Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(24): 3374-3389, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37756622

RESUMEN

Defective lysosomal acidification is responsible for a large range of multi-systemic disorders associated with impaired autophagy. Diseases caused by mutations in the VMA21 gene stand as exceptions, specifically affecting skeletal muscle (X-linked Myopathy with Excessive Autophagy, XMEA) or liver (Congenital Disorder of Glycosylation). VMA21 chaperones vacuolar (v-) ATPase assembly, which is ubiquitously required for proper lysosomal acidification. The reason VMA21 deficiencies affect specific, but divergent tissues remains unknown. Here, we show that VMA21 encodes a yet-unreported long protein isoform, in addition to the previously described short isoform, which we name VMA21-120 and VMA21-101, respectively. In contrast to the ubiquitous pattern of VMA21-101, VMA21-120 was predominantly expressed in skeletal muscle, and rapidly up-regulated upon differentiation of mouse and human muscle precursors. Accordingly, VMA21-120 accumulated during development, regeneration and denervation of mouse skeletal muscle. In contrast, neither induction nor blockade of autophagy, in vitro and in vivo, strongly affected VMA21 isoform expression. Interestingly, VMA21-101 and VMA21-120 both localized to the sarcoplasmic reticulum of muscle cells, and interacted with the v-ATPase. While VMA21 deficiency impairs autophagy, VMA21-101 or VMA21-120 overexpression had limited impact on autophagic flux in muscle cells. Importantly, XMEA-associated mutations lead to both VMA21-101 deficiency and loss of VMA21-120 expression. These results provide important insights into the clinical diversity of VMA21-related diseases and uncover a muscle-specific VMA21 isoform that potently contributes to XMEA pathogenesis.


Asunto(s)
Enfermedades Musculares , ATPasas de Translocación de Protón Vacuolares , Humanos , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Músculo Esquelético/metabolismo , Genes Ligados a X , Autofagia/genética
2.
Lab Invest ; 103(3): 100037, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36925196

RESUMEN

Sarcoglycanopathies, limb-girdle muscular dystrophies (LGMD) caused by genetic loss-of-function of the membrane proteins sarcoglycans (SGs), are characterized by progressive degeneration of skeletal muscle. In these disorders, muscle necrosis is associated with immune-mediated damage, whose triggering and perpetuating molecular mechanisms are not fully elucidated yet. Extracellular adenosine triphosphate (eATP) seems to represent a crucial factor, with eATP activating purinergic receptors. Indeed, in vivo blockade of the eATP/P2X7 purinergic pathway ameliorated muscle disease progression. P2X7 inhibition improved the dystrophic process by restraining the activity of P2X7 receptors on immune cells. Whether P2X7 blockade can display a direct action on muscle cells is not known yet. In this study, we investigated eATP effects in primary cultures of myoblasts isolated from patients with LGMDR3 (α-sarcoglycanopathy) and in immortalized cells isolated from a patient with LGMDR5 (γ-sarcoglycanopathy). Our results demonstrated that, owing to a reduced ecto-ATPase activity and/or an enhanced release of ATP, patient cells are exposed to increased juxtamembrane concentrations of eATP and display a higher susceptivity to eATP signals. The purinoceptor P2Y2, which proved to be overexpressed in patient cells, was identified as a pivotal receptor responsible for the enhanced ATP-induced or UTP-induced Ca2+ increase in affected myoblasts. Moreover, P2Y2 stimulation in LDMDR3 muscle cells induced chemotaxis of immune cells and release of interleukin-8. In conclusion, a higher eATP concentration and sensitivity in primary human muscle cells carrying different α-SG or γ-SG loss-of-function mutations indicate that eATP/P2Y2 is an enhanced signaling axis in cells from patients with α-/γ-sarcoglycanopathy. Understanding the basis of the innate immune-mediated damage associated with the dystrophic process may be critical in overcoming the immunologic hurdles associated with emerging gene therapies for these disorders.


Asunto(s)
Adenosina Trifosfato , Sarcoglicanopatías , Humanos , Adenosina Trifosfato/metabolismo , Músculo Esquelético/metabolismo , Sarcoglicanopatías/metabolismo , Transducción de Señal , Receptores Purinérgicos P2Y2
3.
Cell Mol Life Sci ; 79(8): 441, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35864358

RESUMEN

Spinal muscular atrophy (SMA) is a genetic disease resulting in the loss of α-motoneurons followed by muscle atrophy. It is caused by knock-out mutations in the survival of motor neuron 1 (SMN1) gene, which has an unaffected, but due to preferential exon 7 skipping, only partially functional human-specific SMN2 copy. We previously described a Drosophila-based screening of FDA-approved drugs that led us to discover moxifloxacin. We showed its positive effect on the SMN2 exon 7 splicing in SMA patient-derived skin cells and its ability to increase the SMN protein level. Here, we focus on moxifloxacin's therapeutic potential in additional SMA cellular and animal models. We demonstrate that moxifloxacin rescues the SMA-related molecular and phenotypical defects in muscle cells and motoneurons by improving the SMN2 splicing. The consequent increase of SMN levels was higher than in case of risdiplam, a potent exon 7 splicing modifier, and exceeded the threshold necessary for a survival improvement. We also demonstrate that daily subcutaneous injections of moxifloxacin in a severe SMA murine model reduces its characteristic neuroinflammation and increases the SMN levels in various tissues, leading to improved motor skills and extended lifespan. We show that moxifloxacin, originally used as an antibiotic, can be potentially repositioned for the SMA treatment.


Asunto(s)
Atrofia Muscular Espinal , Animales , Modelos Animales de Enfermedad , Exones/genética , Humanos , Ratones , Moxifloxacino/farmacología , Moxifloxacino/uso terapéutico , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Fenotipo , Proteína 1 para la Supervivencia de la Neurona Motora/genética
4.
Ann Neurol ; 88(2): 332-347, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32403198

RESUMEN

OBJECTIVE: A hitherto undescribed phenotype of early onset muscular dystrophy associated with sensorineural hearing loss and primary ovarian insufficiency was initially identified in 2 siblings and in subsequent patients with a similar constellation of findings. The goal of this study was to understand the genetic and molecular etiology of this condition. METHODS: We applied whole exome sequencing (WES) superimposed on shared haplotype regions to identify the initial biallelic variants in GGPS1 followed by GGPS1 Sanger sequencing or WES in 5 additional families with the same phenotype. Molecular modeling, biochemical analysis, laser membrane injury assay, and the generation of a Y259C knock-in mouse were done. RESULTS: A total of 11 patients in 6 families carrying 5 different biallelic pathogenic variants in specific domains of GGPS1 were identified. GGPS1 encodes geranylgeranyl diphosphate synthase in the mevalonate/isoprenoid pathway, which catalyzes the synthesis of geranylgeranyl pyrophosphate, the lipid precursor of geranylgeranylated proteins including small guanosine triphosphatases. In addition to proximal weakness, all but one patient presented with congenital sensorineural hearing loss, and all postpubertal females had primary ovarian insufficiency. Muscle histology was dystrophic, with ultrastructural evidence of autophagic material and large mitochondria in the most severe cases. There was delayed membrane healing after laser injury in patient-derived myogenic cells, and a knock-in mouse of one of the mutations (Y259C) resulted in prenatal lethality. INTERPRETATION: The identification of specific GGPS1 mutations defines the cause of a unique form of muscular dystrophy with hearing loss and ovarian insufficiency and points to a novel pathway for this clinical constellation. ANN NEUROL 2020;88:332-347.


Asunto(s)
Dimetilaliltranstransferasa/genética , Farnesiltransferasa/genética , Geraniltranstransferasa/genética , Pérdida Auditiva/genética , Distrofias Musculares/genética , Mutación/genética , Insuficiencia Ovárica Primaria/genética , Adolescente , Adulto , Animales , Femenino , Técnicas de Sustitución del Gen/métodos , Pérdida Auditiva/diagnóstico por imagen , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Distrofias Musculares/diagnóstico por imagen , Linaje , Insuficiencia Ovárica Primaria/diagnóstico por imagen , Estructura Secundaria de Proteína , Análisis de Secuencia de ADN/métodos , Secuenciación del Exoma/métodos , Adulto Joven
5.
Molecules ; 26(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34946743

RESUMEN

Steric blocking antisense oligonucleotides (ASO) are promising tools for splice modulation such as exon-skipping, although their therapeutic effect may be compromised by insufficient delivery. To address this issue, we investigated the synthesis of a 20-mer 2'-OMe PS oligonucleotide conjugated at 3'-end with ursodeoxycholic acid (UDCA) involved in the targeting of human DMD exon 51, by exploiting both a pre-synthetic and a solution phase approach. The two approaches have been compared. Both strategies successfully provided the desired ASO 51 3'-UDC in good yield and purity. It should be pointed out that the pre-synthetic approach insured better yields and proved to be more cost-effective. The exon skipping efficiency of the conjugated oligonucleotide was evaluated in myogenic cell lines and compared to that of unconjugated one: a better performance was determined for ASO 51 3'-UDC with an average 9.5-fold increase with respect to ASO 51.


Asunto(s)
Exones , Distrofia Muscular de Duchenne , Mioblastos Esqueléticos/metabolismo , Oligonucleótidos Antisentido , Precursores del ARN , Ácido Ursodesoxicólico , Línea Celular Transformada , Humanos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Oligonucleótidos Antisentido/síntesis química , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/farmacocinética , Oligonucleótidos Antisentido/farmacología , Precursores del ARN/genética , Precursores del ARN/metabolismo , Ácido Ursodesoxicólico/química , Ácido Ursodesoxicólico/farmacocinética , Ácido Ursodesoxicólico/farmacología
6.
Mol Ther ; 27(11): 2005-2017, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31416775

RESUMEN

Mutations in the dystrophin (DMD) gene and consequent loss of dystrophin cause Duchenne muscular dystrophy (DMD). A promising therapy for DMD, single-exon skipping using antisense phosphorodiamidate morpholino oligomers (PMOs), currently confronts major issues in that an antisense drug induces the production of functionally undefined dystrophin and may not be similarly efficacious among patients with different mutations. Accordingly, the applicability of this approach is limited to out-of-frame mutations. Here, using an exon-skipping efficiency predictive tool, we designed three different PMO cocktail sets for exons 45-55 skipping aiming to produce a dystrophin variant with preserved functionality as seen in milder or asymptomatic individuals with an in-frame exons 45-55 deletion. Of them, the most effective set was composed of select PMOs that each efficiently skips an assigned exon in cell-based screening. These combinational PMOs fitted to different deletions of immortalized DMD patient muscle cells significantly induced exons 45-55 skipping with removing 3, 8, or 10 exons and dystrophin restoration as represented by western blotting. In vivo skipping of the maximum 11 human DMD exons was confirmed in humanized mice. The finding indicates that our PMO set can be used to create mutation-tailored cocktails for exons 45-55 skipping and treat over 65% of DMD patients carrying out-of-frame or in-frame deletions.


Asunto(s)
Empalme Alternativo , Distrofina/genética , Exones , Regulación de la Expresión Génica , Morfolinos/genética , Distrofia Muscular de Duchenne/genética , Mutación , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Distrofia Muscular de Duchenne/diagnóstico , Fenotipo , Eliminación de Secuencia
7.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396724

RESUMEN

Laminopathies are a clinically heterogeneous group of disorders caused by mutations in the LMNA gene, which encodes the nuclear envelope proteins lamins A and C. The most frequent diseases associated with LMNA mutations are characterized by skeletal and cardiac involvement, and include autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B, and LMNA-related congenital muscular dystrophy (LMNA-CMD). Although the exact pathophysiological mechanisms responsible for LMNA-CMD are not yet understood, severe contracture and muscle atrophy suggest that mutations may impair skeletal muscle growth. Using human muscle stem cells (MuSCs) carrying LMNA-CMD mutations, we observe impaired myogenic fusion with disorganized cadherin/ß catenin adhesion complexes. We show that skeletal muscle from Lmna-CMD mice is unable to hypertrophy in response to functional overload, due to defective fusion of activated MuSCs, defective protein synthesis and defective remodeling of the neuromuscular junction. Moreover, stretched myotubes and overloaded muscle fibers with LMNA-CMD mutations display aberrant mechanical regulation of the yes-associated protein (YAP). We also observe defects in MuSC activation and YAP signaling in muscle biopsies from LMNA-CMD patients. These phenotypes are not recapitulated in closely related but less severe EDMD models. In conclusion, combining studies in vitro, in vivo, and patient samples, we find that LMNA-CMD mutations interfere with mechanosignaling pathways in skeletal muscle, implicating A-type lamins in the regulation of skeletal muscle growth.


Asunto(s)
Lamina Tipo A/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/etiología , Distrofia Muscular de Cinturas/metabolismo , Mutación , Transducción de Señal , Animales , Biopsia , Comunicación Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Lamina Tipo A/metabolismo , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Distrofia Muscular de Cinturas/patología , Unión Neuromuscular/metabolismo , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Am J Hum Genet ; 98(1): 90-101, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26686765

RESUMEN

Clustered regularly interspaced short palindromic repeat (CRISPR) has arisen as a frontrunner for efficient genome engineering. However, the potentially broad therapeutic implications are largely unexplored. Here, to investigate the therapeutic potential of CRISPR/Cas9 in a diverse set of genetic disorders, we establish a pipeline that uses readily obtainable cells from affected individuals. We show that an adapted version of CRISPR/Cas9 increases the amount of utrophin, a known disease modifier in Duchenne muscular dystrophy (DMD). Furthermore, we demonstrate preferential elimination of the dominant-negative FGFR3 c.1138G>A allele in fibroblasts of an individual affected by achondroplasia. Using a previously undescribed approach involving single guide RNA, we successfully removed large genome rearrangement in primary cells of an individual with an X chromosome duplication including MECP2. Moreover, removal of a duplication of DMD exons 18-30 in myotubes of an individual affected by DMD produced full-length dystrophin. Our findings establish the far-reaching therapeutic utility of CRISPR/Cas9, which can be tailored to target numerous inherited disorders.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Enfermedades Genéticas Congénitas/terapia , Alelos , Expresión Génica , Enfermedades Genéticas Congénitas/genética , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
9.
Mol Ther ; 25(10): 2345-2359, 2017 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-28750736

RESUMEN

Although cell-based therapy is considered a promising method aiming at treating different muscular disorders, little clinical benefit has been reported. One of major hurdles limiting the efficiency of myoblast transfer therapy is the poor survival of the transplanted cells. Any intervention upon the donor cells focused on enhancing in vivo survival, proliferation, and expansion is essential to improve the effectiveness of such therapies in regenerative medicine. In the present work, we investigated the potential role of obestatin, an autocrine peptide factor regulating skeletal muscle growth and repair, to improve the outcome of myoblast-based therapy by xenotransplanting primary human myoblasts into immunodeficient mice. The data proved that short in vivo obestatin treatment of primary human myoblasts not only enhances the efficiency of engraftment, but also facilitates an even distribution of myoblasts in the host muscle. Moreover, this treatment leads to a hypertrophic response of the human-derived regenerating myofibers. Taken together, the activation of the obestatin/GPR39 pathway resulted in an overall improvement of the efficacy of cell engraftment within the host's skeletal muscle. These data suggest considerable potential for future therapeutic applications and highlight the importance of combinatorial therapies.


Asunto(s)
Ghrelina/metabolismo , Ghrelina/farmacología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Inyecciones Intramusculares , Ratones , Ratones SCID , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo
10.
Mol Ther ; 25(11): 2561-2572, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28865998

RESUMEN

Duchenne muscular dystrophy (DMD), the most common lethal genetic disorder, is caused by mutations in the dystrophin (DMD) gene. Exon skipping is a therapeutic approach that uses antisense oligonucleotides (AOs) to modulate splicing and restore the reading frame, leading to truncated, yet functional protein expression. In 2016, the US Food and Drug Administration (FDA) conditionally approved the first phosphorodiamidate morpholino oligomer (morpholino)-based AO drug, eteplirsen, developed for DMD exon 51 skipping. Eteplirsen remains controversial with insufficient evidence of its therapeutic effect in patients. We recently developed an in silico tool to design antisense morpholino sequences for exon skipping. Here, we designed morpholino AOs targeting DMD exon 51 using the in silico tool and quantitatively evaluated the effects in immortalized DMD muscle cells in vitro. To our surprise, most of the newly designed morpholinos induced exon 51 skipping more efficiently compared with the eteplirsen sequence. The efficacy of exon 51 skipping and rescue of dystrophin protein expression were increased by up to more than 12-fold and 7-fold, respectively, compared with the eteplirsen sequence. Significant in vivo efficacy of the most effective morpholino, determined in vitro, was confirmed in mice carrying the human DMD gene. These findings underscore the importance of AO sequence optimization for exon skipping.


Asunto(s)
Distrofina/genética , Terapia Genética/métodos , Morfolinos/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido/genética , Recuperación de la Función , Animales , Modelos Animales de Enfermedad , Distrofina/metabolismo , Exones , Femenino , Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Morfolinos/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Mutación , Oligonucleótidos Antisentido/metabolismo , Empalme del ARN , Sistemas de Lectura
11.
Biochim Biophys Acta ; 1863(9): 2267-79, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27286750

RESUMEN

Defect in membrane repair contributes to the development of limb girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. In healthy skeletal muscle, unraveling membrane repair mechanisms requires to establish an exhaustive list of the components of the resealing machinery. Here we show that human myotubes rendered deficient for Annexin-A5 (AnxA5) suffer from a severe defect in membrane resealing. This defect is rescued by the addition of recombinant AnxA5 while an AnxA5 mutant, which is unable to form 2D protein arrays, has no effect. Using correlative light and electron microscopy, we show that AnxA5 binds to the edges of the torn membrane, as early as a few seconds after sarcolemma injury, where it probably self-assembles into 2D arrays. In addition, we observed that membrane resealing is associated with the presence of a cluster of lipid vesicles at the wounded site. AnxA5 is present at the surface of these vesicles and may thus participate in plugging the cell membrane disruption. Finally, we show that AnxA5 behaves similarly in myotubes from a muscle cell line established from a patient suffering from LGMD2B, a myopathy due to dysferlin mutations, which indicates that trafficking of AnxA5 during sarcolemma damage is independent of the presence of dysferlin.


Asunto(s)
Anexina A5/metabolismo , Membrana Celular/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Cicatrización de Heridas , Adulto , Anexina A5/ultraestructura , Línea Celular , Disferlina , Espacio Extracelular/metabolismo , Humanos , Rayos Láser , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Proteínas Musculares/deficiencia , Proteínas Musculares/metabolismo , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Mutación/genética , Mioblastos/metabolismo , Mioblastos/patología , Proteínas Recombinantes/metabolismo , Sarcolema/patología , Fracciones Subcelulares/metabolismo
12.
Nucleic Acids Res ; 43(17): 8227-42, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26184877

RESUMEN

Facioscapulohumeral dystrophy (FSHD) is an epi/genetic satellite disease associated with at least two satellite sequences in 4q35: (i) D4Z4 macrosatellite and (ii) ß-satellite repeats (BSR), a prevalent part of the 4qA allele. Most of the recent FSHD studies have been focused on a DUX4 transcript inside D4Z4 and its tandem contraction in FSHD patients. However, the D4Z4-contraction alone is not pathological, which would also require the 4qA allele. Since little is known about BSR, we investigated the 4qA BSR functional role in the transcriptional control of the FSHD region 4q35. We have shown that an individual BSR possesses enhancer activity leading to activation of the Adenine Nucleotide Translocator 1 gene (ANT1), a major FSHD candidate gene. We have identified ZNF555, a previously uncharacterized protein, as a putative transcriptional factor highly expressed in human primary myoblasts that interacts with the BSR enhancer site and impacts the ANT1 promoter activity in FSHD myoblasts. The discovery of the functional role of the 4qA allele and ZNF555 in the transcriptional control of ANT1 advances our understanding of FSHD pathogenesis and provides potential therapeutic targets.


Asunto(s)
Translocador 1 del Nucleótido Adenina/genética , Cromosomas Humanos Par 4 , Distrofia Muscular Facioescapulohumeral/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Translocador 1 del Nucleótido Adenina/biosíntesis , Alelos , Sitios de Unión , Células Cultivadas , ADN Satélite , Elementos de Facilitación Genéticos , Sitios Genéticos , Humanos , Proteínas de Microfilamentos , Mioblastos/metabolismo , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Proteínas de Unión al ARN , Factores de Transcripción/antagonistas & inhibidores
13.
Nucleic Acids Res ; 43(4): 2378-89, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25662218

RESUMEN

We investigated the molecular mechanisms for in-frame skipping of DMD exon 39 caused by the nonsense c.5480T>A mutation in a patient with Becker muscular dystrophy. RNase-assisted pull down assay coupled with mass spectrometry revealed that the mutant RNA probe specifically recruits hnRNPA1, hnRNPA2/B1 and DAZAP1. Functional studies in a human myoblast cell line transfected with DMD minigenes confirmed the splicing inhibitory activity of hnRNPA1 and hnRNPA2/B1, and showed that DAZAP1, also known to activate splicing, acts negatively in the context of the mutated exon 39. Furthermore, we uncovered that recognition of endogenous DMD exon 39 in muscle cells is promoted by FUSE binding protein 1 (FUBP1), a multifunctional DNA- and RNA-binding protein whose role in splicing is largely unknown. By serial deletion and mutagenesis studies in minigenes, we delineated a functional intronic splicing enhancer (ISE) in intron 38. FUBP1 recruitment to the RNA sequence containing the ISE was established by RNA pull down and RNA EMSA, and further confirmed by RNA-ChIP on endogenous DMD pre-mRNA. This study provides new insights about the splicing regulation of DMD exon 39, highlighting the emerging role of FUBP1 in splicing and describing the first ISE for constitutive exon inclusion in the mature DMD transcript.


Asunto(s)
Empalme Alternativo , Codón sin Sentido , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Distrofina/genética , Proteínas de Unión al ARN/metabolismo , Sitios de Unión , Línea Celular , ADN Helicasas/fisiología , Proteínas de Unión al ADN/fisiología , Exones , Humanos , Intrones , Proteínas de Unión al ARN/fisiología , Secuencias Reguladoras de Ácido Ribonucleico
14.
BMC Cell Biol ; 17(1): 26, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27350129

RESUMEN

BACKGROUND: Nesprin-1-giant (1008kD) is a protein of the outer nuclear membrane that links nuclei to the actin cytoskeleton via amino-terminal calponin homology domains. The short nesprin-1 isoform, nesprin-1-α2, is present only in skeletal and cardiac muscle and several pathogenic mutations occur within it, but the functions of this short isoform without calponin homology domains are unclear. The aim of this study was to determine mRNA levels and protein localization of nesprin-1-α2 at different stages of muscle development in order to shed light on its functions. RESULTS: mRNA levels of all known nesprin-1 isoforms with a KASH domain were determined by quantitative PCR. The mRNA for the 111 kD muscle-specific short isoform, nesprin-1-α2, was not detected in pre-differentiation human myoblasts but was present at significant levels in multinucleate myotubes. We developed a monoclonal antibody against the unique amino-terminal sequence of nesprin-1-α2, enabling specific immunolocalization for the first time. Nesprin-1-α2 protein was undetectable in pre-differentiation myoblasts but appeared at the nuclear rim in post-mitotic, multinucleate myotubes and reached its highest levels in fetal muscle. In muscle from a Duchenne muscular dystrophy biopsy, nesprin-1-α2 protein was detected mainly in regenerating fibres expressing neonatal myosin. Nesprin-1-giant was present at all developmental stages, but was also highest in fetal and regenerating fibres. In fetal muscle, both isoforms were present in the cytoplasm, as well as at the nuclear rim. A pathogenic early stop codon (E7854X) in nesprin-1 caused reduced mRNA levels and loss of protein levels of both nesprin-1-giant and (unexpectedly) nesprin-1-α2, but did not affect myogenesis in vitro. CONCLUSIONS: Nesprin-1-α2 mRNA and protein expression is switched on during myogenesis, alongside other known markers of muscle differentiation. The results show that nesprin-1-α2 is dynamically controlled and may be involved in some process occurring during early myofibre formation, such as re-positioning of nuclei.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Feto/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Desarrollo de Músculos , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Regeneración , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Proteínas Portadoras/genética , Núcleo Celular/metabolismo , Células Cultivadas , Niño , Preescolar , Proteínas del Citoesqueleto , Femenino , Humanos , Recién Nacido , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Mutación/genética , Mioblastos/metabolismo , Proteínas del Tejido Nervioso , Péptidos/metabolismo , Dominios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Adulto Joven
15.
Hum Mol Genet ; 23(14): 3746-58, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24565866

RESUMEN

Many membrane and secretory proteins that fail to pass quality control in the endoplasmic reticulum (ER) are dislocated into the cytosol and degraded by the proteasome. In applying rigid rules, however, quality control sometimes discharges proteins that, even though defective, retain their function. The unnecessary removal of such proteins represents the pathogenetic hallmark of diverse genetic diseases, in the case of ΔF508 mutant of cystic fibrosis transmembrane conductance regulator being probably the best known example. Recently, the inappropriate proteasomal degradation of skeletal muscle sarcoglycans (α, ß, γ and δ) with missense mutation has been proposed to be at the bases of mild-to-severe forms of limb girdle muscular dystrophy (LGMD) known as type 2D, 2E, 2C and 2F, respectively. The quality control pathway responsible for sarcoglycan mutant disposal, however, is so far unexplored. Here we reveal key components of the degradative route of V247M α-sarcoglycan mutant, the second most frequently reported mutation in LGMD-2D. The disclosure of the pathway, which is led by the E3 ligases HRD1 and RFP2, permits to identify new potential druggable targets of a disease for which no effective therapy is at present available. Notably, we show that the pharmacological inhibition of HRD1 activity rescues the expression of V247-α-sarcoglycan both in a heterologous cell model and in myotubes derived from a LGMD-2D patient carrying the L31P/V247M mutations. This represents the first evidence that the activity of E3 ligases, the enzymes in charge of mutant fate, can be eligible for drug interventions to treat sarcoglycanopathy.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Sarcoglicanopatías/metabolismo , Sarcoglicanos/genética , Sarcoglicanos/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células Cultivadas , Retículo Endoplásmico/metabolismo , Inhibidores Enzimáticos/farmacología , Células HEK293 , Humanos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Mutación Missense , Sarcoglicanopatías/genética , Sarcoglicanopatías/patología , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitinación
16.
J Cell Sci ; 127(Pt 13): 2873-84, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24806962

RESUMEN

The mechanisms underlying the cell response to mechanical forces are crucial for muscle development and functionality. We aim to determine whether mutations of the LMNA gene (which encodes lamin A/C) causing congenital muscular dystrophy impair the ability of muscle precursors to sense tissue stiffness and to respond to mechanical challenge. We found that LMNA-mutated myoblasts embedded in soft matrix did not align along the gel axis, whereas control myoblasts did. LMNA-mutated myoblasts were unable to tune their cytoskeletal tension to the tissue stiffness as attested by inappropriate cell-matrix adhesion sites and cytoskeletal tension in soft versus rigid substrates or after mechanical challenge. Importantly, in soft two-dimensional (2D) and/or static three-dimensional (3D) conditions, LMNA-mutated myoblasts showed enhanced activation of the yes-associated protein (YAP) signaling pathway that was paradoxically reduced after cyclic stretch. siRNA-mediated downregulation of YAP reduced adhesion and actin stress fibers in LMNA myoblasts. This is the first demonstration that human myoblasts with LMNA mutations have mechanosensing defects through a YAP-dependent pathway. In addition, our data emphasize the crucial role of biophysical attributes of cellular microenvironment to the response of mechanosensing pathways in LMNA-mutated myoblasts.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Lamina Tipo A/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Microambiente Celular/fisiología , Humanos , Lamina Tipo A/genética , Microscopía Confocal , Mutación , Fosfoproteínas/genética , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAP
17.
Biochem Biophys Res Commun ; 473(3): 743-51, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-26449459

RESUMEN

Synthetic mRNA transfection enables efficient and controlled gene expression in human cells, without genome integrations. Further, modifications to the mRNA and transfection protocol now allow for repeated transfection and long-term gene expression of an otherwise short-lived mRNA expression. This is mainly achieved through introducing modified nucleosides and interferon suppression. In this study we provide an overview and details of the advanced synthesis and modifications of mRNA originally developed for reprogramming. This mRNA allows for very efficient transfection of fibroblasts enabling the generation of high quality human iPS cells with a six-factor mRNA cocktail in 9 days. Furthermore, we synthesised and transfected modified MYOD1 mRNA to transdifferentiate human fibroblasts into myoblast-like cells without a transgene footprint. This efficient and integration-free mRNA technology opens the door for safe and controlled gene expression to reverse or redirect cell fate.


Asunto(s)
Transdiferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Mioblastos/citología , ARN Mensajero/metabolismo , Linaje de la Célula , Reprogramación Celular , Fibroblastos/citología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Interferones/metabolismo , Proteína MioD/metabolismo , Nucleósidos/metabolismo , Transfección
18.
Mol Ther ; 22(1): 219-25, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23831596

RESUMEN

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant genetic disease mainly characterized by ptosis and dysphagia. We conducted a phase I/IIa clinical study (ClinicalTrials.gov NCT00773227) using autologous myoblast transplantation following myotomy in adult OPMD patients. This study included 12 patients with clinical diagnosis of OPMD, indication for cricopharyngeal myotomy, and confirmed genetic diagnosis. The feasibility and safety end points of both autologous myoblast transplantation and the surgical procedure were assessed by videoendoscopy in addition to physical examinations. Potential therapeutic benefit was also assessed through videoendoscopy and videofluoroscopy of swallowing, quality of life score, dysphagia grade, and a drink test. Patients were injected with a median of 178 million myoblasts following myotomy. Short and long-term (2 years) safety and tolerability were observed in all the patients, with no adverse effects. There was an improvement in the quality of life score for all 12 patients, and no functional degradation in swallowing was observed for 10 patients. A cell dose-dependant improvement in swallowing was even observed in this study. This trial supports the hypothesis that a local injection of autologous myoblasts in the pharyngeal muscles is a safe and efficient procedure for OPMD patients.


Asunto(s)
Distrofia Muscular Oculofaríngea/terapia , Mioblastos Esqueléticos/trasplante , Anciano , Esfínter Esofágico Superior/metabolismo , Esfínter Esofágico Superior/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Distrofia Muscular Oculofaríngea/diagnóstico , Distrofia Muscular Oculofaríngea/genética , Músculos Faríngeos/metabolismo , Músculos Faríngeos/fisiopatología , Músculos Faríngeos/cirugía , Trasplante Autólogo , Resultado del Tratamiento
19.
Nucleic Acids Res ; 41(17): 8391-402, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23861443

RESUMEN

RNA-based therapeutic approaches using splice-switching oligonucleotides have been successfully applied to rescue dystrophin in Duchenne muscular dystrophy (DMD) preclinical models and are currently being evaluated in DMD patients. Although the modular structure of dystrophin protein tolerates internal deletions, many mutations that affect nondispensable domains of the protein require further strategies. Among these, trans-splicing technology is particularly attractive, as it allows the replacement of any mutated exon by its normal version as well as introducing missing exons or correcting duplication mutations. We have applied such a strategy in vitro by using cotransfection of pre-trans-splicing molecule (PTM) constructs along with a reporter minigene containing part of the dystrophin gene harboring the stop-codon mutation found in the mdx mouse model of DMD. Optimization of the different functional domains of the PTMs allowed achieving accurate and efficient trans-splicing of up to 30% of the transcript encoded by the cotransfected minigene. Optimized parameters included mRNA stabilization, choice of splice site sequence, inclusion of exon splice enhancers and artificial intronic sequence. Intramuscular delivery of adeno-associated virus vectors expressing PTMs allowed detectable levels of dystrophin in mdx and mdx4Cv, illustrating that a given PTM can be suitable for a variety of mutations.


Asunto(s)
Distrofina/genética , Trans-Empalme , Animales , Dependovirus/genética , Distrofina/análisis , Exones , Vectores Genéticos , Genotipo , Humanos , Intrones , Ratones , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/química , Músculos/química , Distrofia Muscular de Duchenne/genética , Células 3T3 NIH , Sitios de Empalme de ARN , ARN Mensajero/análisis
20.
J Neurosci ; 33(10): 4280-94, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23467345

RESUMEN

Spinal muscular atrophy (SMA), a recessive neurodegenerative disease, is characterized by the selective loss of spinal motor neurons. No available therapy exists for SMA, which represents one of the leading genetic causes of death in childhood. SMA is caused by a mutation of the survival-of-motor-neuron 1 (SMN1) gene, leading to a quantitative defect in the survival-motor-neuron (SMN) protein expression. All patients retain one or more copies of the SMN2 gene, which modulates the disease severity by producing a small amount of stable SMN protein. We reported recently that NMDA receptor activation, directly in the spinal cord, significantly enhanced the transcription rate of the SMN2 genes in a mouse model of very severe SMA (referred as type 1) by a mechanism that involved AKT/CREB pathway activation. Here, we provide the first compelling evidence for a competition between the MEK/ERK/Elk-1 and the phosphatidylinositol 3-kinase/AKT/CREB signaling pathways for SMN2 gene regulation in the spinal cord of type 1 SMA-like mice. The inhibition of the MEK/ERK/Elk-1 pathway promotes the AKT/CREB pathway activation, leading to (1) an enhanced SMN expression in the spinal cord of SMA-like mice and in human SMA myotubes and (2) a 2.8-fold lifespan extension in SMA-like mice. Furthermore, we identified a crosstalk between ERK and AKT signaling pathways that involves the calcium-dependent modulation of CaMKII activity. Together, all these data open new perspectives to the therapeutic strategy for SMA patients.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neuronas Motoras/fisiología , Atrofia Muscular Espinal/patología , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos , Butadienos/farmacología , Calcio/metabolismo , Supervivencia Celular/fisiología , Células Cultivadas , Inmunoprecipitación de Cromatina , Técnicas de Cocultivo/métodos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Conducta Exploratoria/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/genética , Femenino , Ganglios Espinales/citología , Humanos , Masculino , Ratones , Ratones Noqueados , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Células Musculares/efectos de los fármacos , Células Musculares/fisiología , N-Metilaspartato/farmacología , Nitrilos/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Células Madre/efectos de los fármacos , Células Madre/fisiología , Proteína 2 para la Supervivencia de la Neurona Motora/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA