Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Apoptosis ; 29(7-8): 1211-1231, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38622369

RESUMEN

The high heterogeneity of breast cancer (BC) caused by pathogenic gene mutations poses a challenge to immunotherapy, but the underlying mechanism remains unknown. The difference in the infiltration of M1 macrophages induced by TP53 mutations has a significant impact on BC immunotherapy. The aim of this study was to develop a TP53-related M1 macrophage infiltration molecular typing risk signature in BC and evaluate the biological functions of the key gene to find new immunotherapy biomarkers. Weighted correlation network analysis (WGCNA) and negative matrix factorization (NMF) were used for distinguishing BC subtypes. The signature and the nomogram were both constructed and evaluated. Biological functions of the novel signature gene SLC2A6 were confirmed through in vitro and in vivo experiments. RNA-Sequencing and protein profiling were used for detecting the possible mechanism of SLC2A6. The results suggested that four BC subtypes were distinguished by TP53-related genes that affect M1 macrophage infiltration. The signature constructed by molecular typing characteristics could evaluate BC's clinical features and tumor microenvironment. The nomogram could accurately predict the prognosis. The signature gene SLC2A6 was found to have an abnormally low expression in tumor tissues. Overexpression of SLC2A6 could inhibit proliferation, promote mitochondrial damage, and result in apoptosis of tumor cells. The HSP70 family member protein HSPA6 could bind with SLC2A6 and increase with the increased expression of SLC2A6. In summary, the risk signature provides a reference for BC risk assessment, and the signature gene SLC2A6 could act as a tumor suppressor in BC.


Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Macrófagos , Proteína p53 Supresora de Tumor , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/inmunología , Femenino , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Animales , Pronóstico , Factores Protectores , Ratones , Línea Celular Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Apoptosis/genética , Nomogramas , Proliferación Celular/genética
2.
Discov Oncol ; 15(1): 63, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443703

RESUMEN

BACKGROUND AND OBJECTIVES: Colorectal mucinous adenocarcinoma (MAC) is a particular pathological type that has yet to be thoroughly studied. This study aims to investigate the characteristics of colorectal MAC-related genes in colorectal cancer (CRC), explore the role of MAC-related genes in accurately classifying CRC, and further construct a prognostic signature. METHODS: CRC samples were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). MAC-related differentially expressed genes (DEGs) were analyzed in TCGA samples. Based on colorectal MAC-related genes, TCGA CRC samples were molecularly typed by the non-negative matrix factorization (NMF). According to the molecular subtype characteristics, the RiskScore signature was constructed through univariate Cox, the least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses. Clinical significance in CRC of the RiskScore signature was analyzed. A nomogram was further built based on the RiskScore signature. RESULTS: From the colorectal MAC-related genes, three distinct molecular subtypes were identified. A RiskScore signature composed of six CRC subtype-related genes (CALB1, MMP1, HOXC6, ZIC2, SFTA2, and HYAL1) was constructed. Patients with high-RiskScores had the worse prognoses. RiskScores led to differences in gene mutation characteristics, antitumor drug sensitivity, and tumor microenvironment of CRC. A nomogram based on the signature was developed to predict the one-, three-, and five-year survival of CRC patients. CONCLUSION: MAC-related genes were able to classify CRC. A RiskScore signature based on the colorectal MAC-related molecular subtype was constructed, which had important clinical significance for guiding the accurate stratification of CRC patients.

3.
Discov Oncol ; 14(1): 59, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37154982

RESUMEN

BACKGROUND: Currently, the development of breast cancer immunotherapy based on the PD-1/PD-L1 pathway is relatively slow, and the specific mechanism affecting the immunotherapy efficacy in breast cancer is still unclear. METHODS: Weighted correlation network analysis (WGCNA) and the negative matrix factorization (NMF) were used to distinguish subtypes related to the PD-1/PD-L1 pathway in breast cancer. Then univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression were used to construct the prognostic signature. A nomogram was established based on the signature. The relationship between the signature gene IFNG and breast cancer tumor microenvironment was analyzed. RESULTS: Four PD-1/PD-L1 pathway-related subtypes were distinguished. A prognostic signature related to PD-1/PD-L1 pathway typing was constructed to evaluate breast cancer's clinical characteristics and tumor microenvironment. The nomogram based on the RiskScore could be used to accurately predict breast cancer patients' 1-year, 3-year, and 5-year survival probability. The expression of IFNG was positively correlated with CD8+ T cell infiltration in the breast cancer tumor microenvironment. CONCLUSION: A prognostic signature is constructed based on the PD-1/PD-L1 pathway typing in breast cancer, which can guide the precise treatment of breast cancer. The signature gene IFNG is positively related to CD8+ T cell infiltration in breast cancer.

4.
Front Genet ; 13: 953997, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092932

RESUMEN

Background: Gastric cancer is a major global public health burden worldwide. Although treatment strategies are continuously improving, the overall prognosis remains poor. Necroptosis is a newly discovered form of cell death associated with anti-tumor immunity. Methods: Gastric cancer (GC) data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were downloaded. Bioinformatics analysis was performed to construct a necroptosis-related risk model and to establish cancer subtypes. Potential associations of the tumor immune microenvironment and immunotherapy response with necroptosis-related prognostic risk score (NRG risk score) were comprehensively explored. 16 GC and paired normal tissues were collected and RT-PCR was performed to examine expression of NRG related genes. Results: GC samples were stratified into three subtypes according to prognostic necroptosis gene expression. A necroptosis risk model based on 12 genes (NPC1L1, GAL, RNASE1, PCDH7, NOX4, GJA4, SLC39A4, BASP1, BLVRA, NCF1, PNOC, and CCR5) was constructed and validated. The model was significantly associated with the OS and PFS of GC patients and the tumor immune microenvironment including immune cell infiltration, microsatellite instability (MSI) status, tumor mutational burden (TMB) score, immune checkpoint, and human leukocyte antigen (HLA) gene expression. A prognostic nomogram based on the NRG_score was additionally constructed. A low NRG risk score was correlated with high tumor immunogenicity and might benefit from immunotherapy. Conclusion: We have identified a useful prognostic model based on necroptosis-related genes in GC and comprehensively the relationship between necroptosis and tumor immunity. Predicting value to immunotherapy response is promising, and further research to validate the model in clinical practice is needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA