Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 35(12): e22063, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34820909

RESUMEN

Pregnancy places a unique stress upon choline metabolism, requiring adaptations to support both maternal and fetal requirements. The impact of pregnancy and prenatal choline supplementation on choline and its metabolome in free-living, healthy adults is relatively uncharacterized. This study investigated the effect of prenatal choline supplementation on maternal and fetal biomarkers of choline metabolism among free-living pregnant persons consuming self-selected diets. Participants were randomized to supplemental choline (as choline chloride) intakes of 550 mg/d (500 mg/d d0-choline + 50 mg/d methyl-d9-choline; intervention) or 25 mg/d d9-choline (control) from gestational week (GW) 12-16 until Delivery. Fasting blood and 24-h urine samples were obtained at study Visit 1 (GW 12-16), Visit 2 (GW 20-24), and Visit 3 (GW 28-32). At Delivery, maternal and cord blood and placental tissue samples were collected. Participants randomized to 550 (vs. 25) mg supplemental choline/d achieved higher (p < .05) plasma concentrations of free choline, betaine, dimethylglycine, phosphatidylcholine (PC), and sphingomyelin at one or more study timepoint. Betaine was most responsive to prenatal choline supplementation with increases (p ≤ .001) in maternal plasma observed at Visit 2-Delivery (relative to Visit 1 and control), as well as in the placenta and cord plasma. Notably, greater plasma enrichments of d3-PC and LDL-C were observed in the intervention (vs. control) group, indicating enhanced PC synthesis through the de novo phosphatidylethanolamine N-methyltransferase pathway and lipid export. Overall, these data show that prenatal choline supplementation profoundly alters the choline metabolome, supporting pregnancy-related metabolic adaptations and revealing biomarkers for use in nutritional assessment and monitoring during pregnancy.


Asunto(s)
Adaptación Fisiológica , Colina/administración & dosificación , Suplementos Dietéticos , Sangre Fetal/metabolismo , Feto/metabolismo , Metaboloma , Placenta/metabolismo , Adulto , Estudios de Casos y Controles , Colina/sangre , Femenino , Feto/efectos de los fármacos , Humanos , Placenta/efectos de los fármacos , Embarazo , Adulto Joven
2.
J Nutr ; 151(4): 857-865, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33561219

RESUMEN

BACKGROUND: North American women consume high folic acid (FA), but most are not meeting the adequate intakes for choline. High-FA gestational diets induce an obesogenic phenotype in rat offspring. It is unclear if imbalances between FA and other methyl-nutrients (i.e., choline) account for these effects. OBJECTIVE: This study investigated the interaction of choline and FA in gestational diets on food intake, body weight, one-carbon metabolism, and hypothalamic gene expression in male Wistar rat offspring. METHODS: Pregnant Wistar rats were fed an AIN-93G diet with recommended choline and FA [RCRF; 1-fold, control] or high (5-fold) FA with choline at 0.5-fold [low choline and high folic acid (LCHF)], 1-fold [recommended choline and high folic acid (RCHF)], or 2.5-fold [high choline and high folic acid (HCHF)]. Male offspring were weaned to an RCRF diet for 20 wk. Food intake, weight gain, plasma energy-regulatory hormones, brain and plasma one-carbon metabolites, and RNA sequencing (RNA-seq) in pup hypothalamuses were assessed. RESULTS: Adult offspring from LCHF and RCHF, but not HCHF, gestational diets had 10% higher food intake and weight gain than controls (P < 0.01). HCHF newborn pups had lower plasma insulin and leptin compared with LCHF and RCHF pups (P < 0.05), respectively. Pup brain choline (P < 0.05) and betaine (P < 0.01) were 22-33% higher in HCHF pups compared with LCHF pups; methionine was ∼23% lower after all high FA diets compared with RCRF (P < 0.01). LCHF adult offspring had lower brain choline (P < 0.05) than all groups and lower plasma 5-methyltetrahydrofolate (P < 0.05) than RCRF and RCHF groups. HCHF adult offspring had lower plasma cystathionine (P < 0.05) than LCHF adult offspring and lower homocysteine (P < 0.01) than RCHF and RCRF adult offspring. RNA-seq identified 144 differentially expressed genes in the hypothalamus of HCHF newborns compared with controls. CONCLUSIONS: Increased choline in gestational diets modified the programming effects of high FA on long-term food intake regulation, plasma energy-regulatory hormones, one-carbon metabolism, and hypothalamic gene expression in male Wistar rat offspring, emphasizing a need for more attention to the choline and FA balance in maternal diets.


Asunto(s)
Regulación del Apetito/fisiología , Colina/administración & dosificación , Ácido Fólico/administración & dosificación , Fenómenos Fisiologicos Nutricionales Maternos , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos , Peso Corporal/fisiología , Encéfalo/metabolismo , Colina/sangre , Ingestión de Alimentos/fisiología , Femenino , Ácido Fólico/sangre , Expresión Génica , Hipotálamo/metabolismo , Insulina/sangre , Grasa Intraabdominal/anatomía & histología , Leptina/sangre , Masculino , Intercambio Materno-Fetal/fisiología , Modelos Animales , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Destete
3.
FASEB J ; 32(4): 2012-2020, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29196501

RESUMEN

Research has identified reduced circulating 25-hydroxyvitamin D [25(OH)D] in individuals with the rs7041 (c.1296T>G) T allele in the vitamin D binding protein gene ( GC); however, the effects of the T allele on vitamin D biomarkers during pregnancy and lactation are unknown. Thus, we examined the metabolic effects of GC rs7041 on vitamin D biomarkers among third-trimester pregnant ( n = 26), lactating ( n = 28), and nonpregnant/nonlactating ( n = 21) women consuming a single amount of vitamin D (511 IU/d) and related nutrients for 10-12 wk. T allele carriers had less circulating 25(OH)D, regardless of reproductive state [thymine-thymine (TT): 80% of guanine-guanine (GG), P = 0.05; guanine-thymine (GT): 85% of GG, P = 0.1]. Among pregnant women, the T allele attenuated the expected increase in vitamin D binding protein (DBP). Specifically, although GG pregnant women exhibited greater DBP (216%, P < 0.0001) than did GG nonpregnant women, that difference was lessened among GT women, and TT pregnant women did not exhibit greater DBP than TT nonpregnant women. Furthermore, TT pregnant women had greater placental 25(OH)D3 to 24,25-dihydroxyvitamin D ratios (251% of GG, P = 0.07) and less osteocalcin, a bone formation marker, in the cord blood of their neonates (24% of GT, P = 0.02). Overall, the GC rs7041 genotype modified the effects of pregnancy on maternal and placental vitamin D metabolism, with possible functional consequences for fetal bone development and infant health.-Ganz, A. B., Park, H., Malysheva, O. V., Caudill, M. A. Vitamin D binding protein rs7041 genotype alters vitamin D metabolism in pregnant women.


Asunto(s)
Polimorfismo de Nucleótido Simple , Embarazo/sangre , Proteína de Unión a Vitamina D/genética , Vitamina D/sangre , Adulto , Femenino , Genotipo , Humanos , Lactancia/sangre , Placenta/metabolismo , Vitamina D/metabolismo
4.
Br J Nutr ; 122(11): 1221-1229, 2019 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-31782377

RESUMEN

The major facilitator superfamily domain 2a protein was identified recently as a lysophosphatidylcholine (LPC) symporter with high affinity for LPC species enriched with DHA (LPC-DHA). To test the hypothesis that reproductive state and choline intake influence plasma LPC-DHA, we performed a post hoc analysis of samples available through 10 weeks of a previously conducted feeding study, which provided two doses of choline (480 and 930 mg/d) to non-pregnant (n 21), third-trimester pregnant (n 26), and lactating (n 24) women; all participants consumed 200 mg of supplemental DHA and 22 % of their daily choline intake as 2H-labelled choline. The effects of reproductive state and choline intake on total LPC-DHA (expressed as a percentage of LPC) and plasma enrichments of labelled LPC and LPC-DHA were assessed using mixed and generalised linear models. Reproductive state interacted with time (P = 0·001) to influence total LPC-DHA, which significantly increased by week 10 in non-pregnant women, but not in pregnant or lactating women. Contrary to total LPC-DHA, patterns of labelled LPC-DHA enrichments were discordant between pregnant and lactating women (P < 0·05), suggestive of unique, reproductive state-specific mechanisms that result in reduced production and/or enhanced clearance of LPC-DHA during pregnancy and lactation. Regardless of the reproductive state, women consuming 930 v. 480 mg choline per d exhibited no change in total LPC-DHA but higher d3-LPC-DHA (P = 0·02), indicating that higher choline intakes favour the production of LPC-DHA from the phosphatidylethanolamine N-methyltransferase pathway of phosphatidylcholine biosynthesis. Our results warrant further investigation into the effect of reproductive state and dietary choline on LPC-DHA dynamics and its contribution to DHA status.


Asunto(s)
Colina/administración & dosificación , Ácidos Docosahexaenoicos/sangre , Fosfatidilcolinas/sangre , Reproducción/fisiología , Adulto , Deuterio , Suplementos Dietéticos , Ácidos Docosahexaenoicos/administración & dosificación , Femenino , Genotipo , Humanos , Lactancia/sangre , Fosfatidiletanolamina N-Metiltransferasa/metabolismo , Embarazo , Tercer Trimestre del Embarazo
5.
J Nutr ; 148(4): 501-509, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29659962

RESUMEN

Background: Suboptimal folate intake, a risk factor for birth defects, is common even in areas with folate fortification. A polymorphism in methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), R653Q (MTHFD1 c.1958 G > A), has also been associated with increased birth defect risk, likely through reduced purine synthesis. Objective: We aimed to determine if the interaction of MTHFD1 synthetase deficiency and low folate intake increases developmental abnormalities in a mouse model for MTHFD1 R653Q. Methods: Female Mthfd1S+/+ and Mthfd1S+/- mice were fed control or low-folate diets (2 and 0.3 mg folic acid/kg diet, respectively) before mating and during pregnancy. Embryos and placentas were examined for anomalies at embryonic day 10.5. Maternal 1-carbon metabolites were measured in plasma and liver. Results: Delays and defects doubled in litters of Mthfd1S+/- females fed low-folate diets compared to wild-type females fed either diet, or Mthfd1S+/- females fed control diets [P values (defects): diet 0.003, maternal genotype 0.012, diet × maternal genotype 0.014]. These adverse outcomes were associated with placental dysmorphology. Intrauterine growth restriction was increased by embryonic Mthfd1S+/- genotype, folate deficiency, and interaction of maternal Mthfd1S+/- genotype with folate deficiency (P values: embryonic genotype 0.045, diet 0.0081, diet × maternal genotype 0.0019). Despite a 50% increase in methylenetetrahydrofolate reductase expression in low-folate maternal liver (P diet = 0.0007), methyltetrahydrofolate concentration decreased 70% (P diet <0.0001) and homocysteine concentration doubled in plasma (P diet = 0.0001); S-adenosylmethionine decreased 40% and S-adenosylhomocysteine increased 20% in low-folate maternal liver (P diet = 0.002 and 0.0002, respectively). Conclusions: MTHFD1 synthetase-deficient mice are more sensitive to low folate intake than wild-type mice during pregnancy. Reduced purine synthesis due to synthetase deficiency and altered methylation potential due to low folate may increase pregnancy complications. Further studies and individualized intake recommendations may be required for women homozygous for the MTHFD1 R653Q variant.


Asunto(s)
Anomalías Congénitas/etiología , Deficiencia de Ácido Fólico/complicaciones , Ácido Fólico/administración & dosificación , Formiato-Tetrahidrofolato Ligasa/deficiencia , Genotipo , Meteniltetrahidrofolato Ciclohidrolasa/deficiencia , Metilenotetrahidrofolato Deshidrogenasa (NADP)/deficiencia , Enzimas Multifuncionales/deficiencia , Polimorfismo Genético , Complicaciones del Embarazo/etiología , Animales , Metilación de ADN , Dieta , Modelos Animales de Enfermedad , Femenino , Desarrollo Fetal , Retardo del Crecimiento Fetal/etiología , Ácido Fólico/sangre , Deficiencia de Ácido Fólico/sangre , Deficiencia de Ácido Fólico/genética , Deficiencia de Ácido Fólico/metabolismo , Formiato-Tetrahidrofolato Ligasa/genética , Formiato-Tetrahidrofolato Ligasa/metabolismo , Ligasas , Hígado/metabolismo , Meteniltetrahidrofolato Ciclohidrolasa/genética , Meteniltetrahidrofolato Ciclohidrolasa/metabolismo , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Ratones , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Placenta , Embarazo , Complicaciones del Embarazo/sangre , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/metabolismo , Preñez , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Tetrahidrofolatos/sangre
6.
J Am Coll Nutr ; 37(8): 716-723, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29764315

RESUMEN

Background: Plasma trimethylamine-N-oxide (TMAO) concentrations have been associated with cardiovascular disease risk. Eggs are a rich source of choline, which is a precursor of TMAO.Objective: The effects of egg intake versus daily choline supplementation were evaluated on plasma choline and TMAO in a young, healthy population.Methods: Thirty participants (14 males, 16 females; 25.6 ± 2.3 years; body mass index = 24.3 ± 2.9 kg/m2) were enrolled in this 13-week crossover intervention. After a 2-week washout, participants were randomized to consume either 3 eggs/d or a choline bitartrate supplement (∼ 400 mg choline total in eggs or supplement) for 4 weeks. Following a 3-week washout, participants were switched to the alternate treatment. Dietary records were measured at the end of each period. Plasma TMAO and choline were measured at baseline and at the end of each dietary intervention. Gene expression of scavenger receptors associated with plasma TMAO were quantified at the end of each intervention.Results: Compared to the choline supplement, intake of total fat, cholesterol, selenium, and vitamin E were higher (p < 0.05), whereas carbohydrate intake was lower (p < 0.001) with consumption of 3 eggs/d. Fasting plasma choline increased 20% (p = 0.023) with egg intake, while no changes were observed with choline supplementation. Plasma TMAO levels were not different between dietary treatments or compared to baseline.Conclusions: Dietary choline appears to be more bioavailable via egg consumption when compared to a choline supplement. Plasma TMAO concentrations were not affected in healthy participants after 4 weeks of taking ∼400 mg/d choline either via eggs or choline supplementation.

7.
J Am Coll Nutr ; 37(2): 140-148, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29313753

RESUMEN

BACKGROUND: Habitual consumption of eggs has been hypothesized to positively modify biomarkers of cardiovascular disease risk through proposed antioxidant properties. OBJECTIVES: To examine this relationship, 50 young, healthy men and women were enrolled into a randomized crossover clinical intervention. METHODS: Participants consumed either 2 eggs per day or one packet of oatmeal a day for 4 weeks, followed by a 3-week wash-out and crossed over to the alternate breakfast. Fasting blood samples and peripheral blood mononuclear cells (PBMCs) were collected at the end of each intervention period. RESULTS: Increases in plasma large high-density lipoprotein (HDL) and large low-density lipoprotein (LDL) particle concentrations as measured by nuclear magnetic resonance were found following egg consumption (p < 0.001, p < 0.05), respectively, with increases in apolipoprotein concentration as well (p < 0.05). Though there was no difference in the intake of antioxidants lutein and zeaxanthin, a significant increase in plasma concentrations of these carotenoids was observed (p < 0.001) after egg consumption. There was no change in lecithin-cholesterol acyl transferase, cholesteryl ester transfer protein, or paroxanase-1 arylesterase activities between breakfast interventions. Dietary and plasma choline were both higher following egg consumption compared to oatmeal consumption (p < 0.001); however, there was no change in plasma trimethylamine N-oxide (TMAO) concentrations. Two eggs per day had no impact on PBMC gene expression related to cholesterol metabolism, oxidation, or TMAO production. CONCLUSIONS: These results suggest that compared to oatmeal, consumption of 2 eggs for breakfast provided increased plasma carotenoids and improved biomarkers of cardiovascular disease (CVD) risk while not affecting TMAO levels in this population.


Asunto(s)
Avena , Desayuno , Carotenoides/sangre , Colina/sangre , Huevos , Metilaminas/sangre , Adolescente , Adulto , Antioxidantes/administración & dosificación , Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Colesterol/genética , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Colina/administración & dosificación , Estudios Cruzados , Dieta , Femenino , Expresión Génica , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Factores de Riesgo
8.
FASEB J ; 30(10): 3321-3333, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27342765

RESUMEN

Although single nucleotide polymorphisms (SNPs) in folate-mediated pathways predict susceptibility to choline deficiency during severe choline deprivation, it is unknown if effects persist at recommended intakes. Thus, we used stable isotope liquid chromatography-mass spectrometry (LC-MS) methodology to examine the impact of candidate SNPs on choline metabolism in a long-term, randomized, controlled feeding trial among pregnant, lactating, and nonpregnant (NP) women consuming 480 or 930 mg/d choline (22% as choline-d9, with d9 indicating a deuterated trimethyl amine group) and meeting folate-intake recommendations. Variants impairing folate metabolism, methylenetetrahydrofolate reductase (MTHFR) rs1801133, methionine synthase (MTR) rs1805087 [wild-type (WT)], MTR reductase (MTRR) rs1801394, and methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) rs2236225, influenced choline dynamics, frequently through interactions with reproductive state and choline intake, with fewer genotypic alterations observed among pregnant women. Women with these variants partitioned more dietary choline toward phosphatidylcholine (PC) biosynthesis via the cytidine diphosphate (CDP)-choline pathway at the expense of betaine synthesis even when use of betaine as a methyl donor was increased. Choline intakes of 930 mg/d restored partitioning of dietary choline between betaine and CDP-PC among NP (MTHFR rs1801133 and MTR rs1805087 WT) and lactating (MTHFD1 rs2236225) women with risk genotypes. Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent phosphatidylethanolamine-N-methyltransferase (PEMT)-PC synthesis, and suggest that women with these risk genotypes may benefit from choline intakes exceeding current recommendations.-Ganz, A. B., Shields, K., Fomin, V. G., Lopez, Y. S., Mohan, S., Lovesky, J., Chuang, J. C., Ganti, A., Carrier, B., Yan, J., Taeswuan, S., Cohen, V. V., Swersky, C. C., Stover, J. A., Vitiello, G. A., Malysheva, O. V., Mudrak, E., Caudill, M. A. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis.


Asunto(s)
Betaína/metabolismo , Colina/genética , Dieta , Ácido Fólico/genética , Fosfatidilcolinas/genética , Polimorfismo de Nucleótido Simple/genética , Betaína/farmacología , Colina/metabolismo , Femenino , Deficiencia de Ácido Fólico/genética , Deficiencia de Ácido Fólico/metabolismo , Genotipo , Humanos , Lactancia/fisiología , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Fosfatidilcolinas/biosíntesis
9.
Int J Mol Sci ; 18(2)2017 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-28134761

RESUMEN

Single nucleotide polymorphisms (SNPs) in choline metabolizing genes are associated with disease risk and greater susceptibility to organ dysfunction under conditions of dietary choline restriction. However, the underlying metabolic signatures of these variants are not well characterized and it is unknown whether genotypic differences persist at recommended choline intakes. Thus, we sought to determine if common genetic risk factors alter choline dynamics in pregnant, lactating, and non-pregnant women consuming choline intakes meeting and exceeding current recommendations. Women (n = 75) consumed 480 or 930 mg choline/day (22% as a metabolic tracer, choline-d9) for 10-12 weeks in a controlled feeding study. Genotyping was performed for eight variant SNPs and genetic differences in metabolic flux and partitioning of plasma choline metabolites were evaluated using stable isotope methodology. CHKA rs10791957, CHDH rs9001, CHDH rs12676, PEMT rs4646343, PEMT rs7946, FMO3 rs2266782, SLC44A1 rs7873937, and SLC44A1 rs3199966 altered the use of choline as a methyl donor; CHDH rs9001 and BHMT rs3733890 altered the partitioning of dietary choline between betaine and phosphatidylcholine synthesis via the cytidine diphosphate (CDP)-choline pathway; and CHKA rs10791957, CHDH rs12676, PEMT rs4646343, PEMT rs7946 and SLC44A1 rs7873937 altered the distribution of dietary choline between the CDP-choline and phosphatidylethanolamine N-methyltransferase (PEMT) denovo pathway. Such metabolic differences may contribute to disease pathogenesis and prognosis over the long-term.


Asunto(s)
Colina/metabolismo , Variación Genética , Ingesta Diaria Recomendada , Betaína/metabolismo , Colina/sangre , Enfermedad/genética , Femenino , Genotipo , Humanos , Análisis de Flujos Metabólicos , Polimorfismo de Nucleótido Simple/genética , Reproducción , Adulto Joven
10.
J Nutr ; 146(8): 1537-45, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27335139

RESUMEN

BACKGROUND: The impact of the reproductive state on vitamin D metabolism and requirements is uncertain in part because of a lack of studies with controlled dietary intakes of vitamin D and related nutrients. OBJECTIVE: We aimed to quantify the impact of the reproductive state on a panel of vitamin D biomarkers among women of childbearing age consuming equivalent amounts of vitamin D and related nutrients. METHODS: Nested within a feeding study providing 2 doses of choline, healthy pregnant (26-29 wk gestation; n = 26), lactating (5 wk postpartum; n = 28), and control (nonpregnant/nonlactating; n = 21) women consumed a single amount of vitamin D (511 ± 48 IU/d: 311 ± 48 IU/d from diet and 200 IU/d as supplemental cholecalciferol) and related nutrients (1.6 ± 0.4 g Ca/d and 1.9 ± 0.3 g P/d) for 10 wk. Vitamin D biomarkers were measured in blood obtained at baseline and study end, and differences in biomarker response among the reproductive groups were assessed with linear mixed models adjusted for influential covariates (e.g., body mass index, season, race/ethnicity). RESULTS: At study end, pregnant women had higher (P < 0.01) circulating concentrations of 25-hydroxyvitamin D [25(OH)D; 30%], 1,25-dihydroxyvitamin D [1,25(OH)2D; 80%], vitamin D binding protein (67%), and C3 epimer of 25(OH)D3 (100%) than control women. Pregnant women also had higher (P ≤ 0.04) ratios of 25(OH)D to 24,25-dihydroxyvitamin D [24,25(OH)2D; 40%] and 1,25(OH)2D to 25(OH)D (50%) than control women. In contrast, no differences (P ≥ 0.15) in vitamin D biomarkers were detected between the lactating and control groups. Notably, the study vitamin D dose of 511 IU/d achieved vitamin D adequacy in most participants (95%) regardless of their reproductive state. CONCLUSIONS: The higher concentrations of vitamin D biomarkers among pregnant women than among control women suggest that metabolic adaptations, likely involving the placenta, transpire to enhance vitamin D supply during pregnancy. The study findings also support the adequacy of the current vitamin D RDA of 600 IU for achieving serum 25(OH)D concentrations ≥50 nmol/L among women differing in their reproductive state. This trial was registered at clinicaltrials.gov as NCT01127022.


Asunto(s)
Dieta , Suplementos Dietéticos , Lactancia/sangre , Embarazo/sangre , Reproducción/fisiología , Vitamina D/sangre , Adulto , Biomarcadores/sangre , Colecalciferol/administración & dosificación , Colecalciferol/sangre , Ingestión de Energía , Femenino , Humanos , Vitamina D/administración & dosificación , Proteína de Unión a Vitamina D/sangre
11.
J Nutr ; 146(11): 2216-2223, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27733523

RESUMEN

BACKGROUND: Choline is essential for synthesis of phospholipids, neurodevelopment, and DNA methylation. It is unknown whether dietary perinatal choline deficiency affects maternal milk composition. OBJECTIVE: We examined whether perinatal maternal dietary choline deficiency influences porcine-milk composition. METHODS: Yorkshire sows were fed choline-deficient (CD) or choline-sufficient (CS) gestation diets [544 or 1887 mg choline/kg dry matter (DM), respectively] from 65 d before to 48 h after parturition and then fed lactation diets (517 or 1591 mg choline/kg DM, respectively) through day 19 of lactation. Milk was collected from 7 sows fed each diet at days 0 (colostrum), 7-9 (mature milk), and 17-19 (preweaning) of lactation. Sow plasma was collected 65 d before and 19 d after parturition. Milk was analyzed for choline metabolite, fatty acid (FA), and amino acid composition. All outcomes were analyzed to assess main and interactive effects of choline intake and time. RESULTS: Plasma choline metabolites did not differ before treatment, but free choline, betaine, and dimethylglycine concentrations were lower in CD-fed than in CS-fed sows at day 19 of lactation (interaction; P < 0.05). Milk betaine concentrations responded similarly, with no differences due to choline intake at day 0 of lactation, but lower concentrations in CD-fed than in CS-fed sows at day 18 of lactation (interaction; P < 0.001). Certain milk long-chain FAs also exhibited no differences at day 0 of lactation but higher concentrations in CD-fed than in CS-fed sows at day 18 of lactation (P < 0.05). CONCLUSIONS: These data indicate that, in pigs, dietary choline deficiency induces alterations in plasma choline metabolites that are evident at the end of lactation. Betaine and select FAs in milk are sensitive to maternal dietary choline deficiency and day of lactation. Alterations in concentrations of these nutrients may affect early-life neonatal development.


Asunto(s)
Aminoácidos/metabolismo , Deficiencia de Colina/veterinaria , Colina/administración & dosificación , Ácidos Grasos/metabolismo , Enfermedades de los Porcinos/metabolismo , Porcinos/fisiología , Aminoácidos/química , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Colina/metabolismo , Dieta/veterinaria , Ácidos Grasos/química , Femenino , Lactancia/fisiología , Leche/química , Periodo Periparto , Embarazo
12.
Int J Gynecol Pathol ; 35(6): 509-515, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26630226

RESUMEN

Uterine leiomyomas (ULs) are common benign tumors affecting women of different ethnicities. A large proportion of UL has mutations in MED12. Multiple and solitary ULs usually manifest with different severities, suggesting that their origin and growth pattern may be driven by different molecular mechanisms. Here, we compared the frequency and the spectrum of MED12 exon 2 mutations between multiple (n=82) and solitary (n=40) ULs from Russian patients. Overall, we detected MED12 exon 2 mutations in 51.6% (63/122) of ULs. The frequency of MED12 exon 2 mutations was almost two-fold higher in samples from the multiple UL patients than in those from the solitary UL patients - 61% (50/82) versus 32.5% (13/40). The increased MED12 exon 2 mutation frequency in the multiple ULs was not accompanied by significant alterations in the spectrum of mutation categories, which included missense mutations, deletions, splicing defects, and multiple (double/triple) mutations. Each mutation category had a unique mutation set, comprising both frequent and rarely encountered mutations, which did and did not overlap between the studied groups, respectively. We conclude that in contrast to the solitary ULs, the multiple ULs predominantly originate through MED12-associated mechanisms. The nature of these mechanisms seems to be similar in solitary and multiple ULs, as they contain similar mutations. In multiple UL patients, they are likely to be nonsporadic, indicating the existence of specific factors predisposing to multiple UL development. These data suggest that to clearly understand UL pathogenesis, solitary and multiple tumors should probably be analyzed as separate sets.


Asunto(s)
Leiomioma/genética , Leiomiomatosis/genética , Complejo Mediador/genética , Mutación , Neoplasias Uterinas/genética , Análisis Mutacional de ADN , Exones , Femenino , Humanos , Leiomioma/patología , Leiomiomatosis/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Federación de Rusia , Neoplasias Uterinas/patología
14.
J Cell Physiol ; 229(8): 1016-27, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24647919

RESUMEN

Maternal choline intake during gestation may influence placental function and fetal health outcomes. Specifically, we previously showed that supplemental choline reduced placental and maternal circulating concentrations of the anti-angiogenic factor, fms-like tyrosine kinase-1 (sFLT1), in pregnant women as well as sFLT1 production in cultured human trophoblasts. The current study aimed to quantify the effect of choline on a wider array of biomarkers related to trophoblast function and to elucidate possible mechanisms. Immortalized HTR-8/SVneo trophoblasts were cultured in different choline concentrations (8, 13, and 28 µM [control]) for 96-h and markers of angiogenesis, inflammation, apoptosis, and blood vessel formation were examined. Choline insufficiency altered the angiogenic profile, impaired in vitro angiogenesis, increased inflammation, induced apoptosis, increased oxidative stress, and yielded greater levels of protein kinase C (PKC) isoforms δ and ϵ possibly through increases in the PKC activators 1-stearoyl-2-arachidonoyl-sn-glycerol and 1-stearoyl-2-docosahexaenoyl-sn-glycerol. Notably, the addition of a PKC inhibitor normalized angiogenesis and apoptosis, and partially rescued the aberrant gene expression profile. Together these results suggest that choline inadequacy may contribute to placental dysfunction and the development of disorders related to placental insufficiency by activating PKC.


Asunto(s)
Colina/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Trofoblastos/efectos de los fármacos , Trofoblastos/fisiología , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Proliferación Celular , Colina/administración & dosificación , Medios de Cultivo , Diglicéridos/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Inflamación , Neovascularización Fisiológica/fisiología , Estrés Oxidativo , Fenoles , Fosfatidilcolinas/biosíntesis , Extractos Vegetales , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Especies Reactivas de Oxígeno , Trofoblastos/citología
15.
Front Nutr ; 11: 1409972, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119463

RESUMEN

Aim: The aim was to investigate mechanisms by which betaine improves hepatic insulin signaling in a dietary mouse model of insulin resistance and fatty liver. Methods: C57BL 6J mice were fed a standard diet (SF), a standard diet with betaine (SFB), a nutritionally complete high fat (HF) diet, or a high fat diet with betaine (HFB) for 14 weeks. In a separate experiment, mice were fed high fat diet for 18 weeks, half of whom received betaine for the final 4 weeks. Activation of insulin signaling in the liver was assessed by western blot. Insulin signaling was also assessed in insulin resistant primary human hepatocytes treated with betaine. Results: As compared with SF, mice receiving HF diet were heavier, had more hepatic steatosis, and abnormal glucose tolerance test (GTT). Betaine content in liver and serum was 50% lower in HF than in SF; betaine supplementation restored serum and liver betaine content. Betaine treatment of HF reduced whole body insulin resistance as measured by GTT. Betaine treatment of HF increased tyrosine phosphorylation of insulin receptor substrate-1 and phosphorylation (activation) of Akt, and increased hepatic glycogen content. In vitro, betaine reversed insulin resistance in primary human hepatocytes by increasing insulin-stimulated tyrosine phosphorylation of IRS1 and of Akt. Conclusion: Betaine supplementation reduced whole body insulin resistance and increased activation of insulin signaling pathways in the liver in a mouse model of insulin resistance and fatty liver created by feeding a nutritionally complete high fat diet for 14 weeks. Betaine also reduced liver injury as assessed by ALT and by liver histology. In vitro, betaine reversed insulin resistance by increasing insulin-stimulated tyrosine phosphorylation of IRS1 and activation of downstream proteins in the insulin signaling cascade in insulin resistant primary human hepatocytes.

16.
J Clin Med ; 13(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38893001

RESUMEN

Background: In recent years, preimplantation genetic testing for aneuploidies (PGT-A) has become widespread in assisted reproduction. However, contrary to expectations, PGT-A does not significantly improve the clinical outcomes of assisted reproductive technologies. One of the underlying reasons is the discordance between the PGT-A results and the true chromosomal constitution of the blastocyst. In this case series, we re-examined the PGT-A results in trophectoderm (TE) re-biopsies and in the two isolated blastocyst compartments-the TE and the inner cell mass (ICM). Methods: This study enrolled 23 human blastocysts from 17 couples who were referred for assisted reproduction. The blastocysts were unsuitable for uterine transfer due to the chromosomal imbalance revealed by PGT-A using array comparative genomic hybridization (aCGH) (n = 11) or next-generation sequencing (NGS) (n = 12). The re-examination of the PGT results involved two steps: (1) a TE re-biopsy with subsequent aCGH and (2) blastocyst separation into the TE and the ICM with a subsequent cell-by-cell analysis of each isolated compartment by fluorescence in situ hybridization (FISH) with the DNA probes to chromosomes 13, 16, 18, 21, and 22 as well as to the PGT-A detected imbalanced chromosomes. Results: In 8 out of 23 cases, the PGT-A results were concordant with both the re-biopsy and the isolated TE and ICM analyses. The latter included the diagnoses of full non-mosaic aneuploidies (five cases of trisomies and two cases of monosomies). In one case, the results of PGT-A, aCGH on the TE re-biopsy, and FISH on the isolated TE showed Xp tetrasomy, which contrasted with the FISH results on the isolated ICM, where this chromosomal pathology was not detected. This case was classified as a confined mosaicism. In 4 out of 23 cases, the results were partially discordant. The latter included one case of trisomy 12, which was detected as non-mosaic by PGT-A and the re-biopsy and as mosaic by FISH on the isolated TE and ICM. This case was classified as a true mosaicism with a false negative PGT-A result. In 11 out of 23 cases, the re-examination results were not concordant with the PGT-A results. In one of these discordant cases, non-mosaic tetraploidy was detected by FISH in the isolated TE and ICM, whereas the PGT-A and the TE re-biopsy failed to detect any abnormality, which advocated for their false negative result. In two cases, the re-examination did not confirm full aneuploidies. In eight cases, full or partial mosaic aneuploidies as well as chaotic mosacism were not confirmed in the isolated TE nor the isolated ICM. Thus, in 47.8% of cases, the PGT-A results did not reflect the true chromosomal constitution of a blastocyst. Conclusions: The PGT results may have different prognostic value in the characterization of the chromosomal constitution of a blastocyst. The detected non-mosaic aneuploidies have the highest prognostic value. In stark contrast, most PGT-identified mosaic aneuploidies fail to characterize the true chromosomal constitution of a blastocyst. Once detected, a differential diagnosis is needed.

17.
Mol Nutr Food Res ; 68(5): e2300355, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38327171

RESUMEN

SCOPE: Disturbances in one-carbon metabolism contribute to nonalcoholic fatty liver disease (NAFLD) which encompasses steatosis, steatohepatitis, fibrosis, and cirrhosis. The goal is to examine impact of folate deficiency and the Mthfr677C >T variant on NAFLD. METHODS AND RESULTS: This study uses the new Mthfr677C >T mouse model for the human MTHFR677C >T variant. Mthfr677CC and Mthfr677TT mice were fed control diet (CD) or folate-deficient (FD) diets for 4 months. FD and Mthfr677TT alter choline/methyl metabolites in liver and/or plasma (decreased S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio, methyltetrahydrofolate, and betaine; increased homocysteine [Hcy]). FD, with contribution from Mthfr677TT, provokes fibrosis in males. Studies of normal livers reveal alterations in plasma markers and gene expression that suggest an underlying predisposition to fibrosis induced by FD and/or Mthfr677TT in males. These changes are absent or reverse in females, consistent with the sex disparity of fibrosis. Sex-based differences in methylation potential, betaine, sphingomyelin, and trimethylamine-N-oxide (TMAO) levels may prevent fibrogenesis in females. In contrast, Mthfr677TT alters choline metabolism, dysregulates expression of lipid metabolism genes, and promotes steatosis in females. CONCLUSION: This study suggests that folate deficiency predisposes males to fibrosis, which is exacerbated by Mthfr677TT, whereas Mthfr677TT predisposes females to steatosis, and reveal novel contributory mechanisms for these NAFLD-related disorders.


Asunto(s)
Deficiencia de Ácido Fólico , Metilenotetrahidrofolato Reductasa (NADPH2) , Enfermedad del Hígado Graso no Alcohólico , Animales , Femenino , Humanos , Masculino , Ratones , Betaína , Colina/metabolismo , Ácido Fólico , Deficiencia de Ácido Fólico/metabolismo , Genotipo , Homocisteína , Cirrosis Hepática/etiología , Enfermedad del Hígado Graso no Alcohólico/etiología , S-Adenosilmetionina
18.
J Nutr ; 143(1): 41-5, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23190757

RESUMEN

Impaired utilization of folate is caused by insufficient dietary intake and/or genetic variation and has been shown to prompt changes in related pathways, including choline and methionine metabolism. These pathways have been shown to be sensitive to variation within the Mthfd1 gene, which codes for a folate-metabolizing enzyme responsible for generating 1-carbon (1-C)-substituted folate derivatives. The Mthfd1(gt/+) mouse serves as a potential model of human Mthfd1 loss-of-function genetic variants that impair MTHFD1 function. This study investigated the effects of the Mthfd1(gt/+) genotype and folate intake on markers of choline, folate, methionine, and transsulfuration metabolism. Male Mthfd1(gt/+) and Mthfd1(+/+) mice were randomly assigned at weaning (3 wk of age) to either a control (2 mg/kg folic acid) or folate-deficient (0 mg/kg folic acid) diet for 5 wk. Mice were killed at 8 wk of age following 12 h of food deprivation; blood and liver samples were analyzed for choline, methionine, and transsulfuration biomarkers. Independent of folate intake, mice with the Mthfd1(gt/+) genotype had higher hepatic concentrations of choline (P = 0.005), betaine (P = 0.013), and dimethylglycine (P = 0.004) and lower hepatic concentrations of glycerophosphocholine (P = 0.002) relative to Mthfd1(+/+) mice. Mthfd1(gt/+) mice also had higher plasma concentrations of homocysteine (P = 0.0016) and cysteine (P < 0.001) as well as lower plasma concentrations of methionine (P = 0.0003) and cystathionine (P = 0.011). The metabolic alterations observed in Mthfd1(gt/+) mice indicate perturbed choline and folate-dependent 1-C metabolism and support the future use of Mthfd1(gt/+) mice as a tool to investigate the impact of impaired 1-C metabolism on disease outcomes.


Asunto(s)
Colina/metabolismo , Deficiencia de Ácido Fólico/enzimología , Hígado/metabolismo , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Colina/sangre , Cisteína/sangre , Cisteína/metabolismo , Modelos Animales de Enfermedad , Deficiencia de Ácido Fólico/sangre , Deficiencia de Ácido Fólico/metabolismo , Heterocigoto , Homocisteína/sangre , Homocisteína/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Hígado/enzimología , Masculino , Metionina/sangre , Metionina/metabolismo , Metilación , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutagénesis Insercional , Proteínas Mutantes/metabolismo , Distribución Aleatoria
19.
FASEB J ; 26(8): 3563-74, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22549509

RESUMEN

The in utero availability of methyl donors, such as choline, may modify fetal epigenetic marks and lead to sustainable functional alterations throughout the life course. The hypothalamic-pituitary-adrenal (HPA) axis regulates cortisol production and is sensitive to perinatal epigenetic programming. As an extension of a 12-wk dose-response choline feeding study conducted in third-trimester pregnant women, we investigated the effect of maternal choline intake (930 vs. 480 mg/d) on the epigenetic state of cortisol-regulating genes, and their expression, in placenta and cord venous blood. The higher maternal choline intake yielded higher placental promoter methylation of the cortisol-regulating genes, corticotropin releasing hormone (CRH; P=0.05) and glucocorticoid receptor (NR3C1; P=0.002); lower placental CRH transcript abundance (P=0.04); lower cord blood leukocyte promoter methylation of CRH (P=0.05) and NR3C1 (P=0.04); and 33% lower (P=0.07) cord plasma cortisol. In addition, placental global DNA methylation and dimethylated histone H3 at lysine 9 (H3K9me2) were higher (P=0.02) in the 930 mg choline/d group, as was the expression of select placental methyltransferases. These data collectively suggest that maternal choline intake in humans modulates the epigenetic state of genes that regulate fetal HPA axis reactivity as well as the epigenomic status of fetal derived tissues.


Asunto(s)
Colina/administración & dosificación , Epigénesis Genética/efectos de los fármacos , Hidrocortisona/biosíntesis , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Adulto , Hormona Liberadora de Corticotropina/metabolismo , Metilación de ADN , Femenino , Sangre Fetal/metabolismo , Humanos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/fisiología , Placenta/metabolismo , Embarazo , Tercer Trimestre del Embarazo , Receptores de Glucocorticoides/metabolismo
20.
Nutrients ; 15(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37049396

RESUMEN

Maternal dietary levels of one-carbon (1C) metabolites (folic acid and choline) during pregnancy play a vital role in neurodevelopment. However, the impact of maternal dietary deficiencies on offspring stroke outcomes later in life remains undefined. The aim of this study was to investigate the role of maternal dietary deficiencies in folic acid and choline on ischemic stroke outcomes in middle-aged offspring. Female mice were maintained on either a control or deficient diet prior to and during pregnancy and lactation. At 10 months of age ischemic stroke was induced in male and female offspring. Stroke outcome was assessed by measuring motor function and brain tissue. There was no difference in offspring motor function; however, sex differences were present. In brain tissue, maternal dietary deficiency increased ischemic damage volume and offspring from deficient mothers had reduced neurodegeneration and neuroinflammation within the ischemic region. Furthermore, there were changes in plasma 1C metabolites as a result of maternal diet and sex. Our data indicate that maternal dietary deficiencies do not impact offspring behavior after ischemic stroke but do play a role in brain histology and one-carbon metabolite levels in plasma. Additionally, this study demonstrates that the sex of mice plays an important role in stroke outcomes.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Embarazo , Femenino , Masculino , Ratones , Animales , Ácido Fólico , Colina/farmacología , Lactancia , Inflamación , Suplementos Dietéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA