Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 128(1): 115-129, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33107387

RESUMEN

RATIONALE: ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide), encoded by the clustered genes Nppa and Nppb, are important prognostic, diagnostic, and therapeutic proteins in cardiac disease. The spatiotemporal expression pattern and stress-induction of the Nppa and Nppb are tightly regulated, possibly involving their coregulation by an evolutionary conserved enhancer cluster. OBJECTIVE: To explore the physiological functions of the enhancer cluster and elucidate the genomic mechanism underlying Nppa-Nppb coregulation in vivo. METHODS AND RESULTS: By analyzing epigenetic data we uncovered an enhancer cluster with super enhancer characteristics upstream of Nppb. Using CRISPR/Cas9 genome editing, the enhancer cluster or parts thereof, Nppb and flanking regions or the entire genomic block spanning Nppa-Nppb, respectively, were deleted from the mouse genome. The impact on gene regulation and phenotype of the respective mouse lines was investigated by transcriptomic, epigenomic, and phenotypic analyses. The enhancer cluster was essential for prenatal and postnatal ventricular expression of Nppa and Nppb but not of any other gene. Enhancer cluster-deficient mice showed enlarged hearts before and after birth, similar to Nppa-Nppb compound knockout mice we generated. Analysis of the other deletion alleles indicated the enhancer cluster engages the promoters of Nppa and Nppb in a competitive rather than a cooperative mode, resulting in increased Nppa expression when Nppb and flanking sequences were deleted. The enhancer cluster maintained its active epigenetic state and selectivity when its target genes are absent. In enhancer cluster-deficient animals, Nppa was induced but remained low in the postmyocardial infarction border zone and in the hypertrophic ventricle, involving regulatory sequences proximal to Nppa. CONCLUSIONS: Coordinated ventricular expression of Nppa and Nppb is controlled in a competitive manner by a shared super enhancer, which is also required to augment stress-induced expression and to prevent premature hypertrophy.


Asunto(s)
Factor Natriurético Atrial/genética , Elementos de Facilitación Genéticos , Hipertrofia Ventricular Izquierda/genética , Familia de Multigenes , Infarto del Miocardio/genética , Miocitos Cardíacos/metabolismo , Péptido Natriurético Encefálico/genética , Animales , Factor Natriurético Atrial/metabolismo , Sitios de Unión , Unión Competitiva , Sistemas CRISPR-Cas , Línea Celular , Modelos Animales de Enfermedad , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Ratones Noqueados , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/patología , Péptido Natriurético Encefálico/metabolismo , Regiones Promotoras Genéticas
2.
Circulation ; 144(3): 229-242, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33910361

RESUMEN

BACKGROUND: Genetic variants in SCN10A, encoding the neuronal voltage-gated sodium channel NaV1.8, are strongly associated with atrial fibrillation, Brugada syndrome, cardiac conduction velocities, and heart rate. The cardiac function of SCN10A has not been resolved, however, and diverging mechanisms have been proposed. Here, we investigated the cardiac expression of SCN10A and the function of a variant-sensitive intronic enhancer previously linked to the regulation of SCN5A, encoding the major essential cardiac sodium channel NaV1.5. METHODS: The expression of SCN10A was investigated in mouse and human hearts. With the use of CRISPR/Cas9 genome editing, the mouse intronic enhancer was disrupted, and mutant mice were characterized by transcriptomic and electrophysiological analyses. The association of genetic variants at SCN5A-SCN10A enhancer regions and gene expression were evaluated by genome-wide association studies single-nucleotide polymorphism mapping and expression quantitative trait loci analysis. RESULTS: We found that cardiomyocytes of the atria, sinoatrial node, and ventricular conduction system express a short transcript comprising the last 7 exons of the gene (Scn10a-short). Transcription occurs from an intronic enhancer-promoter complex, whereas full-length Scn10a transcript was undetectable in the human and mouse heart. Expression quantitative trait loci analysis revealed that the genetic variants in linkage disequilibrium with genetic variant rs6801957 in the intronic enhancer associate with SCN10A transcript levels in the heart. Genetic modification of the enhancer in the mouse genome led to reduced cardiac Scn10a-short expression in atria and ventricles, reduced cardiac sodium current in atrial cardiomyocytes, atrial conduction slowing and arrhythmia, whereas the expression of Scn5a, the presumed enhancer target gene, remained unaffected. In patch-clamp transfection experiments, expression of Scn10a-short-encoded NaV1.8-short increased NaV1.5-mediated sodium current. We propose that noncoding genetic variation modulates transcriptional regulation of Scn10a-short in cardiomyocytes that impacts NaV1.5-mediated sodium current and heart rhythm. CONCLUSIONS: Genetic variants in and around SCN10A modulate enhancer function and expression of a cardiac-specific SCN10A-short transcript. We propose that noncoding genetic variation modulates transcriptional regulation of a functional C-terminal portion of NaV1.8 in cardiomyocytes that impacts on NaV1.5 function, cardiac conduction velocities, and arrhythmia susceptibility.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Sistema de Conducción Cardíaco/fisiología , Intrones , Canal de Sodio Activado por Voltaje NAV1.8/genética , Potenciales de Acción/genética , Animales , Biomarcadores , Trastorno del Sistema de Conducción Cardíaco/diagnóstico , Trastorno del Sistema de Conducción Cardíaco/genética , Trastorno del Sistema de Conducción Cardíaco/fisiopatología , Electrofisiología Cardíaca , Susceptibilidad a Enfermedades , Electrocardiografía , Femenino , Estudios de Asociación Genética , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.5/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
3.
Circulation ; 140(10): 864-879, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31259610

RESUMEN

BACKGROUND: Surviving cells in the postinfarction border zone are subjected to intense fluctuations of their microenvironment. Recently, border zone cardiomyocytes have been specifically implicated in cardiac regeneration. Here, we defined their unique transcriptional and regulatory properties, and comprehensively validated new molecular markers, including Nppb, encoding B-type natriuretic peptide, after infarction. METHODS: Transgenic reporter mice were used to identify the Nppb-positive border zone after myocardial infarction. Transcriptome analysis of remote, border, and infarct zones and of purified cardiomyocyte nuclei was performed using RNA-sequencing. Top candidate genes displaying border zone spatial specificity were histologically validated in ischemic human hearts. Mice in which Nppb was deleted by genome editing were subjected to myocardial infarction. Chromatin accessibility landscapes of border zone and control cardiomyocyte nuclei were assessed by using assay for transposase-accessible chromatin using sequencing. RESULTS: We identified the border zone as a spatially confined region transcriptionally distinct from the remote myocardium. The transcriptional response of the border zone was much stronger than that of the remote ventricular wall, involving acute downregulation of mitochondrial oxidative phosphorylation, fatty acid metabolism, calcium handling, and sarcomere function, and the activation of a stress-response program. Analysis of infarcted human hearts revealed that the transcriptionally discrete border zone is conserved in humans, and led to the identification of novel conserved border zone markers including NPPB, ANKRD1, DES, UCHL1, JUN, and FOXP1. Homozygous Nppb mutant mice developed acute and lethal heart failure after myocardial infarction, indicating that B-type natriuretic peptide is required to preserve postinfarct heart function. Assay for transposase-accessible chromatin using sequencing revealed thousands of cardiomyocyte lineage-specific MEF2-occupied regulatory elements that lost accessibility in the border zone. Putative injury-responsive enhancers that gained accessibility were highly associated with AP-1 (activator protein 1) binding sites. Nuclear c-Jun, a component of AP-1, was observed specifically in border zone cardiomyocytes. CONCLUSIONS: Cardiomyocytes in a discrete zone bordering the infarct switch from a MEF2-driven homeostatic lineage-specific to an AP-1-driven injury-induced gene expression program. This program is conserved between mouse and human, and includes Nppb expression, which is required to prevent acute heart failure after infarction.


Asunto(s)
Factores de Transcripción MEF2/genética , Infarto del Miocardio/genética , Miocitos Cardíacos/fisiología , Receptores del Factor Natriurético Atrial/genética , Factor de Transcripción AP-1/genética , Animales , Diferenciación Celular , Linaje de la Célula , Microambiente Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Infarto del Miocardio/patología , Receptores del Factor Natriurético Atrial/metabolismo , Regeneración/genética
4.
Pflugers Arch ; 465(2): 247-59, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23192368

RESUMEN

Drug-induced ion channel trafficking disturbance can cause cardiac arrhythmias. We showed that the antiprotozoic pentamidine decreased K(IR)2.x carried I(K1) current and that inhibiting protein degradation in the lysosome increased intracellular K(IR)2.1 levels. In this study, we aim to identify and then inhibit preceding steps in clathrin-mediated endocytosis of K(IR)2.1 to further restore normal levels of functional K(IR)2.1 channels. K(IR)2.1 trafficking in HEK293 cells was studied by live cell imaging, immunofluorescence microscopy, and Western blot following pharmacological intervention with dynasore (Dyn), chlorpromazine (CPZ), bafilomycin A1 (Baf), or chloroquine (CQ). K(IR)2.1 function was determined by patch-clamp electrophysiology. CQ induced lysosomal build-up of full length (3.8 ± 0.8-fold) and N-terminal cleaved K(IR)2.1 protein. Baf induced late endosomal build-up of full length protein only (6.1 ± 1.6-fold). CPZ and Dyn increased plasma membrane-localized channel and protein levels (2.6 ± 0.4- and 4.2 ± 1.1-fold, respectively). Dyn increased I(K1) (at -60 mV) from 31 ± 6 to 55 ± 7 pA/pF (N = 9 and 13 respectively, p < 0.05), while the CPZ effect on current density was not testable due to acute I(K1) block. Baf and CQ did not significantly enhance I(K1) densities. Pentamidine (10 µM, 48 h) reduced K(IR)2.1 levels to 0.6 ± 0.1-fold, which could be rescued by Baf (3.2 ± 0.9), CPZ (1.2 ± 0.3), or Dyn (1.2 ± 0.3). Taken together, the clathrin-mediated endocytosis pathway functions in K(IR)2.1 degradation. Pentamidine-induced downregulation of K(IR)2.1 can be rescued at the level of the plasma membrane, implying that acquired trafficking defects can be rescued.


Asunto(s)
Antiprotozoarios/farmacología , Vesículas Cubiertas por Clatrina/metabolismo , Regulación hacia Abajo , Endocitosis/efectos de los fármacos , Pentamidina/farmacología , Canales de Potasio de Rectificación Interna/metabolismo , Potenciales de Acción , Membrana Celular/metabolismo , Cloroquina/farmacología , Clorpromazina/farmacología , Células HEK293 , Humanos , Hidrazonas/farmacología , Macrólidos/farmacología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/fisiología , Transporte de Proteínas/efectos de los fármacos , Proteolisis
5.
Nat Commun ; 10(1): 4943, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666509

RESUMEN

Mutations and variations in and around SCN5A, encoding the major cardiac sodium channel, influence impulse conduction and are associated with a broad spectrum of arrhythmia disorders. Here, we identify an evolutionary conserved regulatory cluster with super enhancer characteristics downstream of SCN5A, which drives localized cardiac expression and contains conduction velocity-associated variants. We use genome editing to create a series of deletions in the mouse genome and show that the enhancer cluster controls the conformation of a >0.5 Mb genomic region harboring multiple interacting gene promoters and enhancers. We find that this cluster and its individual components are selectively required for cardiac Scn5a expression, normal cardiac conduction and normal embryonic development. Our studies reveal physiological roles of an enhancer cluster in the SCN5A-SCN10A locus, show that it controls the chromatin architecture of the locus and Scn5a expression, and suggest that genetic variants affecting its activity may influence cardiac function.


Asunto(s)
Sistema de Conducción Cardíaco/metabolismo , Corazón/embriología , Miocardio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.8/genética , Animales , Sistemas CRISPR-Cas , Cromatina , ADN Intergénico/genética , Elementos de Facilitación Genéticos/genética , Edición Génica , Regulación de la Expresión Génica , Ratones , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Conformación de Ácido Nucleico , Elementos Reguladores de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA