Interestingly, a single exposure to acute stressors, such as inescapable foot shock or restraint plus tail shock (RTS), significantly enhances the magnitude of LTP in the LHb. We also observed an increased number of LHb neurons expressing phosphorylated cAMP response element-binding protein (pCREB) after exposure to stressors, which may contribute to determine the threshold for LTP induction. LTP induction in the LHb resulted in an additional increase in the number of pCREB-expressing neurons in stress-exposed animals but not in naive control animals. Together, we showed that LHb neurons have heterogeneous propensity for synaptic potentiation at rest; however, a single exposure to stressors greatly facilitates LTP induction in the LHb, suggesting that fundamental alterations in synaptic plasticity in the LHb may occur in animal models of depression or post-traumatic stress disorder.SIGNIFICANCE STATEMENT Stress exposure is known to cause depression in human patients and animal models, although explanations at the cellular level remain to be elaborated. Here, we show that the lateral habenula (LHb) exhibits LTP after a pattern of brief strong stimulation. In addition, we show that stress exposure facilitates LTP in the LHb by lowering the threshold for LTP induction. We observed a selective increase in the number of neurons expressing pCREB in the LHb of animal models of depression. LTP induction results in a further increase in the density of pCREB-expressing neurons only after stress exposure. Our study provides the first evidence that animal models of depression exhibit altered synaptic plasticity of the LHb.


Asunto(s)
Habénula/fisiopatología , Potenciación a Largo Plazo , Estrés Psicológico/fisiopatología , Sinapsis , Animales , Ansiedad/fisiopatología , Ansiedad/psicología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Electrochoque , Técnicas In Vitro , Masculino , Ratas , Ratas Sprague-Dawley , Restricción Física , Trastornos por Estrés Postraumático/metabolismo , Trastornos por Estrés Postraumático/fisiopatología , Estrés Psicológico/psicología
10.
Proc Natl Acad Sci U S A ; 112(47): 14711-6, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26553983

RESUMEN

The NMDA receptor (NMDAR) is known to transmit important information by conducting calcium ions. However, some recent studies suggest that activation of NMDARs can trigger synaptic plasticity in the absence of ion flow. Does ligand binding transmit information to signaling molecules that mediate synaptic plasticity? Using Förster resonance energy transfer (FRET) imaging of fluorescently tagged proteins expressed in neurons, conformational signaling is identified within the NMDAR complex that is essential for downstream actions. Ligand binding transiently reduces FRET between the NMDAR cytoplasmic domain (cd) and the associated protein phosphatase 1 (PP1), requiring NMDARcd movement, and persistently reduces FRET between the NMDARcd and calcium/calmodulin-dependent protein kinase II (CaMKII), a process requiring PP1 activity. These studies directly monitor agonist-driven conformational signaling at the NMDAR complex required for synaptic plasticity.


Asunto(s)
Plasticidad Neuronal , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Animales , Anticuerpos/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Transporte Iónico/efectos de los fármacos , Modelos Biológicos , N-Metilaspartato/farmacología , Plasticidad Neuronal/efectos de los fármacos , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/química , Transducción de Señal/efectos de los fármacos , Sinapsis
11.
Proc Natl Acad Sci U S A ; 112(47): 14705-10, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26553997

RESUMEN

The NMDA receptor (R) plays important roles in brain physiology and pathology as an ion channel. Here we examine the ion flow-independent coupling of agonist to the NMDAR cytoplasmic domain (cd). We measure FRET between fluorescently tagged cytoplasmic domains of GluN1 subunits of NMDARs expressed in neurons. Different neuronal compartments display varying levels of FRET, consistent with different NMDARcd conformations. Agonist binding drives a rapid and transient ion flow-independent reduction in FRET between GluN1 subunits within individual NMDARs. Intracellular infusion of an antibody targeting the GluN1 cytoplasmic domain blocks agonist-driven FRET changes in the absence of ion flow, supporting agonist-driven movement of the NMDARcd. These studies indicate that extracellular ligand binding to the NMDAR can transmit conformational information into the cell in the absence of ion flow.


Asunto(s)
Citoplasma/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/química , Animales , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Transporte Iónico , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Factores de Tiempo
13.
Nature ; 470(7335): 535-9, 2011 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21350486

RESUMEN

The cellular basis of depressive disorders is poorly understood. Recent studies in monkeys indicate that neurons in the lateral habenula (LHb), a nucleus that mediates communication between forebrain and midbrain structures, can increase their activity when an animal fails to receive an expected positive reward or receives a stimulus that predicts aversive conditions (that is, disappointment or anticipation of a negative outcome). LHb neurons project to, and modulate, dopamine-rich regions, such as the ventral tegmental area (VTA), that control reward-seeking behaviour and participate in depressive disorders. Here we show that in two learned helplessness models of depression, excitatory synapses onto LHb neurons projecting to the VTA are potentiated. Synaptic potentiation correlates with an animal's helplessness behaviour and is due to an enhanced presynaptic release probability. Depleting transmitter release by repeated electrical stimulation of LHb afferents, using a protocol that can be effective for patients who are depressed, markedly suppresses synaptic drive onto VTA-projecting LHb neurons in brain slices and can significantly reduce learned helplessness behaviour in rats. Our results indicate that increased presynaptic action onto LHb neurons contributes to the rodent learned helplessness model of depression.


Asunto(s)
Depresión/patología , Depresión/fisiopatología , Desamparo Adquirido , Neuronas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , Tálamo/patología , Animales , Reacción de Prevención , Estimulación Encefálica Profunda , Depresión/terapia , Modelos Animales de Enfermedad , Dopamina/metabolismo , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Modelos Neurológicos , Técnicas de Trazados de Vías Neuroanatómicas , Terminales Presinápticos/metabolismo , Ratas , Ratas Sprague-Dawley , Recompensa , Tálamo/metabolismo , Área Tegmental Ventral/fisiología
14.
Genes Dev ; 23(11): 1289-302, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19487570

RESUMEN

Oligophrenin-1 (OPHN1) encodes a Rho-GTPase-activating protein (Rho-GAP) whose loss of function has been associated with X-linked mental retardation (MR). The pathophysiological role of OPHN1, however, remains poorly understood. Here we show that OPHN1 through its Rho-GAP activity plays a critical role in the activity-dependent maturation and plasticity of excitatory synapses by controlling their structural and functional stability. Synaptic activity through NMDA receptor activation drives OPHN1 into dendritic spines, where it forms a complex with AMPA receptors, and selectively enhances AMPA-receptor-mediated synaptic transmission and spine size by stabilizing synaptic AMPA receptors. Consequently, decreased or defective OPHN1 signaling prevents glutamatergic synapse maturation and causes loss of synaptic structure, function, and plasticity. These results imply that normal activity-driven glutamatergic synapse development is impaired by perturbation of OPHN1 function. Thus, our findings link genetic deficits in OPHN1 to glutamatergic dysfunction and suggest that defects in early circuitry development are an important contributory factor to this form of MR.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Hipocampo/crecimiento & desarrollo , Neuronas/fisiología , Proteínas Nucleares/metabolismo , Receptores AMPA/metabolismo , Sinapsis/fisiología , Animales , Endocitosis/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hipocampo/citología , Hipocampo/metabolismo , Discapacidad Intelectual/fisiopatología , N-Metilaspartato/farmacología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transporte de Proteínas/fisiología , Ratas
15.
J Biol Chem ; 290(36): 21845-56, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26187466

RESUMEN

Atypical protein kinase C (aPKC) enzymes signal on protein scaffolds, yet how they are maintained in an active conformation on scaffolds is unclear. A myristoylated peptide based on the autoinhibitory pseudosubstrate fragment of the atypical PKCζ, zeta inhibitory peptide (ZIP), has been extensively used to inhibit aPKC activity; however, we have previously shown that ZIP does not inhibit the catalytic activity of aPKC isozymes in cells (Wu-Zhang, A. X., Schramm, C. L., Nabavi, S., Malinow, R., and Newton, A. C. (2012) J. Biol. Chem. 287, 12879-12885). Here we sought to identify a bona fide target of ZIP and, in so doing, unveiled a novel mechanism by which aPKCs are maintained in an active conformation on a protein scaffold. Specifically, we used protein-protein interaction network analysis, structural modeling, and protein-protein docking to predict that ZIP binds an acidic surface on the Phox and Bem1 (PB1) domain of p62, an interaction validated by peptide array analysis. Using a genetically encoded reporter for PKC activity fused to the p62 scaffold, we show that ZIP inhibits the activity of wild-type aPKC, but not a construct lacking the pseudosubstrate. These data support a model in which the pseudosubstrate of aPKCs is tethered to the acidic surface on p62, locking aPKC in an open, signaling-competent conformation. ZIP competes for binding to the acidic surface, resulting in displacement of the pseudosubstrate of aPKC and re-engagement in the substrate-binding cavity. This study not only identifies a cellular target for ZIP, but also unveils a novel mechanism by which scaffolded aPKC is maintained in an active conformation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Gestacionales/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Unión Competitiva , Western Blotting , Células COS , Chlorocebus aethiops , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Gestacionales/química , Unión Proteica , Conformación Proteica , Proteína Quinasa C/química , Proteína Quinasa C/genética , Estructura Terciaria de Proteína , Receptores AMPA/genética , Receptores AMPA/metabolismo , Proteína Sequestosoma-1 , Electricidad Estática
16.
Nature ; 466(7308): E3-4; discussion E4-5, 2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20703260

RESUMEN

Increased levels of brain amyloid-beta, a secreted peptide cleavage product of amyloid precursor protein (APP), is believed to be critical in the aetiology of Alzheimer's disease. Increased amyloid-beta can cause synaptic depression, reduce the number of spine protrusions (that is, sites of synaptic contacts) and block long-term synaptic potentiation (LTP), a form of synaptic plasticity; however, the receptor through which amyloid-beta produces these synaptic perturbations has remained elusive. Laurén et al. suggested that binding between oligomeric amyloid-beta (a form of amyloid-beta thought to be most active) and the cellular prion protein (PrP(C)) is necessary for synaptic perturbations. Here we show that PrP(C) is not required for amyloid-beta-induced synaptic depression, reduction in spine density, or blockade of LTP; our results indicate that amyloid-beta-mediated synaptic defects do not require PrP(c).


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Proteínas PrPC/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Animales , Aprendizaje/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas PrPC/deficiencia , Proteínas PrPC/genética , Reproducibilidad de los Resultados , Serotonina/metabolismo , Transmisión Sináptica
17.
Proc Natl Acad Sci U S A ; 110(10): 4033-8, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431156

RESUMEN

The mechanisms by which ß-amyloid (Aß), a peptide fragment believed to contribute to Alzheimer's disease, leads to synaptic deficits are not known. Here we find that elevated oligomeric Aß requires ion flux-independent function of NMDA receptors (NMDARs) to produce synaptic depression. Aß activates this metabotropic NMDAR function on GluN2B-containing NMDARs but not on those containing GluN2A. Furthermore, oligomeric Aß leads to a selective loss of synaptic GluN2B responses, effecting a switch in subunit composition from GluN2B to GluN2A, a process normally observed during development. Our results suggest that conformational changes of the NMDAR, and not ion flow through its channel, are required for Aß to produce synaptic depression and a switch in NMDAR composition. This Aß-induced signaling mediated by alterations in GluN2B conformation may be a target for therapeutic intervention of Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Animales , Región CA1 Hipocampal/fisiología , Señalización del Calcio/fisiología , Maleato de Dizocilpina/farmacología , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Estructura Cuaternaria de Proteína , Ratas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Proc Natl Acad Sci U S A ; 110(10): 4027-32, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431133

RESUMEN

NMDA receptor (NMDAR) activation controls long-term potentiation (LTP) as well as long-term depression (LTD) of synaptic transmission, cellular models of learning and memory. A long-standing view proposes that a high level of Ca(2+) entry through NMDARs triggers LTP; lower Ca(2+) entry triggers LTD. Here we show that ligand binding to NMDARs is sufficient to induce LTD; neither ion flow through NMDARs nor Ca(2+) rise is required. However, basal levels of Ca(2+) are permissively required. Lowering, but not maintaining, basal Ca(2+) levels with Ca(2+) chelators blocks LTD and drives strong synaptic potentiation, indicating that basal Ca(2+) levels control NMDAR-dependent LTD and basal synaptic transmission. Our findings indicate that metabotropic actions of NMDARs can weaken active synapses without raising postsynaptic calcium, thereby revising and expanding the mechanisms controlling synaptic plasticity.


Asunto(s)
Depresión Sináptica a Largo Plazo/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Señalización del Calcio/fisiología , Quelantes/farmacología , Maleato de Dizocilpina/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Ácido Quinurénico/análogos & derivados , Ácido Quinurénico/farmacología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Plasticidad Neuronal/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos
19.
Eur J Neurosci ; 39(7): 1225-33, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24713001

RESUMEN

Amyloid beta (Aß), a key component in the pathophysiology of Alzheimer's disease, is thought to target excitatory synapses early in the disease. However, the mechanism by which Aß weakens synapses is not well understood. Here we showed that the PDZ domain protein, protein interacting with C kinase 1 (PICK1), was required for Aß to weaken synapses. In mice lacking PICK1, elevations of Aß failed to depress synaptic transmission in cultured brain slices. In dissociated cultured neurons, Aß failed to reduce surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit 2, a subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors that binds with PICK1 through a PDZ ligand-domain interaction. Lastly, a novel small molecule (BIO922) discovered through structure-based drug design that targets the specific interactions between GluA2 and PICK1 blocked the effects of Aß on synapses and surface receptors. We concluded that GluA2-PICK1 interactions are a key component of the effects of Aß on synapses.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Proteínas Portadoras/metabolismo , Potenciales Postsinápticos Excitadores , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/toxicidad , Sinapsis/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Células Cultivadas , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/fisiología , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Proteínas Nucleares/genética , Unión Proteica , Ratas , Receptores AMPA/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA