Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Parasitol Res ; 123(6): 229, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819740

RESUMEN

The intricate relationships between parasites and hosts encompass a wide range of levels, from molecular interactions to population dynamics. Parasites influence not only the physiological processes in the host organism, but also the entire ecosystem, affecting mortality of individuals, the number of offspring through parasitic castration, and matter and energy cycles. Understanding the molecular mechanisms that govern host-parasite relationships and their impact on host physiology and environment remains challenging. In this study, we analyzed how infection with Microphallus trematodes affects the metabolome of two Littorina snail species inhabiting different intertidal zone shore levels. We applied non-targeted GC-MS-based metabolomics to analyze biochemical shifts induced by trematode infection in a host organism. We have identified changes in energy, amino acid, sugar, and lipid metabolism. In particular, we observed intensified amino acid catabolism and nitrogenous catabolites (glutamine, urea) production. These changes primarily correlated with infection and interspecies differences of the hosts rather than shore level. The changes detected in the host metabolism indicate that other aspects of life may have been affected, both within the host organism and at a supra-organismal level. Therefore, we explored changes in microbiota composition, deviations in the host molluscs behavior, and acetylcholinesterase activity (ACE, an enzyme involved in neuromuscular transmission) in relation to infection. Infected snails displayed changes in their microbiome composition. Decreased ACE activity in snails was associated with reduced mobility, but whether it is associated with trematode infection remains unclear. The authors suggest a connection between the identified biochemical changes and the deformation of the shell of molluscs, changes in their behavior, and the associated microbiome. The role of parasitic systems formed by microphallid trematodes and Littorina snails in the nitrogen cycle at the ecosystem level is also assumed.


Asunto(s)
Interacciones Huésped-Parásitos , Caracoles , Trematodos , Animales , Trematodos/fisiología , Trematodos/metabolismo , Caracoles/parasitología , Metaboloma , Metabolómica , Cromatografía de Gases y Espectrometría de Masas
2.
J Exp Zool B Mol Dev Evol ; 330(4): 193-201, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29750393

RESUMEN

Reproductive isolation is the key attribute of biological species and establishment of the reproductive barriers is an essential event for speciation. Among the mechanisms of reproductive isolation, gamete incompatibility due to the variability of gamete interaction proteins may drive fast divergence even in sympatry. However, the number of available models to study this phenomenon is limited. In case of internally fertilized invertebrates, models to study gamete incompatibility and sperm competition mechanisms are restricted to a single taxon: insects. Here, we propose a group of closely related Littorina species as a new model for such studies. Particularly since periwinkles are already thoroughly studied in terms of morphology, physiology, ecology, phylogeny, and ecological speciation. Earlier, we have identified the first species-specific Littorina sperm protein (LOSP) with no known conservative domains or homologies. LOSP is relatively abundant component of sperm extracts and might be involved in gamete incompatibility. Here, we characterize its definitive localization and mRNA expression pattern in the male reproductive system by immunocytochemistry and RNA in situ hybridization. We demonstrate that LOSP distribution is limited to the parasperm cells. Losp gene expression occurs only at the early stages of parasperm development. The protein is stored within granules of mature parasperm and, most likely, is released after ejaculation inside female reproductive system. Thus, LOSP is the only described molluscan paraspermal protein to date, and there is a possibility for LOSP to be involved in gamete incompatibility since heterospermy is a common phenomenon among Littorina.


Asunto(s)
Gastrópodos/química , Gastrópodos/fisiología , Espermatogénesis/fisiología , Espermatozoides/química , Animales , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Masculino , Proteínas/fisiología , ARN Mensajero , Especificidad de la Especie
3.
Evol Appl ; 16(2): 365-378, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36793697

RESUMEN

Microbes can play a prominent role in the evolution of their hosts, facilitating adaptation to various environments and promoting ecological divergence. The Wave and Crab ecotypes of the intertidal snail Littorina saxatilis is an evolutionary model of rapid and repeated adaptation to environmental gradients. While patterns of genomic divergence of the Littorina ecotypes along the shore gradients have been extensively studied, their microbiomes have been so far overlooked. The aim of the present study is to start filling this gap by comparing gut microbiome composition of the Wave and Crab ecotypes using metabarcoding approach. Since Littorina snails are micro-grazers feeding on the intertidal biofilm, we also compare biofilm composition (i.e. typical snail diet) in the crab and wave habitats. In the results, we found that bacterial and eukaryotic biofilm composition varies between the typical habitats of the ecotypes. Further, the snail gut bacteriome was different from outer environments, being dominated by Gammaproteobacteria, Fusobacteria, Bacteroidia and Alphaproteobacteria. There were clear differences in the gut bacterial communities between the Crab and the Wave ecotypes as well as between the Wave ecotype snails from the low and high shores. These differences were both observed in the abundances and in the presence of different bacteria, as well as at different taxonomic level, from bacterial OTU's to families. Altogether, our first insights show that Littorina snails and their associated bacteria are a promising marine system to study co-evolution of the microbes and their hosts, which can help us to predict the future for wild species in the face of rapidly changing marine environments.

4.
Data Brief ; 42: 108122, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35434228

RESUMEN

In the evolution of invertebrates, the transition from egg-layers to brooders occurred many times. However, the molecular mechanisms underlying this transition are still not well understood. Recently diverged species genus Littorina (Mollusca, Gastropoda, Caenogastropoda, Littorinimorpha): Littorina saxatilis, L. arcana, L. compressa, L. obtusata and L. fabalis might be a fruitful model for elucidation of these mechanisms. All five species sympatrically inhabit an intertidal zone. Only L. saxatilis is ovoviviparous while the other four species form clutches. Although in L. saxatilis jelly gland of the pallial oviduct function as a brood pouch, it is not deeply modified at the morphological level in comparison to egg-laying relatives. Comparative analysis of transcriptomic profiles of the pallial oviducts of these closely related species might help to uncover the molecular mechanisms of the egg-laying to brooding transition. Unraveling of the mechanisms underlying this transition in L. saxatilis is important not only in aspects of reproduction biology and strategy, but also in a broader view as an example of relatively fast evolutionary transformations. We generated an RNA-seq dataset (224 104 446 clean reads) for oviducts of five species genus Littorina. Libraries of all five species were sequenced using Illumina HiSeq 2500; additional reads for L. arcana were obtained using Illumina NovaSeq 6000. Transcriptomic profiles were analyzed in pooled samples (of three individuals) with two biological replicates for each species (each biological replicate was prepared and sequenced as a separate library). The transcriptome was assembled de novo and annotated with five assembles corresponding to each species. The raw data were uploaded to the SRA database, the BioProject IDs are PRJNA662103 ("obtusata" group) and PRJNA707549 ("saxatilis" group).

5.
Mitochondrion ; 59: 96-104, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33631347

RESUMEN

Bryozoans are aquatic colonial suspension-feeders abundant in many marine and freshwater benthic communities. At the same time, the phylum is under studied on both morphological and molecular levels, and its position on the metazoan tree of life is still disputed. Bryozoa include the exclusively marine Stenolaemata, predominantly marine Gymnolaemata and exclusively freshwater Phylactolaemata. Here we report the mitochondrial genome of the phylactolaemate bryozoan Cristatella mucedo. This species has the largest (21,008 bp) of all currently known bryozoan mitogenomes, containing a typical metazoan gene compendium as well as a number of non-coding regions, three of which are longer than 1500 bp. The trnS1/trnG/nad3 region is presumably duplicated in this species. Comparative analysis of the gene order in C. mucedo and another phylactolaemate bryozoan, Pectinatella magnifica, confirmed their close relationships, and revealed a stronger similarity to mitogenomes of phoronids and other lophotrochozoan species than to marine bryozoans, indicating the ancestral nature of their gene arrangement. We suggest that the ancestral gene order underwent substantial changes in different bryozoan cladesshowing mosaic distribution of conservative gene blocks regardless of their phylogenetic position. Altogether, our results support the early divergence of Phylactolaemata from the rest of Bryozoa.


Asunto(s)
Briozoos/clasificación , Mitocondrias/genética , Análisis de Secuencia de ADN/métodos , Animales , Briozoos/anatomía & histología , Briozoos/genética , Evolución Molecular , Orden Génico , Tamaño del Genoma , Genoma Mitocondrial , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia
6.
PLoS One ; 16(12): e0260792, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34932575

RESUMEN

Any multicellular organism during its life is involved in relatively stable interactions with microorganisms. The organism and its microbiome make up a holobiont, possessing a unique set of characteristics and evolving as a whole system. This study aimed to evaluate the degree of the conservativeness of microbiomes associated with intertidal gastropods. We studied the composition and the geographic and phylogenetic variability of the gut and body surface microbiomes of five closely related sympatric Littorina (Neritrema) spp. and a more distant species, L. littorea, from the sister subgenus Littorina (Littorina). Although snail-associated microbiomes included many lineages (207-603), they were dominated by a small number of OTUs of the genera Psychromonas, Vibrio, and Psychrilyobacter. The geographic variability was greater than the interspecific differences at the same collection site. While the microbiomes of the six Littorina spp. did not differ at the high taxonomic level, the OTU composition differed between groups of cryptic species and subgenera. A few species-specific OTUs were detected within the collection sites; notably, such OTUs never dominated microbiomes. We conclude that the composition of the high-rank taxa of the associated microbiome ("scaffolding enterotype") is more evolutionarily conserved than the composition of the low-rank individual OTUs, which may be site- and / or species-specific.


Asunto(s)
Bacterias/aislamiento & purificación , Variación Genética , Microbiota , Caracoles/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Microbiología Ambiental , Filogenia , ARN Ribosómico 16S/genética , Caracoles/clasificación , Especificidad de la Especie
7.
Ecol Evol ; 11(16): 11134-11154, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34429908

RESUMEN

Divergence of ecological niches in phylogenetically closely related species indicates the importance of ecology in speciation, especially for sympatric species are considered. Such ecological diversification provides an advantage of alleviating interspecies competition and promotes more efficient exploitation of environmental resources, thus being a basis for ecological speciation. We analyzed a group of closely related species from the subgenus Neritrema (genus Littorina, Caenogastropoda) from the gravel-bouldery shores. In two distant sites at the Barents and Norwegian Sea, we examined the patterns of snail distribution during low tide (quantitative sampling stratified by intertidal level, presence of macrophytes, macrophyte species, and position on them), shell shape and its variability (geometric morphometrics), and metabolic characteristics (metabolomic profiling). The studied species diversified microbiotopes, which imply an important role of ecological specification in the recent evolution of this group. The only exception to this trend was the species pair L. arcana / L. saxatilis, which is specifically discussed. The ecological divergence was accompanied by differences in shell shape and metabolomic characteristics. Significant differences were found between L. obtusata versus L. fabalis and L. saxatilis / L. arcana versus L. compressa both in shell morphology and in metabolomes. L. saxatilis demonstrated a clear variability depending on intertidal level which corresponds to a shift in conditions within the occupied microhabitat. Interestingly, the differences between L. arcana (inhabiting the upper intertidal level) and L. compressa (inhabiting the lower one) were analogous to those between the upper and lower fractions of L. saxatilis. No significant level-dependent changes were found between the upper and lower fractions of L. obtusata, most probably due to habitat amelioration by fucoid macroalgae. All these results are discussed in the contexts of the role of ecology in speciation, ecological niche dynamics and conservatism, and evolutionary history of the Neritrema species.

8.
Biology (Basel) ; 10(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34827080

RESUMEN

Genus Littorina subgenus Neritrema (Mollusca, Caenogastropoda) includes the "obtusata" group of closely related species (Littorina obtusata and L. fabalis). The anatomy of the adult reproductive system (pallial oviduct) is the only reliable feature used for species identification in females of these species. Reproductive system anatomy and reproduction-associated proteins often diverge between sibling species. Despite being of high evolutionary interest, the molecular basis of this divergence remains poorly understood. We performed proteotranscriptomic comparison of oviducts of L. obtusata and L. fabalis by RNA-seq on Illumina HiSeq 2500 and two-dimensional protein electrophoresis (2D DIGE) with MS/MS identification of the species-specific proteins. The interspecies differences in the oviduct were associated with (1) metabolic proteins reflecting overall physiological differences between L. obtusata and L. fabalis, (2) receptor proteins, and (3) transcripts related to transposable elements (TEs). Various receptors identified may recognize a wide variety of ligands from pathogen-associated molecular patterns to specific carbohydrates on the sperm surface. Therefore, these may participate in immune defense as well as in sperm storage and regulation. Species-specificity of multiple TE sequences (coding for reverse transcriptase and ribonuclease H) may indicate the important role of these genomic elements in the Littorina species divergence, which has not been reported previously.

9.
Sci Rep ; 11(1): 5720, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707514

RESUMEN

Sympatric coexistence of recently diverged species raises the question of barriers restricting the gene flow between them. Reproductive isolation may be implemented at several levels, and the weakening of some, e.g. premating, barriers may require the strengthening of the others, e.g. postcopulatory ones. We analysed mating patterns and shell size of mates in recently diverged closely related species of the subgenus Littorina Neritrema (Littorinidae, Caenogastropoda) in order to assess the role of premating reproductive barriers between them. We compared mating frequencies observed in the wild with those expected based on relative densities using partial canonical correspondence analysis. We introduced the fidelity index (FI) to estimate the relative accuracy of mating with conspecific females and precopulatory isolation index (IPC) to characterize the strength of premating barriers. The species under study, with the exception of L. arcana, clearly demonstrated preferential mating with conspecifics. According to FI and IPC, L. fabalis and L. compressa appeared reliably isolated from their closest relatives within Neritrema. Individuals of these two species tend to be smaller than those of the others, highlighting the importance of shell size changes in gastropod species divergence. L. arcana males were often found in pairs with L. saxatilis females, and no interspecific size differences were revealed in this sibling species pair. We discuss the lack of discriminative mate choice in the sympatric populations of L. arcana and L. saxatilis, and possible additional mechanisms restricting gene flow between them.


Asunto(s)
Conducta Sexual Animal/fisiología , Caracoles/fisiología , Simpatría/fisiología , Exoesqueleto/anatomía & histología , Animales , Análisis por Conglomerados , Copulación/fisiología , Masculino , Tamaño de los Órganos , Aislamiento Reproductivo , Especificidad de la Especie
10.
Int J Parasitol Parasites Wildl ; 11: 235-245, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32195109

RESUMEN

Host organism offers an environment for a parasite, and this environment is heterogenous within the host, variable among individual as well as between the hosts, and changing during the host's lifetime. This heterogeneity may act as a prerequisite for parasite species divergence. Intraspecific variability related to a certain type of heterogeneity may indicate an initial stage of speciation, and thus poses an evolutionary importance. Here we analyzed genetic and morphologic variation of trematode metacercariae of Microphallus piriformes (Trematoda, Microphallidae). Genetic variability of trematodes was assessed from sequences of cytochrome c oxidase subunit 1 (COI) and internal transcribed spacer region (ITS-1). Morphological variation of metacercarial body shape was for the first time analyzed using geometric morphometrics. Parasites from the White Sea and the Barents Sea coasts demonstrated partial genetic divergence (according to COI sequence analysis) and had significantly different body shape. Neither genetic nor morphological variation of metacercariae was related to intermediate host species. We discuss possible causes of the observed genetic divergence of parasite populations in different geographic regions.

11.
PeerJ ; 8: e8546, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32095363

RESUMEN

BACKGROUND: The introduction of DNA-based molecular markers made a revolution in biological systematics. However, in cases of very recent divergence events, the neutral divergence may be too slow, and the analysis of adaptive part of the genome is more informative to reconstruct the recent evolutionary history of young species. The advantage of proteomics is its ability to reflect the biochemical machinery of life. It may help both to identify rapidly evolving genes and to interpret their functions. METHODS: Here we applied a comparative gel-based proteomic analysis to several species from the gastropod family Littorinidae. Proteomes were clustered to assess differences related to species, geographic location, sex and body part, using data on presence/absence of proteins in samples and data on protein occurrence frequency in samples of different species. Cluster support was assessed using multiscale bootstrap resampling and the stability of clustering-using cluster-wise index of cluster stability. Taxon-specific protein markers were derived using IndVal method. Proteomic trees were compared to consensus phylogenetic tree (based on neutral genetic markers) using estimates of the Robinson-Foulds distance, the Fowlkes-Mallows index and cophenetic correlation. RESULTS: Overall, the DNA-based phylogenetic tree and the proteomic similarity tree had consistent topologies. Further, we observed some interesting deviations of the proteomic littorinid tree from the neutral expectations. (1) There were signs of molecular parallelism in two Littoraria species that phylogenetically are quite distant, but live in similar habitats. (2) Proteome divergence was unexpectedly high between very closely related Littorina fabalis and L. obtusata, possibly reflecting their ecology-driven divergence. (3) Conservative house-keeping proteins were usually identified as markers for cryptic species groups ("saxatilis" and "obtusata" groups in the Littorina genus) and for genera (Littoraria and Echinolittorina species pairs), while metabolic enzymes and stress-related proteins (both potentially adaptively important) were often identified as markers supporting species branches. (4) In all five Littorina species British populations were separated from the European mainland populations, possibly reflecting their recent phylogeographic history. Altogether our study shows that proteomic data, when interpreted in the context of DNA-based phylogeny, can bring additional information on the evolutionary history of species.

12.
Nat Prod Res ; 31(16): 1840-1848, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27897055

RESUMEN

Marine invertebrates are a promising source of novel natural products with biological activities. The phylum Bryozoa is relatively under-investigated in this context, although a number of compounds with medical potential has been discovered in recent years. Here, we report on the novel group of brominated metabolites from the bryozoan Terminoflustra membranaceatruncata, including analysis of biological activities of the tribrominated terminoflustrindole A (Cm-1) and the structures of the related dibrominated variants terminoflustrindoles B and C. Terminoflustrindole A was previously shown to have fungicidal properties. Although they vary by just one bromine group in each case from terminoflustrindole A, in this study, we report that terminoflustrindoles B and C exhibit no antimicrobial activity in the same assays. In addition to displaying antifungal activity, Terminoflustrindole A was also found to exhibit potent cytotoxic activity when tested against tumour cell lines. The gradient distribution of this compound within the bryozoan colony was demonstrated using LC-MS-analysis.


Asunto(s)
Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Briozoos/química , Briozoos/metabolismo , Alcaloides/química , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Animales , Antiinfecciosos/química , Antifúngicos/química , Antifúngicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos/métodos , Humanos , Indoles/química , Indoles/farmacología , Espectroscopía de Resonancia Magnética , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Ratas
14.
Front Physiol ; 5: 497, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25566093

RESUMEN

Immune responses of invertebrate animals are mediated through innate mechanisms, among which production of antimicrobial peptides play an important role. Although evolutionary Polychaetes represent an interesting group closely related to a putative common ancestor of other coelomates, their immune mechanisms still remain scarcely investigated. Previously our group has identified arenicins-new antimicrobial peptides of the lugworm Arenicola marina, since then these peptides were thoroughly characterized in terms of their structure and inhibitory potential. In the present study we addressed the question of the physiological functions of arenicins in the lugworm body. Using molecular and immunocytochemical methods we demonstrated that arencins are expressed in the wide range of the lugworm tissues-coelomocytes, body wall, extravasal tissue and the gut. The expression of arenicins is constitutive and does not depend on stimulation of various infectious stimuli. Most intensively arenicins are produced by mature coelomocytes where they function as killing agents inside the phagolysosome. In the gut and the body wall epithelia arenicins are released from producing cells via secretion as they are found both inside the epithelial cells and in the contents of the cuticle. Collectively our study showed that arenicins are found in different body compartments responsible for providing a first line of defense against infections, which implies their important role as key components of both epithelial and systemic branches of host defense.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA