Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(3): 1043-1056, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804316

RESUMEN

AFG3L2 is a mitochondrial protease exerting protein quality control in the inner mitochondrial membrane. Heterozygous AFG3L2 mutations cause spinocerebellar ataxia type 28 (SCA28) or dominant optic atrophy type 12 (DOA12), while biallelic AFG3L2 mutations result in the rare and severe spastic ataxia type 5 (SPAX5). The clinical spectrum of SPAX5 includes childhood-onset cerebellar ataxia, spasticity, dystonia and myoclonic epilepsy. We previously reported that the absence or mutation of AFG3L2 leads to the accumulation of mitochondria-encoded proteins, causing the overactivation of the stress-sensitive protease OMA1, which over-processes OPA1, leading to mitochondrial fragmentation. Recently, OMA1 has been identified as the pivotal player communicating mitochondrial stress to the cytosol via a pathway involving the inner mitochondrial membrane protein DELE1 and the cytosolic kinase HRI, thus eliciting the integrated stress response. In general, the integrated stress response reduces global protein synthesis and drives the expression of cytoprotective genes that allow cells to endure proteotoxic stress. However, the relevance of the OMA1-DELE1-HRI axis in vivo, and especially in a human CNS disease context, has been poorly documented thus far. In this work, we demonstrated that mitochondrial proteotoxicity in the absence/mutation of AFG3L2 activates the OMA1-DELE1-HRI pathway eliciting the integrated stress response. We found enhanced OMA1-dependent processing of DELE1 upon depletion of AFG3L2. Also, in both skin fibroblasts from SPAX5 patients (including a novel case) and in the cerebellum of Afg3l2-/- mice we detected increased phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α), increased levels of ATF4 and strong upregulation of its downstream targets (Chop, Chac1, Ppp1r15a and Ffg21). Silencing of DELE1 or HRI in SPAX5 fibroblasts (where OMA1 is overactivated at basal state) reduces eIF2α phosphorylation and affects cell growth. In agreement, pharmacological potentiation of integrated stress response via Sephin-1, a drug that selectively inhibits the stress-induced eIF2alpha phosphatase GADD34 (encoded by Ppp1r15a), improved cell growth of SPAX5 fibroblasts and cell survival and dendritic arborization ex vivo in primary Afg3l2-/- Purkinje neurons. Notably, Sephin-1 treatment in vivo extended the lifespan of Afg3l2-/- mice, improved Purkinje neuron morphology, mitochondrial ultrastructure and respiratory capacity. These data indicate that activation of the OMA1-DELE1-HRI pathway is protective in the context of SPAX5. Pharmacological tuning of the integrated stress response may represent a future therapeutic strategy for SPAX5 and other cerebellar ataxias caused by impaired mitochondrial proteostasis.


Asunto(s)
Discapacidad Intelectual , Atrofia Óptica , Ataxias Espinocerebelosas , Humanos , Animales , Ratones , Niño , Ataxias Espinocerebelosas/genética , Espasticidad Muscular , Péptido Hidrolasas , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteasas ATP-Dependientes/genética , Proteínas Mitocondriales , Metaloproteasas
2.
Hum Mol Genet ; 29(2): 177-188, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31868880

RESUMEN

Mitochondria undergo continuous cycles of fusion and fission in response to physiopathological stimuli. The key player in mitochondrial fission is dynamin-related protein 1 (DRP1), a cytosolic protein encoded by dynamin 1-like (DNM1L) gene, which relocalizes to the outer mitochondrial membrane, where it assembles, oligomerizes and drives mitochondrial division upon guanosine-5'-triphosphate (GTP) hydrolysis. Few DRP1 mutations have been described so far, with patients showing complex and variable phenotype ranging from early death to encephalopathy and/or optic atrophy. The disease is the consequence of defective mitochondrial fission due to faulty DRP1 function. However, the underlying molecular mechanisms and the functional consequences at mitochondrial and cellular level remain elusive. Here we report on a 5-year-old girl presenting psychomotor developmental delay, global hypotonia and severe ataxia due to axonal sensory neuropathy harboring a novel de novo heterozygous missense mutation in the GTPase domain of DRP1 (NM_012062.3:c.436G>A, NP_036192.2: p.D146N variant in DNM1L). Patient's fibroblasts show hyperfused/balloon-like giant mitochondria, highlighting the importance of D146 residue for DRP1 function. This dramatic mitochondrial rearrangement phenocopies what observed overexpressing DRP1-K38A, a well-known experimental dominant negative version of DRP1. In addition, we demonstrated that p.D146N mutation has great impact on peroxisomal shape and function. The p.D146N mutation compromises the GTPase activity without perturbing DRP1 recruitment or assembly, causing decreased mitochondrial and peroxisomal turnover. In conclusion, our findings highlight the importance of sensory neuropathy in the clinical spectrum of DRP1 variants and, for the first time, the impact of DRP1 mutations on mitochondrial turnover and peroxisomal functionality.


Asunto(s)
Dinaminas/genética , Fibroblastos/ultraestructura , Mitocondrias/genética , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/genética , Enfermedades del Sistema Nervioso Periférico/genética , Autofagia/genética , Preescolar , Dinaminas/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Heterocigoto , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Mutación , Linaje , Enfermedades del Sistema Nervioso Periférico/enzimología , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/patología , Peroxisomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Secuenciación del Exoma
3.
J Cell Sci ; 131(7)2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29545505

RESUMEN

The proteolytic processing of dynamin-like GTPase OPA1, mediated by the activity of both YME1L1 [intermembrane (i)-AAA protease complex] and OMA1, is a crucial step in the regulation of mitochondrial dynamics. OMA1 is a zinc metallopeptidase of the inner mitochondrial membrane that undergoes pre-activating proteolytic and auto-proteolytic cleavage after mitochondrial import. Here, we identify AFG3L2 [matrix (m)-AAA complex] as the major protease mediating this event, which acts by maturing the 60 kDa pre-pro-OMA1 to the 40 kDa pro-OMA1 form by severing the N-terminal portion without recognizing a specific consensus sequence. Therefore, m-AAA and i-AAA complexes coordinately regulate OMA1 processing and turnover, and consequently control which OPA1 isoforms are present, thus adding new information on the molecular mechanisms of mitochondrial dynamics and neurodegenerative diseases affected by these phenomena.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteasas ATP-Dependientes/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , GTP Fosfohidrolasas/genética , Metaloendopeptidasas/genética , Mitocondrias/genética , Proteasas ATP-Dependientes/química , ATPasas Asociadas con Actividades Celulares Diversas/química , Apoptosis/genética , Secuencia de Consenso/genética , GTP Fosfohidrolasas/química , Células HeLa , Humanos , Mitocondrias/química , Dinámicas Mitocondriales/genética , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Procesamiento Proteico-Postraduccional/genética , Proteolisis
4.
J Med Genet ; 56(8): 499-511, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30910913

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 28 (SCA28) is a dominantly inherited neurodegenerative disease caused by pathogenic variants in AFG3L2. The AFG3L2 protein is a subunit of mitochondrial m-AAA complexes involved in protein quality control. Objective of this study was to determine the molecular mechanisms of SCA28, which has eluded characterisation to date. METHODS: We derived SCA28 patient fibroblasts carrying different pathogenic variants in the AFG3L2 proteolytic domain (missense: the newly identified p.F664S and p.M666T, p.G671R, p.Y689H and a truncating frameshift p.L556fs) and analysed multiple aspects of mitochondrial physiology. As reference of residual m-AAA activity, we included SPAX5 patient fibroblasts with homozygous p.Y616C pathogenic variant, AFG3L2+/- HEK293 T cells by CRISPR/Cas9-genome editing and Afg3l2-/- murine fibroblasts. RESULTS: We found that SCA28 cells carrying missense changes have normal levels of assembled m-AAA complexes, while the cells with a truncating pathogenic variant had only half of this amount. We disclosed inefficient mitochondrial fusion in SCA28 cells caused by increased OPA1 processing operated by hyperactivated OMA1. Notably, we found altered mitochondrial proteostasis to be the trigger of OMA1 activation in SCA28 cells, with pharmacological attenuation of mitochondrial protein synthesis resulting in stabilised levels of OMA1 and OPA1 long forms, which rescued mitochondrial fusion efficiency. Secondary to altered mitochondrial morphology, mitochondrial calcium uptake resulted decreased in SCA28 cells. CONCLUSION: Our data identify the earliest events in SCA28 pathogenesis and open new perspectives for therapy. By identifying similar mitochondrial phenotypes between SCA28 cells and AFG3L2+/- cells, our results support haploinsufficiency as the mechanism for the studied pathogenic variants.


Asunto(s)
Proteasas ATP-Dependientes/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Variación Genética , Haploinsuficiencia , Metaloendopeptidasas/genética , Dominios Proteicos/genética , Estrés Fisiológico/genética , Proteasas ATP-Dependientes/química , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Calcio/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Metaloendopeptidasas/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Biológicos , Unión Proteica , Multimerización de Proteína , Proteolisis , Proteostasis/genética , Activación Transcripcional
5.
Neurobiol Dis ; 124: 14-28, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30389403

RESUMEN

Spinocerebellar ataxia 28 is an autosomal dominant neurodegenerative disorder caused by missense mutations affecting the proteolytic domain of AFG3L2, a major component of the mitochondrial m-AAA protease. However, little is known of the underlying pathogenetic mechanisms or how to treat patients with SCA28. Currently available Afg3l2 mutant mice harbour deletions that lead to severe, early-onset neurological phenotypes that do not faithfully reproduce the late-onset and slowly progressing SCA28 phenotype. Here we describe production and detailed analysis of a new knock-in murine model harbouring an Afg3l2 allele carrying the p.Met665Arg patient-derived mutation. Heterozygous mutant mice developed normally but adult mice showed signs of cerebellar ataxia detectable by beam test. Although cerebellar pathology was negative, electrophysiological analysis showed a trend towards increased spontaneous firing in Purkinje cells from heterozygous mutants with respect to wild-type controls. As homozygous mutants died perinatally with evidence of cardiac atrophy, for each genotype we generated mouse embryonic fibroblasts (MEFs) to investigate mitochondrial function. MEFs from mutant mice showed altered mitochondrial bioenergetics, with decreased basal oxygen consumption rate, ATP synthesis and mitochondrial membrane potential. Mitochondrial network formation and morphology was altered, with greatly reduced expression of fusogenic Opa1 isoforms. Mitochondrial alterations were also detected in cerebella of 18-month-old heterozygous mutants and may be a hallmark of disease. Pharmacological inhibition of de novo mitochondrial protein translation with chloramphenicol caused reversal of mitochondrial morphology in homozygous mutant MEFs, supporting the relevance of mitochondrial proteotoxicity for SCA28 pathogenesis and therapy development.


Asunto(s)
Proteasas ATP-Dependientes/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Modelos Animales de Enfermedad , Mitocondrias/metabolismo , Ataxias Espinocerebelosas/congénito , Animales , Femenino , Técnicas de Sustitución del Gen , Potencial de la Membrana Mitocondrial , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Mutación Missense , Células de Purkinje/fisiología , Células de Purkinje/ultraestructura , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología
6.
Hum Mol Genet ; 26(16): 3130-3143, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28535259

RESUMEN

Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in the gene SACS, encoding the 520 kDa protein sacsin. Although sacsin's physiological role is largely unknown, its sequence domains suggest a molecular chaperone or protein quality control function. Consequences of its loss include neurofilament network abnormalities, specifically accumulation and bundling of perikaryal and dendritic neurofilaments. To investigate if loss of sacsin affects intermediate filaments more generally, the distribution of vimentin was analysed in ARSACS patient fibroblasts and in cells where sacsin expression was reduced. Abnormal perinuclear accumulation of vimentin filaments, which sometimes had a cage-like appearance, occurred in sacsin-deficient cells. Mitochondria and other organelles were displaced to the periphery of vimentin accumulations. Reorganization of the vimentin network occurs in vitro under stress conditions, including when misfolded proteins accumulate. In ARSACS patient fibroblasts HSP70, ubiquitin and the autophagy-lysosome pathway proteins Lamp2 and p62 relocalized to the area of the vimentin accumulation. There was no overall increase in ubiquitinated proteins, suggesting the ubiquitin-proteasome system was not impaired. There was evidence for alterations in the autophagy-lysosome pathway. Specifically, in ARSACS HDFs cellular levels of Lamp2 were elevated while levels of p62, which is degraded in autophagy, were decreased. Moreover, autophagic flux was increased in ARSACS HDFs under starvation conditions. These data show that loss of sacsin effects the organization of intermediate filaments in multiple cell types, which impacts the cellular distribution of other organelles and influences autophagic activity.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Filamentos Intermedios/metabolismo , Animales , Ataxia/genética , Técnicas de Cultivo de Célula , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Ratones , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Espasticidad Muscular/genética , Espasticidad Muscular/metabolismo , Proteostasis/genética , Proteostasis/fisiología , Proteínas de Unión al ARN/metabolismo , Ataxias Espinocerebelosas/congénito , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Vimentina/metabolismo
7.
Hum Mol Genet ; 21(17): 3858-70, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22678058

RESUMEN

The mitochondrial protein AFG3L2 forms homo-oligomeric and hetero-oligomeric complexes with paraplegin in the inner mitochondrial membrane, named m-AAA proteases. These complexes are in charge of quality control of misfolded proteins and participate in the regulation of OPA1 proteolytic cleavage, required for mitochondrial fusion. Mutations in AFG3L2 cause spinocerebellar ataxia type 28 and a complex neurodegenerative syndrome of childhood. In this study, we demonstrated that the loss of AFG3L2 in mouse embryonic fibroblasts (MEFs) reduces mitochondrial Ca(2+) uptake capacity. This defect is neither a consequence of global alteration in cellular Ca(2+) homeostasis nor of the reduced driving force for Ca(2+) internalization within mitochondria, since cytosolic Ca(2+) transients and mitochondrial membrane potential remain unaffected. Moreover, experiments in permeabilized cells revealed unaltered mitochondrial Ca(2+) uptake speed in Afg3l2(-/-) cells, indicating the presence of functional Ca(2+) uptake machinery. Our results show that the defective Ca(2+) handling in Afg3l2(-/-) cells is caused by fragmentation of the mitochondrial network, secondary to respiratory dysfunction and the consequent processing of OPA1. This leaves a number of mitochondria devoid of connections to the ER and thus without Ca(2+) elevations, hampering the proper Ca(2+) diffusion along the mitochondrial network. The recovery of mitochondrial fragmentation in Afg3l2(-/-) MEFs by overexpression of OPA1 rescues the impaired mitochondrial Ca(2+) buffering, but fails to restore respiration. By linking mitochondrial morphology and Ca(2+) homeostasis, these findings shed new light in the molecular mechanisms underlining neurodegeneration caused by AFG3L2 mutations.


Asunto(s)
Proteasas ATP-Dependientes/deficiencia , Proteasas ATP-Dependientes/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Respiración de la Célula , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Fibroblastos/patología , GTP Fosfohidrolasas/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Modelos Biológicos
8.
Neurobiol Dis ; 54: 12-23, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23466696

RESUMEN

Cells rely on efficient protein quality control systems (PQCs) to maintain proper activity of mitochondrial proteins. As part of this system, the mitochondrial chaperone Hsp60 assists folding of matrix proteins and it is an essential protein in all organisms. Mutations in Hspd1, the gene encoding Hsp60, are associated with two human inherited diseases of the nervous system, a dominantly inherited form of spastic paraplegia (SPG13) and an autosomal recessively inherited white matter disorder termed MitCHAP60 disease. Although the connection between mitochondrial failure and neurodegeneration is well known in many neurodegenerative disorders, such as Huntington's disease, Parkinson's disease, and hereditary spastic paraplegia, the molecular basis of the neurodegeneration associated with these diseases is still ill-defined. Here, we investigate mice heterozygous for a knockout allele of the Hspd1 gene encoding Hsp60. Our results demonstrate that Hspd1 haploinsufficiency is sufficient to cause a late onset and slowly progressive deficit in motor functions in mice. We furthermore emphasize the crucial role of the Hsp60 chaperone in mitochondrial function by showing that the motor phenotype is associated with morphological changes of mitochondria, deficient ATP synthesis, and in particular, a defect in the assembly of the respiratory chain complex III in neuronal tissues. In the current study, we propose that our heterozygous Hsp60 mouse model is a valuable model system for the investigation of the link between mitochondrial dysfunction and neurodegeneration.


Asunto(s)
Chaperonina 60/deficiencia , Modelos Animales de Enfermedad , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/deficiencia , Enfermedad de la Neurona Motora/fisiopatología , Animales , Western Blotting , Chaperonina 60/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Enfermedad de la Neurona Motora/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
JCI Insight ; 8(12)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37159335

RESUMEN

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in SACS gene encoding sacsin, a huge protein highly expressed in cerebellar Purkinje cells (PCs). Patients with ARSACS, as well as mouse models, display early degeneration of PCs, but the underlying mechanisms remain unexplored, with no available treatments. In this work, we demonstrated aberrant calcium (Ca2+) homeostasis and its impact on PC degeneration in ARSACS. Mechanistically, we found pathological elevation in Ca2+-evoked responses in Sacs-/- PCs as the result of defective mitochondria and ER trafficking to distal dendrites and strong downregulation of key Ca2+ buffer proteins. Alteration of cytoskeletal linkers, which we identified as specific sacsin interactors, likely account for faulty organellar trafficking in Sacs-/- cerebellum. Based on this pathogenetic cascade, we treated Sacs-/- mice with Ceftriaxone, a repurposed drug that exerts neuroprotection by limiting neuronal glutamatergic stimulation and, thus, Ca2+ fluxes into PCs. Ceftriaxone treatment significantly improved motor performances of Sacs-/- mice, at both pre- and postsymptomatic stages. We correlated this effect to restored Ca2+ homeostasis, which arrests PC degeneration and attenuates secondary neuroinflammation. These findings disclose key steps in ARSACS pathogenesis and support further optimization of Ceftriaxone in preclinical and clinical settings for the treatment of patients with ARSACS.


Asunto(s)
Calcio , Células de Purkinje , Animales , Ratones , Calcio/metabolismo , Células de Purkinje/metabolismo , Ceftriaxona/metabolismo , Enfermedades Neuroinflamatorias , Proteínas de Choque Térmico/genética
10.
Mol Autism ; 14(1): 20, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264456

RESUMEN

BACKGROUND: Neurodevelopmental disorders (NDDs) are heterogeneous conditions due to alterations of a variety of molecular mechanisms and cell dysfunctions. SETD5 haploinsufficiency leads to NDDs due to chromatin defects. Epigenetic basis of NDDs has been reported in an increasing number of cases while mitochondrial dysfunctions are more common within NDD patients than in the general population. METHODS: We investigated in vitro neural stem cells as well as the brain of the Setd5 haploinsufficiency mouse model interrogating its transcriptome, analyzing mitochondrial structure, biochemical composition, and dynamics, as well as mitochondrial functionality. RESULTS: Mitochondrial impairment is facilitated by transcriptional aberrations originated by the decrease of the SETD5 enzyme. Low levels of SETD5 resulted in fragmented mitochondria, reduced mitochondrial membrane potential, and ATP production both in neural precursors and neurons. Mitochondria were also mislocalized in mutant neurons, with reduced organelles within neurites and synapses. LIMITATIONS: We found several defects in the mitochondrial compartment; however, we can only speculate about their position in the hierarchy of the pathological mechanisms at the basis of the disease. CONCLUSIONS: Our study explores the interplay between chromatin regulation and mitochondria functions as a possible important aspect of SETD5-associated NDD pathophysiology. Our data, if confirmed in patient context, suggest that the mitochondrial activity and dynamics may represent new therapeutic targets for disorders associated with the loss of SETD5.


Asunto(s)
Haploinsuficiencia , Células-Madre Neurales , Ratones , Animales , Humanos , Neuronas/metabolismo , Mitocondrias/metabolismo , Células-Madre Neurales/metabolismo , Cromatina/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo
11.
Neurology ; 97(23): e2315-e2327, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34649874

RESUMEN

BACKGROUND AND OBJECTIVES: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by variations in SACS gene encoding sacsin, a huge multimodular protein of unknown function. More than 200 SACS variations have been described worldwide to date. Because ARSACS presents phenotypic variability, previous empirical studies attempted to correlate the nature and position of SACS variations with the age at onset or with disease severity, although not considering the effect of the various variations on protein stability. In this work, we studied genotype-phenotype correlation in ARSACS at a functional level. METHODS: We analyzed a large set of skin fibroblasts derived from patients with ARSACS, including both new and already published cases, carrying variations of different types affecting diverse domains of the protein. RESULTS: We found that sacsin is almost absent in patients with ARSACS, regardless of the nature of the variation. As expected, we did not detect sacsin in patients with truncating variations. We found it strikingly reduced or absent also in compound heterozygotes carrying diverse missense variations. In this case, we excluded SACS mRNA decay, defective translation, or faster posttranslational degradation as possible causes of protein reduction. Conversely, our results demonstrate that nascent mutant sacsin protein undergoes cotranslational ubiquitination and degradation. DISCUSSION: Our results provide a mechanistic explanation for the lack of genotype-phenotype correlation in ARSACS. We also propose a new and unambiguous criterion for ARSACS diagnosis that is based on the evaluation of sacsin level. Last, we identified preemptive degradation of a mutant protein as a novel cause of a human disease.


Asunto(s)
Proteínas de Choque Térmico , Ataxias Espinocerebelosas , Ataxia/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Espasticidad Muscular/diagnóstico , Espasticidad Muscular/genética , Mutación/genética , Ataxias Espinocerebelosas/congénito , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología
12.
J Neurosci ; 29(29): 9244-54, 2009 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-19625515

RESUMEN

Paraplegin and AFG3L2 are ubiquitous nuclear-encoded mitochondrial proteins that form hetero-oligomeric paraplegin-AFG3L2 and homo-oligomeric AFG3L2 complexes in the inner mitochondrial membrane, named m-AAA proteases. These complexes ensure protein quality control in the inner membrane, jointly with a chaperone-like activity on the respiratory chain complexes. Despite coassembling in the same complex, mutations of either paraplegin or AFG3L2 cause two different neurodegenerative disorders. Indeed, mutations of paraplegin are responsible for a recessive form of hereditary spastic paraplegia, whereas mutations of AFG3L2 have been recently associated to a dominant form of spinocerebellar ataxia (SCA28). In this work, we report that the mouse model haploinsufficient for Afg3l2 recapitulates important pathophysiological features of the human disease, thus representing the first SCA28 model. Furthermore, we propose a pathogenetic mechanism in which respiratory chain dysfunction and increased reactive oxygen species production caused by Afg3l2 haploinsufficiency lead to dark degeneration of Purkinje cells and cerebellar dysfunction.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Mitocondrias/fisiología , Degeneración Nerviosa/fisiopatología , Células de Purkinje/fisiología , Ataxias Espinocerebelosas/fisiopatología , Proteasas ATP-Dependientes , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Envejecimiento , Animales , Apoptosis/fisiología , Cerebelo/patología , Cerebelo/fisiopatología , Modelos Animales de Enfermedad , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Gliosis/patología , Gliosis/fisiopatología , Ratones , Ratones Mutantes , Mitocondrias/patología , Actividad Motora/genética , Actividad Motora/fisiología , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Degeneración Nerviosa/patología , Células de Purkinje/patología , Especies Reactivas de Oxígeno/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología
13.
Acta Neuropathol Commun ; 8(1): 93, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600459

RESUMEN

Autosomal dominant optic atrophy (ADOA) is a neuro-ophthalmic condition characterized by bilateral degeneration of the optic nerves. Although heterozygous mutations in OPA1 represent the most common genetic cause of ADOA, a significant number of cases remain undiagnosed.Here, we describe a family with a strong ADOA history with most family members spanning three generation having childhood onset of visual symptoms. The proband, in addition to optic atrophy, had neurological symptoms consistent with relapsing remitting multiple sclerosis. Clinical exome analysis detected a novel mutation in the AFG3L2 gene (NM_006796.2:c.1010G > A; p.G337E), which segregated with optic atrophy in family members. AFG3L2 is a metalloprotease of the AAA subfamily which exerts quality control in the inner mitochondrial membrane. Interestingly, the identified mutation localizes close to the AAA domain of AFG3L2, while those localized in the proteolytic domain cause dominant spinocerebellar ataxia type 28 (SCA28) or recessive spastic ataxia with epilepsy (SPAX5). Functional studies in patient fibroblasts demonstrate that the p.G337E AFG3L2 mutation strongly destabilizes the long isoforms of OPA1 via OMA hyper-activation and leads to mitochondrial fragmentation, thus explaining the family phenotype. This study widens the clinical spectrum of neurodegenerative diseases caused by AFG3L2 mutations, which shall be considered as genetic cause of ADOA.


Asunto(s)
Proteasas ATP-Dependientes/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/metabolismo , Dominio AAA/genética , Adolescente , Niño , Preescolar , Femenino , GTP Fosfohidrolasas/metabolismo , Humanos , Masculino , Metaloendopeptidasas/metabolismo , Mutación Missense , Linaje
14.
J Neurosci ; 28(11): 2827-36, 2008 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-18337413

RESUMEN

The mitochondrial metalloprotease AFG3L2 assembles with the homologous protein paraplegin to form a supracomplex in charge of the essential protein quality control within mitochondria. Mutations of paraplegin cause a specific axonal degeneration of the upper motoneuron and, therefore, hereditary spastic paraplegia. Here we present two Afg3l2 murine models: a newly developed null and a spontaneous mutant that we found carrier of a missense mutation. Contrasting with the mild and late onset axonal degeneration of paraplegin-deficient mouse, Afg3l2 models display a marked impairment of axonal development with delayed myelination and poor axonal radial growth leading to lethality at P16. The increased severity of the Afg3l2 mutants is explained by two main molecular features that differentiate AFG3L2 from paraplegin: its higher neuronal expression and its versatile ability to support both hetero-oligomerization and homo-oligomerization. Our data assign to AFG3L2 a crucial role by linking mitochondrial metabolism and axonal development. Moreover, we propose AFG3L2 as an excellent candidate for motoneuron and cerebellar diseases with early onset unknown etiology.


Asunto(s)
Adenosina Trifosfatasas/biosíntesis , Axones/enzimología , Mitocondrias/enzimología , Proteínas Mitocondriales/biosíntesis , Proteasas ATP-Dependientes , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Axones/patología , Axones/fisiología , Ratones , Ratones Mutantes , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular
15.
Sci Rep ; 9(1): 11887, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31417168

RESUMEN

Calcium-modulating cyclophilin ligand (CAML), together with Tryptophan rich basic protein (WRB, Get1 in yeast), constitutes the mammalian receptor for the Transmembrane Recognition Complex subunit of 40 kDa (TRC40, Get3 in yeast), a cytosolic ATPase with a central role in the post-translational targeting pathway of tail-anchored (TA) proteins to the endoplasmic reticulum (ER) membrane. CAML has also been implicated in other cell-specific processes, notably in immune cell survival, and has been found in molar excess over WRB in different cell types. Notwithstanding the stoichiometric imbalance, WRB and CAML depend strictly on each other for expression. Here, we investigated the mechanism by which WRB impacts CAML levels. We demonstrate that CAML, generated in the presence of sufficient WRB levels, is inserted into the ER membrane with three transmembrane segments (TMs) in its C-terminal region. By contrast, without sufficient levels of WRB, CAML fails to adopt this topology, and is instead incompletely integrated to generate two aberrant topoforms; these congregate in ER-associated clusters and are degraded by the proteasome. Our results suggest that WRB, a member of the recently proposed Oxa1 superfamily, acts catalytically to assist the topogenesis of CAML and may have wider functions in membrane biogenesis than previously appreciated.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , ATPasas Transportadoras de Arsenitos/metabolismo , Retículo Endoplásmico/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Adaptadoras Transductoras de Señales/química , ATPasas Transportadoras de Arsenitos/química , Biomarcadores , Técnica del Anticuerpo Fluorescente , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Transporte de Proteínas , Proteolisis
16.
Oxid Med Cell Longev ; 2019: 4721950, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781336

RESUMEN

Several neurodegenerative disorders exhibit selective vulnerability, with subsets of neurons more affected than others, possibly because of the high expression of an altered gene or the presence of particular features that make them more susceptible to insults. On the other hand, resilient neurons may display the ability to develop antioxidant defenses, particularly in diseases of mitochondrial origin, where oxidative stress might contribute to the neurodegenerative process. In this work, we investigated the oxidative stress response of embryonic fibroblasts and cortical neurons obtained from Afg3l2-KO mice. AFG3L2 encodes a subunit of a protease complex that is expressed in mitochondria and acts as both quality control and regulatory enzyme affecting respiration and mitochondrial dynamics. When cells were subjected to an acute oxidative stress protocol, the survival of AFG3L2-KO MEFs was not significantly influenced and was comparable to that of WT; however, the basal level of the antioxidant molecule glutathione was higher. Indeed, glutathione depletion strongly affected the viability of KO, but not of WT MEF, thereby indicating that oxidative stress is more elevated in KO MEF even though well controlled by glutathione. On the other hand, when cortical KO neurons were put in culture, they immediately appeared more vulnerable than WT to the acute oxidative stress condition, but after few days in vitro, the situation was reversed with KO neurons being more resistant than WT to acute stress. This compensatory, protective competence was not due to the upregulation of glutathione, rather of two mitochondrial antioxidant proteins: superoxide dismutase 2 and, at an even higher level, peroxiredoxin 3. This body of evidence sheds light on the capability of neurons to activate neuroprotective pathways and points the attention to peroxiredoxin 3, an antioxidant enzyme that might be critical for neuronal survival also in other disorders affecting mitochondria.


Asunto(s)
Proteasas ATP-Dependientes/deficiencia , ATPasas Asociadas con Actividades Celulares Diversas/deficiencia , Corteza Cerebral/enzimología , Regulación Enzimológica de la Expresión Génica , Enfermedades Neurodegenerativas/enzimología , Neuronas/enzimología , Estrés Oxidativo , Peroxiredoxina III/biosíntesis , Regulación hacia Arriba , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Supervivencia Celular/genética , Corteza Cerebral/patología , Ratones , Ratones Noqueados , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Peroxiredoxina III/genética
18.
J Clin Invest ; 125(1): 263-74, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25485680

RESUMEN

Spinocerebellar ataxia type 28 (SCA28) is a neurodegenerative disease caused by mutations of the mitochondrial protease AFG3L2. The SCA28 mouse model, which is haploinsufficient for Afg3l2, exhibits a progressive decline in motor function and displays dark degeneration of Purkinje cells (PC-DCD) of mitochondrial origin. Here, we determined that mitochondria in cultured Afg3l2-deficient PCs ineffectively buffer evoked Ca²âº peaks, resulting in enhanced cytoplasmic Ca²âº concentrations, which subsequently triggers PC-DCD. This Ca²âº-handling defect is the result of negative synergism between mitochondrial depolarization and altered organelle trafficking to PC dendrites in Afg3l2-mutant cells. In SCA28 mice, partial genetic silencing of the metabotropic glutamate receptor mGluR1 decreased Ca²âº influx in PCs and reversed the ataxic phenotype. Moreover, administration of the ß-lactam antibiotic ceftriaxone, which promotes synaptic glutamate clearance, thereby reducing Ca²âº influx, improved ataxia-associated phenotypes in SCA28 mice when given either prior to or after symptom onset. Together, the results of this study indicate that ineffective mitochondrial Ca²âº handling in PCs underlies SCA28 pathogenesis and suggest that strategies that lower glutamate stimulation of PCs should be further explored as a potential treatment for SCA28 patients.


Asunto(s)
Calcio/metabolismo , Células de Purkinje/fisiología , Degeneraciones Espinocerebelosas/metabolismo , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Señalización del Calcio , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Dendritas/metabolismo , Dendritas/patología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Ratones Endogámicos BALB C , Ratones Transgénicos , Mitocondrias/metabolismo , Mitocondrias/patología , Desempeño Psicomotor , Ataxias Espinocerebelosas/congénito , Degeneraciones Espinocerebelosas/tratamiento farmacológico
19.
Arch Neurol ; 61(8): 1314-20, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15313853

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 17 is an autosomal dominant cerebellar ataxia caused by a CAG repeat expansion in the TATA box-binding protein gene. Ataxia is typically the first sign whereas behavioral symptoms occur later. OBJECTIVE: To characterize the unusual phenotypic expression of a large spinocerebellar ataxia type 17 kindred. DESIGN: Clinical, neuropathological, and molecular genetic characterization of a 4-generation family with 16 affected patients. RESULTS: Behavioral symptoms and frontal impairment dominated the early stages preceding ataxia, rigidity, and dystonic movements. Neuropathological examination showed cortical, subcortical, and cerebellar atrophy. Purkinje cell loss and gliosis, pseudohypertrophic degeneration of the inferior olive, marked neuronal loss and gliosis in the caudate nucleus, and in the medial thalamic nuclei were salient features together with neuronal intranuclear inclusions stained with anti-TATA box-binding protein and antipolyglutamine antibodies. The disease was caused by a stable 52 CAG repeat expansion of the TATA box-binding protein gene, although there was apparent variability in the age of onset. CONCLUSION: The characteristics of this family broaden the clinical picture of spinocerebellar ataxia type 17: initial presenile dementia with behavioral symptoms should be added to ataxia, rigidity, and dystonic movements, which are more commonly encountered.


Asunto(s)
Demencia/genética , Rigidez Muscular/genética , Mutación , Ataxias Espinocerebelosas/genética , Proteína de Unión a TATA-Box/genética , Adulto , Anciano , Síntomas Conductuales/genética , Síntomas Conductuales/patología , Síntomas Conductuales/psicología , Encéfalo/patología , Demencia/patología , Demencia/psicología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Rigidez Muscular/patología , Rigidez Muscular/psicología , Linaje , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/psicología
20.
BMC Med Genomics ; 6: 22, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23777634

RESUMEN

BACKGROUND: SCA28 is an autosomal dominant ataxia associated with AFG3L2 gene mutations. We performed a whole genome expression profiling using lymphoblastoid cell lines (LCLs) from four SCA28 patients and six unrelated healthy controls matched for sex and age. METHODS: Gene expression was evaluated with the Affymetrix GeneChip Human Genome U133A 2.0 Arrays and data were validated by real-time PCR. RESULTS: We found 66 genes whose expression was statistically different in SCA28 LCLs, 35 of which were up-regulated and 31 down-regulated. The differentially expressed genes were clustered in five functional categories: (1) regulation of cell proliferation; (2) regulation of programmed cell death; (3) response to oxidative stress; (4) cell adhesion, and (5) chemical homeostasis. To validate these data, we performed functional experiments that proved an impaired SCA28 LCLs growth compared to controls (p < 0.005), an increased number of cells in the G0/G1 phase (p < 0.001), and an increased mortality because of apoptosis (p < 0.05). We also showed that respiratory chain activity and reactive oxygen species levels was not altered, although lipid peroxidation in SCA28 LCLs was increased in basal conditions (p < 0.05). We did not detect mitochondrial DNA large deletions. An increase of TFAM, a crucial protein for mtDNA maintenance, and of DRP1, a key regulator of mitochondrial dynamic mechanism, suggested an alteration of fission/fusion pathways. CONCLUSIONS: Whole genome expression profiling, performed on SCA28 LCLs, allowed us to identify five altered functional categories that characterize the SCA28 LCLs phenotype, the first reported in human cells to our knowledge.


Asunto(s)
Apoptosis/genética , Proliferación Celular , Genoma Humano , Proteasas ATP-Dependientes/genética , ATPasas Asociadas con Actividades Celulares Diversas , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Dinaminas , Puntos de Control de la Fase G1 del Ciclo Celular , GTP Fosfohidrolasas/metabolismo , Perfilación de la Expresión Génica , Humanos , Peroxidación de Lípido , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fenotipo , Ataxias Espinocerebelosas/congénito , Degeneraciones Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA