Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(52): e2300842120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38127979

RESUMEN

Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Mapeo Encefálico/métodos , Genómica , Neoplasias Encefálicas/patología
2.
Neuroimage ; 269: 119911, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731813

RESUMEN

To learn multiscale functional connectivity patterns of the aging brain, we built a brain age prediction model of functional connectivity measures at seven scales on a large fMRI dataset, consisting of resting-state fMRI scans of 4186 individuals with a wide age range (22 to 97 years, with an average of 63) from five cohorts. We computed multiscale functional connectivity measures of individual subjects using a personalized functional network computational method, harmonized the functional connectivity measures of subjects from multiple datasets in order to build a functional brain age model, and finally evaluated how functional brain age gap correlated with cognitive measures of individual subjects. Our study has revealed that functional connectivity measures at multiple scales were more informative than those at any single scale for the brain age prediction, the data harmonization significantly improved the brain age prediction performance, and the data harmonization in the functional connectivity measures' tangent space worked better than in their original space. Moreover, brain age gap scores of individual subjects derived from the brain age prediction model were significantly correlated with clinical and cognitive measures. Overall, these results demonstrated that multiscale functional connectivity patterns learned from a large-scale multi-site rsfMRI dataset were informative for characterizing the aging brain and the derived brain age gap was associated with cognitive and clinical measures.


Asunto(s)
Envejecimiento , Encéfalo , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Mapeo Encefálico/métodos , Aprendizaje , Estudios de Cohortes , Imagen por Resonancia Magnética/métodos
3.
Alzheimers Dement ; 19(9): 4139-4149, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37289978

RESUMEN

INTRODUCTION: Little is known about the epidemiology of brain microbleeds in racially/ethnically diverse populations. METHODS: In the Multi-Ethnic Study of Atherosclerosis, brain microbleeds were identified from 3T magnetic resonance imaging susceptibility-weighted imaging sequences using deep learning models followed by radiologist review. RESULTS: Among 1016 participants without prior stroke (25% Black, 15% Chinese, 19% Hispanic, 41% White, mean age 72), microbleed prevalence was 20% at age 60 to 64.9 and 45% at ≥85 years. Deep microbleeds were associated with older age, hypertension, higher body mass index, and atrial fibrillation, and lobar microbleeds with male sex and atrial fibrillation. Overall, microbleeds were associated with greater white matter hyperintensity volume and lower total white matter fractional anisotropy. DISCUSSION: Results suggest differing associations for lobar versus deep locations. Sensitive microbleed quantification will facilitate future longitudinal studies of their potential role as an early indicator of vascular pathology.


Asunto(s)
Fibrilación Atrial , Hemorragia Cerebral , Humanos , Masculino , Anciano , Persona de Mediana Edad , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/epidemiología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Factores de Riesgo , Cognición
4.
Alzheimers Dement ; 17(1): 89-102, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32920988

RESUMEN

INTRODUCTION: Relationships between brain atrophy patterns of typical aging and Alzheimer's disease (AD), white matter disease, cognition, and AD neuropathology were investigated via machine learning in a large harmonized magnetic resonance imaging database (11 studies; 10,216 subjects). METHODS: Three brain signatures were calculated: Brain-age, AD-like neurodegeneration, and white matter hyperintensities (WMHs). Brain Charts measured and displayed the relationships of these signatures to cognition and molecular biomarkers of AD. RESULTS: WMHs were associated with advanced brain aging, AD-like atrophy, poorer cognition, and AD neuropathology in mild cognitive impairment (MCI)/AD and cognitively normal (CN) subjects. High WMH volume was associated with brain aging and cognitive decline occurring in an ≈10-year period in CN subjects. WMHs were associated with doubling the likelihood of amyloid beta (Aß) positivity after age 65. Brain aging, AD-like atrophy, and WMHs were better predictors of cognition than chronological age in MCI/AD. DISCUSSION: A Brain Chart quantifying brain-aging trajectories was established, enabling the systematic evaluation of individuals' brain-aging patterns relative to this large consortium.


Asunto(s)
Envejecimiento/fisiología , Péptidos beta-Amiloides/metabolismo , Encéfalo/crecimiento & desarrollo , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/crecimiento & desarrollo , Adulto , Anciano , Anciano de 80 o más Años , Atrofia , Biomarcadores , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/psicología , Disfunción Cognitiva , Progresión de la Enfermedad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Sustancia Blanca/patología , Adulto Joven
5.
Neuroimage ; 208: 116450, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31821869

RESUMEN

As medical imaging enters its information era and presents rapidly increasing needs for big data analytics, robust pooling and harmonization of imaging data across diverse cohorts with varying acquisition protocols have become critical. We describe a comprehensive effort that merges and harmonizes a large-scale dataset of 10,477 structural brain MRI scans from participants without a known neurological or psychiatric disorder from 18 different studies that represent geographic diversity. We use this dataset and multi-atlas-based image processing methods to obtain a hierarchical partition of the brain from larger anatomical regions to individual cortical and deep structures and derive age trends of brain structure through the lifespan (3-96 years old). Critically, we present and validate a methodology for harmonizing this pooled dataset in the presence of nonlinear age trends. We provide a web-based visualization interface to generate and present the resulting age trends, enabling future studies of brain structure to compare their data with this reference of brain development and aging, and to examine deviations from ranges, potentially related to disease.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Conjuntos de Datos como Asunto , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Estudios Multicéntricos como Asunto , Neuroimagen/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Atlas como Asunto , Niño , Preescolar , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Masculino , Persona de Mediana Edad , Neuroimagen/normas , Reproducibilidad de los Resultados , Adulto Joven
6.
Cancer ; 126(11): 2625-2636, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32129893

RESUMEN

BACKGROUND: Imaging of glioblastoma patients after maximal safe resection and chemoradiation commonly demonstrates new enhancements that raise concerns about tumor progression. However, in 30% to 50% of patients, these enhancements primarily represent the effects of treatment, or pseudo-progression (PsP). We hypothesize that quantitative machine learning analysis of clinically acquired multiparametric magnetic resonance imaging (mpMRI) can identify subvisual imaging characteristics to provide robust, noninvasive imaging signatures that can distinguish true progression (TP) from PsP. METHODS: We evaluated independent discovery (n = 40) and replication (n = 23) cohorts of glioblastoma patients who underwent second resection due to progressive radiographic changes suspicious for recurrence. Deep learning and conventional feature extraction methods were used to extract quantitative characteristics from the mpMRI scans. Multivariate analysis of these features revealed radiophenotypic signatures distinguishing among TP, PsP, and mixed response that compared with similar categories blindly defined by board-certified neuropathologists. Additionally, interinstitutional validation was performed on 20 new patients. RESULTS: Patients who demonstrate TP on neuropathology are significantly different (P < .0001) from those with PsP, showing imaging features reflecting higher angiogenesis, higher cellularity, and lower water concentration. The accuracy of the proposed signature in leave-one-out cross-validation was 87% for predicting PsP (area under the curve [AUC], 0.92) and 84% for predicting TP (AUC, 0.83), whereas in the discovery/replication cohort, the accuracy was 87% for predicting PsP (AUC, 0.84) and 78% for TP (AUC, 0.80). The accuracy in the interinstitutional cohort was 75% (AUC, 0.80). CONCLUSION: Quantitative mpMRI analysis via machine learning reveals distinctive noninvasive signatures of TP versus PsP after treatment of glioblastoma. Integration of the proposed method into clinical studies can be performed using the freely available Cancer Imaging Phenomics Toolkit.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Neoplasias Encefálicas/diagnóstico por imagen , Progresión de la Enfermedad , Femenino , Glioblastoma/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad
7.
medRxiv ; 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37398441

RESUMEN

Understanding the genetic basis of biological aging in multi-organ systems is vital for elucidating age-related disease mechanisms and identifying therapeutic interventions. This study characterized the genetic architecture of the biological age gap (BAG) across nine human organ systems in 377,028 individuals of European ancestry from the UK Biobank. We discovered 393 genomic loci-BAG pairs (P-value<5×10-8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary, and renal systems. We observed BAG-organ specificity and inter-organ connections. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system while exerting pleiotropic effects on traits linked to multiple organ systems. A gene-drug-disease network confirmed the involvement of the metabolic BAG-associated genes in drugs targeting various metabolic disorders. Genetic correlation analyses supported Cheverud's Conjecture1 - the genetic correlation between BAGs mirrors their phenotypic correlation. A causal network revealed potential causal effects linking chronic diseases (e.g., Alzheimer's disease), body weight, and sleep duration to the BAG of multiple organ systems. Our findings shed light on promising therapeutic interventions to enhance human organ health within a complex multi-organ network, including lifestyle modifications and potential drug repositioning strategies for treating chronic diseases. All results are publicly available at https://labs-laboratory.com/medicine.

8.
Nat Aging ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942983

RESUMEN

Investigating the genetic underpinnings of human aging is essential for unraveling the etiology of and developing actionable therapies for chronic diseases. Here, we characterize the genetic architecture of the biological age gap (BAG; the difference between machine learning-predicted age and chronological age) across nine human organ systems in 377,028 participants of European ancestry from the UK Biobank. The BAGs were computed using cross-validated support vector machines, incorporating imaging, physical traits and physiological measures. We identify 393 genomic loci-BAG pairs (P < 5 × 10-8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary and renal systems. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system (organ specificity) while exerting pleiotropic links with other organ systems (interorgan cross-talk). We find that genetic correlation between the nine BAGs mirrors their phenotypic correlation. Further, a multiorgan causal network established from two-sample Mendelian randomization and latent causal variance models revealed potential causality between chronic diseases (for example, Alzheimer's disease and diabetes), modifiable lifestyle factors (for example, sleep duration and body weight) and multiple BAGs. Our results illustrate the potential for improving human organ health via a multiorgan network, including lifestyle interventions and drug repurposing strategies.

9.
Nat Commun ; 15(1): 2604, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521789

RESUMEN

The complex biological mechanisms underlying human brain aging remain incompletely understood. This study investigated the genetic architecture of three brain age gaps (BAG) derived from gray matter volume (GM-BAG), white matter microstructure (WM-BAG), and functional connectivity (FC-BAG). We identified sixteen genomic loci that reached genome-wide significance (P-value < 5×10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG displayed the most pronounced heritability enrichment in genetic variants within conserved regions. Oligodendrocytes and astrocytes, but not neurons, exhibited notable heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several chronic diseases on brain aging, such as type 2 diabetes on GM-BAG and AD on WM-BAG. Our results provide insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at https://labs.loni.usc.edu/medicine .


Asunto(s)
Diabetes Mellitus Tipo 2 , Sustancia Blanca , Humanos , Encéfalo , Sustancia Gris , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/fisiología , Análisis de la Aleatorización Mendeliana
10.
Sci Rep ; 14(1): 4922, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418494

RESUMEN

Glioblastoma is a highly heterogeneous disease, with variations observed at both phenotypical and molecular levels. Personalized therapies would be facilitated by non-invasive in vivo approaches for characterizing this heterogeneity. In this study, we developed unsupervised joint machine learning between radiomic and genomic data, thereby identifying distinct glioblastoma subtypes. A retrospective cohort of 571 IDH-wildtype glioblastoma patients were included in the study, and pre-operative multi-parametric MRI scans and targeted next-generation sequencing (NGS) data were collected. L21-norm minimization was used to select a subset of 12 radiomic features from the MRI scans, and 13 key driver genes from the five main signal pathways most affected in glioblastoma were selected from the genomic data. Subtypes were identified using a joint learning approach called Anchor-based Partial Multi-modal Clustering on both radiomic and genomic modalities. Kaplan-Meier analysis identified three distinct glioblastoma subtypes: high-risk, medium-risk, and low-risk, based on overall survival outcome (p < 0.05, log-rank test; Hazard Ratio = 1.64, 95% CI 1.17-2.31, Cox proportional hazard model on high-risk and low-risk subtypes). The three subtypes displayed different phenotypical and molecular characteristics in terms of imaging histogram, co-occurrence of genes, and correlation between the two modalities. Our findings demonstrate the synergistic value of integrated radiomic signatures and molecular characteristics for glioblastoma subtyping. Joint learning on both modalities can aid in better understanding the molecular basis of phenotypical signatures of glioblastoma, and provide insights into the biological underpinnings of tumor formation and progression.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Estudios Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Pronóstico , Imagen por Resonancia Magnética/métodos , Genómica
11.
Nat Commun ; 15(1): 354, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191573

RESUMEN

Disease heterogeneity has been a critical challenge for precision diagnosis and treatment, especially in neurologic and neuropsychiatric diseases. Many diseases can display multiple distinct brain phenotypes across individuals, potentially reflecting disease subtypes that can be captured using MRI and machine learning methods. However, biological interpretability and treatment relevance are limited if the derived subtypes are not associated with genetic drivers or susceptibility factors. Herein, we describe Gene-SGAN - a multi-view, weakly-supervised deep clustering method - which dissects disease heterogeneity by jointly considering phenotypic and genetic data, thereby conferring genetic correlations to the disease subtypes and associated endophenotypic signatures. We first validate the generalizability, interpretability, and robustness of Gene-SGAN in semi-synthetic experiments. We then demonstrate its application to real multi-site datasets from 28,858 individuals, deriving subtypes of Alzheimer's disease and brain endophenotypes associated with hypertension, from MRI and single nucleotide polymorphism data. Derived brain phenotypes displayed significant differences in neuroanatomical patterns, genetic determinants, biological and clinical biomarkers, indicating potentially distinct underlying neuropathologic processes, genetic drivers, and susceptibility factors. Overall, Gene-SGAN is broadly applicable to disease subtyping and endophenotype discovery, and is herein tested on disease-related, genetically-associated neuroimaging phenotypes.


Asunto(s)
Enfermedad de Alzheimer , Neuroimagen , Humanos , Endofenotipos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Encéfalo/diagnóstico por imagen , Análisis por Conglomerados
12.
JAMA Psychiatry ; 81(5): 456-467, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38353984

RESUMEN

Importance: Brain aging elicits complex neuroanatomical changes influenced by multiple age-related pathologies. Understanding the heterogeneity of structural brain changes in aging may provide insights into preclinical stages of neurodegenerative diseases. Objective: To derive subgroups with common patterns of variation in participants without diagnosed cognitive impairment (WODCI) in a data-driven manner and relate them to genetics, biomedical measures, and cognitive decline trajectories. Design, Setting, and Participants: Data acquisition for this cohort study was performed from 1999 to 2020. Data consolidation and harmonization were conducted from July 2017 to July 2021. Age-specific subgroups of structural brain measures were modeled in 4 decade-long intervals spanning ages 45 to 85 years using a deep learning, semisupervised clustering method leveraging generative adversarial networks. Data were analyzed from July 2021 to February 2023 and were drawn from the Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) international consortium. Individuals WODCI at baseline spanning ages 45 to 85 years were included, with greater than 50 000 data time points. Exposures: Individuals WODCI at baseline scan. Main Outcomes and Measures: Three subgroups, consistent across decades, were identified within the WODCI population. Associations with genetics, cardiovascular risk factors (CVRFs), amyloid ß (Aß), and future cognitive decline were assessed. Results: In a sample of 27 402 individuals (mean [SD] age, 63.0 [8.3] years; 15 146 female [55%]) WODCI, 3 subgroups were identified in contrast with the reference group: a typical aging subgroup, A1, with a specific pattern of modest atrophy and white matter hyperintensity (WMH) load, and 2 accelerated aging subgroups, A2 and A3, with characteristics that were more distinct at age 65 years and older. A2 was associated with hypertension, WMH, and vascular disease-related genetic variants and was enriched for Aß positivity (ages ≥65 years) and apolipoprotein E (APOE) ε4 carriers. A3 showed severe, widespread atrophy, moderate presence of CVRFs, and greater cognitive decline. Genetic variants associated with A1 were protective for WMH (rs7209235: mean [SD] B = -0.07 [0.01]; P value = 2.31 × 10-9) and Alzheimer disease (rs72932727: mean [SD] B = 0.1 [0.02]; P value = 6.49 × 10-9), whereas the converse was observed for A2 (rs7209235: mean [SD] B = 0.1 [0.01]; P value = 1.73 × 10-15 and rs72932727: mean [SD] B = -0.09 [0.02]; P value = 4.05 × 10-7, respectively); variants in A3 were associated with regional atrophy (rs167684: mean [SD] B = 0.08 [0.01]; P value = 7.22 × 10-12) and white matter integrity measures (rs1636250: mean [SD] B = 0.06 [0.01]; P value = 4.90 × 10-7). Conclusions and Relevance: The 3 subgroups showed distinct associations with CVRFs, genetics, and subsequent cognitive decline. These subgroups likely reflect multiple underlying neuropathologic processes and affect susceptibility to Alzheimer disease, paving pathways toward patient stratification at early asymptomatic stages and promoting precision medicine in clinical trials and health care.


Asunto(s)
Envejecimiento , Encéfalo , Humanos , Anciano , Femenino , Masculino , Persona de Mediana Edad , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Envejecimiento/genética , Envejecimiento/fisiología , Disfunción Cognitiva/genética , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios de Cohortes , Aprendizaje Profundo
13.
bioRxiv ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37333190

RESUMEN

The complex biological mechanisms underlying human brain aging remain incompletely understood, involving multiple body organs and chronic diseases. In this study, we used multimodal magnetic resonance imaging and artificial intelligence to examine the genetic architecture of the brain age gap (BAG) derived from gray matter volume (GM-BAG, N=31,557 European ancestry), white matter microstructure (WM-BAG, N=31,674), and functional connectivity (FC-BAG, N=32,017). We identified sixteen genomic loci that reached genome-wide significance (P-value<5×10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG showed the highest heritability enrichment for genetic variants in conserved regions, whereas WM-BAG exhibited the highest heritability enrichment in the 5' untranslated regions; oligodendrocytes and astrocytes, but not neurons, showed significant heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several exposure variables on brain aging, such as type 2 diabetes on GM-BAG (odds ratio=1.05 [1.01, 1.09], P-value=1.96×10-2) and AD on WM-BAG (odds ratio=1.04 [1.02, 1.05], P-value=7.18×10-5). Overall, our results provide valuable insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at the MEDICINE knowledge portal: https://labs.loni.usc.edu/medicine.

14.
ArXiv ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36748000

RESUMEN

Disease heterogeneity has been a critical challenge for precision diagnosis and treatment, especially in neurologic and neuropsychiatric diseases. Many diseases can display multiple distinct brain phenotypes across individuals, potentially reflecting disease subtypes that can be captured using MRI and machine learning methods. However, biological interpretability and treatment relevance are limited if the derived subtypes are not associated with genetic drivers or susceptibility factors. Herein, we describe Gene-SGAN - a multi-view, weakly-supervised deep clustering method - which dissects disease heterogeneity by jointly considering phenotypic and genetic data, thereby conferring genetic correlations to the disease subtypes and associated endophenotypic signatures. We first validate the generalizability, interpretability, and robustness of Gene-SGAN in semi-synthetic experiments. We then demonstrate its application to real multi-site datasets from 28,858 individuals, deriving subtypes of Alzheimer's disease and brain endophenotypes associated with hypertension, from MRI and SNP data. Derived brain phenotypes displayed significant differences in neuroanatomical patterns, genetic determinants, biological and clinical biomarkers, indicating potentially distinct underlying neuropathologic processes, genetic drivers, and susceptibility factors. Overall, Gene-SGAN is broadly applicable to disease subtyping and endophenotype discovery, and is herein tested on disease-related, genetically-driven neuroimaging phenotypes.

15.
medRxiv ; 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38234857

RESUMEN

Brain aging is a complex process influenced by various lifestyle, environmental, and genetic factors, as well as by age-related and often co-existing pathologies. MRI and, more recently, AI methods have been instrumental in understanding the neuroanatomical changes that occur during aging in large and diverse populations. However, the multiplicity and mutual overlap of both pathologic processes and affected brain regions make it difficult to precisely characterize the underlying neurodegenerative profile of an individual from an MRI scan. Herein, we leverage a state-of-the art deep representation learning method, Surreal-GAN, and present both methodological advances and extensive experimental results that allow us to elucidate the heterogeneity of brain aging in a large and diverse cohort of 49,482 individuals from 11 studies. Five dominant patterns of neurodegeneration were identified and quantified for each individual by their respective (herein referred to as) R-indices. Significant associations between R-indices and distinct biomedical, lifestyle, and genetic factors provide insights into the etiology of observed variances. Furthermore, baseline R-indices showed predictive value for disease progression and mortality. These five R-indices contribute to MRI-based precision diagnostics, prognostication, and may inform stratification into clinical trials.

16.
Brain Commun ; 4(3): fcac117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35611306

RESUMEN

Neuroimaging biomarkers that distinguish between changes due to typical brain ageing and Alzheimer's disease are valuable for determining how much each contributes to cognitive decline. Supervised machine learning models can derive multivariate patterns of brain change related to the two processes, including the Spatial Patterns of Atrophy for Recognition of Alzheimer's Disease (SPARE-AD) and of Brain Aging (SPARE-BA) scores investigated herein. However, the substantial overlap between brain regions affected in the two processes confounds measuring them independently. We present a methodology, and associated results, towards disentangling the two. T1-weighted MRI scans of 4054 participants (48-95 years) with Alzheimer's disease, mild cognitive impairment (MCI), or cognitively normal (CN) diagnoses from the Imaging-based coordinate SysTem for AGIng and NeurodeGenerative diseases (iSTAGING) consortium were analysed. Multiple sets of SPARE scores were investigated, in order to probe imaging signatures of certain clinically or molecularly defined sub-cohorts. First, a subset of clinical Alzheimer's disease patients (n = 718) and age- and sex-matched CN adults (n = 718) were selected based purely on clinical diagnoses to train SPARE-BA1 (regression of age using CN individuals) and SPARE-AD1 (classification of CN versus Alzheimer's disease) models. Second, analogous groups were selected based on clinical and molecular markers to train SPARE-BA2 and SPARE-AD2 models: amyloid-positive Alzheimer's disease continuum group (n = 718; consisting of amyloid-positive Alzheimer's disease, amyloid-positive MCI, amyloid- and tau-positive CN individuals) and amyloid-negative CN group (n = 718). Finally, the combined group of the Alzheimer's disease continuum and amyloid-negative CN individuals was used to train SPARE-BA3 model, with the intention to estimate brain age regardless of Alzheimer's disease-related brain changes. The disentangled SPARE models, SPARE-AD2 and SPARE-BA3, derived brain patterns that were more specific to the two types of brain changes. The correlation between the SPARE-BA Gap (SPARE-BA minus chronological age) and SPARE-AD was significantly reduced after the decoupling (r = 0.56-0.06). The correlation of disentangled SPARE-AD was non-inferior to amyloid- and tau-related measurements and to the number of APOE ε4 alleles but was lower to Alzheimer's disease-related psychometric test scores, suggesting the contribution of advanced brain ageing to the latter. The disentangled SPARE-BA was consistently less correlated with Alzheimer's disease-related clinical, molecular and genetic variables. By employing conservative molecular diagnoses and introducing Alzheimer's disease continuum cases to the SPARE-BA model training, we achieved more dissociable neuroanatomical biomarkers of typical brain ageing and Alzheimer's disease.

17.
JAMA Psychiatry ; 79(5): 464-474, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35262657

RESUMEN

Importance: Late-life depression (LLD) is characterized by considerable heterogeneity in clinical manifestation. Unraveling such heterogeneity might aid in elucidating etiological mechanisms and support precision and individualized medicine. Objective: To cross-sectionally and longitudinally delineate disease-related heterogeneity in LLD associated with neuroanatomy, cognitive functioning, clinical symptoms, and genetic profiles. Design, Setting, and Participants: The Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) study is an international multicenter consortium investigating brain aging in pooled and harmonized data from 13 studies with more than 35 000 participants, including a subset of individuals with major depressive disorder. Multimodal data from a multicenter sample (N = 996), including neuroimaging, neurocognitive assessments, and genetics, were analyzed in this study. A semisupervised clustering method (heterogeneity through discriminative analysis) was applied to regional gray matter (GM) brain volumes to derive dimensional representations. Data were collected from July 2017 to July 2020 and analyzed from July 2020 to December 2021. Main Outcomes and Measures: Two dimensions were identified to delineate LLD-associated heterogeneity in voxelwise GM maps, white matter (WM) fractional anisotropy, neurocognitive functioning, clinical phenotype, and genetics. Results: A total of 501 participants with LLD (mean [SD] age, 67.39 [5.56] years; 332 women) and 495 healthy control individuals (mean [SD] age, 66.53 [5.16] years; 333 women) were included. Patients in dimension 1 demonstrated relatively preserved brain anatomy without WM disruptions relative to healthy control individuals. In contrast, patients in dimension 2 showed widespread brain atrophy and WM integrity disruptions, along with cognitive impairment and higher depression severity. Moreover, 1 de novo independent genetic variant (rs13120336; chromosome: 4, 186387714; minor allele, G) was significantly associated with dimension 1 (odds ratio, 2.35; SE, 0.15; P = 3.14 ×108) but not with dimension 2. The 2 dimensions demonstrated significant single-nucleotide variant-based heritability of 18% to 27% within the general population (N = 12 518 in UK Biobank). In a subset of individuals having longitudinal measurements, those in dimension 2 experienced a more rapid longitudinal change in GM and brain age (Cohen f2 = 0.03; P = .02) and were more likely to progress to Alzheimer disease (Cohen f2 = 0.03; P = .03) compared with those in dimension 1 (N = 1431 participants and 7224 scans from the Alzheimer's Disease Neuroimaging Initiative [ADNI], Baltimore Longitudinal Study of Aging [BLSA], and Biomarkers for Older Controls at Risk for Dementia [BIOCARD] data sets). Conclusions and Relevance: This study characterized heterogeneity in LLD into 2 dimensions with distinct neuroanatomical, cognitive, clinical, and genetic profiles. This dimensional approach provides a potential mechanism for investigating the heterogeneity of LLD and the relevance of the latent dimensions to possible disease mechanisms, clinical outcomes, and responses to interventions.


Asunto(s)
Enfermedad de Alzheimer , Trastorno Depresivo Mayor , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Encéfalo/diagnóstico por imagen , Cognición , Depresión , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/genética , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Masculino , Neuroimagen
18.
Sci Rep ; 12(1): 8784, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610333

RESUMEN

Multi-omic data, i.e., clinical measures, radiomic, and genetic data, capture multi-faceted tumor characteristics, contributing to a comprehensive patient risk assessment. Here, we investigate the additive value and independent reproducibility of integrated diagnostics in prediction of overall survival (OS) in isocitrate dehydrogenase (IDH)-wildtype GBM patients, by combining conventional and deep learning methods. Conventional radiomics and deep learning features were extracted from pre-operative multi-parametric MRI of 516 GBM patients. Support vector machine (SVM) classifiers were trained on the radiomic features in the discovery cohort (n = 404) to categorize patient groups of high-risk (OS < 6 months) vs all, and low-risk (OS ≥ 18 months) vs all. The trained radiomic model was independently tested in the replication cohort (n = 112) and a patient-wise survival prediction index was produced. Multivariate Cox-PH models were generated for the replication cohort, first based on clinical measures solely, and then by layering on radiomics and molecular information. Evaluation of the high-risk and low-risk classifiers in the discovery/replication cohorts revealed area under the ROC curves (AUCs) of 0.78 (95% CI 0.70-0.85)/0.75 (95% CI 0.64-0.79) and 0.75 (95% CI 0.65-0.84)/0.63 (95% CI 0.52-0.71), respectively. Cox-PH modeling showed a concordance index of 0.65 (95% CI 0.6-0.7) for clinical data improving to 0.75 (95% CI 0.72-0.79) for the combination of all omics. This study signifies the value of integrated diagnostics for improved prediction of OS in GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Inteligencia Artificial , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Genómica , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/patología , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Estudios Retrospectivos
19.
Am J Psychiatry ; 179(9): 650-660, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35410495

RESUMEN

OBJECTIVE: The prevalence and significance of schizophrenia-related phenotypes at the population level is debated in the literature. Here, the authors assessed whether two recently reported neuroanatomical signatures of schizophrenia-signature 1, with widespread reduction of gray matter volume, and signature 2, with increased striatal volume-could be replicated in an independent schizophrenia sample, and investigated whether expression of these signatures can be detected at the population level and how they relate to cognition, psychosis spectrum symptoms, and schizophrenia genetic risk. METHODS: This cross-sectional study used an independent schizophrenia-control sample (N=347; ages 16-57 years) for replication of imaging signatures, and then examined two independent population-level data sets: typically developing youths and youths with psychosis spectrum symptoms in the Philadelphia Neurodevelopmental Cohort (N=359; ages 16-23 years) and adults in the UK Biobank study (N=836; ages 44-50 years). The authors quantified signature expression using support-vector machine learning and compared cognition, psychopathology, and polygenic risk between signatures. RESULTS: Two neuroanatomical signatures of schizophrenia were replicated. Signature 1 but not signature 2 was significantly more common in youths with psychosis spectrum symptoms than in typically developing youths, whereas signature 2 frequency was similar in the two groups. In both youths and adults, signature 1 was associated with worse cognitive performance than signature 2. Compared with adults with neither signature, adults expressing signature 1 had elevated schizophrenia polygenic risk scores, but this was not seen for signature 2. CONCLUSIONS: The authors successfully replicated two neuroanatomical signatures of schizophrenia and describe their prevalence in population-based samples of youths and adults. They further demonstrated distinct relationships of these signatures with psychosis symptoms, cognition, and genetic risk, potentially reflecting underlying neurobiological vulnerability.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Cognición , Estudios Transversales , Sustancia Gris/patología , Humanos , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/epidemiología , Trastornos Psicóticos/genética , Esquizofrenia/epidemiología , Esquizofrenia/genética , Esquizofrenia/patología
20.
Sci Data ; 9(1): 453, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906241

RESUMEN

Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the "University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics" (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatología , Genómica , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/fisiopatología , Humanos , Imagen por Resonancia Magnética , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA