RESUMEN
MicroRNAs (miRNAs) are processed from primary transcripts that contain partially self-complementary foldbacks. As in animals, the core microprocessor in plants is a Dicer protein, DICER-LIKE1 (DCL1). Processing accuracy and strand selection is greatly enhanced through the RNA binding protein HYPONASTIC LEAVES 1 (HYL1) and the zinc finger protein SERRATE (SE). We have combined a luciferase-based genetic screen with whole-genome sequencing for rapid identification of new regulators of miRNA biogenesis and action. Among the first six mutants analyzed were three alleles of C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 (CPL1)/FIERY2 (FRY2). In the miRNA processing complex, SE functions as a scaffold to mediate CPL1 interaction with HYL1, which needs to be dephosphorylated for optimal activity. In the absence of CPL1, HYL1 dephosphorylation and hence accurate processing and strand selection from miRNA duplexes are compromised. Our findings thus define a new regulatory step in plant miRNA biogenesis.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroARNs/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Planta/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al Calcio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Fosforilación , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serrate-Jagged , Nicotiana/metabolismoRESUMEN
The activities of RNA polymerases shape the epigenetic landscape of genomes with profound consequences for genome integrity and gene expression. A fundamental event during the regulation of eukaryotic gene expression is the coordination between transcription and RNA processing. Most primary RNAs mature through various RNA processing and modification events to become fully functional. While pioneering results positioned RNA maturation steps after transcription ends, the coupling between the maturation of diverse RNA species and their transcription is becoming increasingly evident in plants. In this review, we discuss recent advances in our understanding of the crosstalk between RNA Polymerase II, IV, and V transcription and nascent RNA processing of both coding and noncoding RNAs.
Asunto(s)
Procesamiento Postranscripcional del ARN , Transcripción Genética , Procesamiento Postranscripcional del ARN/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasa II/genética , Plantas/genética , ARN no Traducido/genéticaRESUMEN
The regulation of microRNA (miRNA) biogenesis is crucial for maintaining plant homeostasis under biotic and abiotic stress. The crosstalk between the RNA polymerase II (Pol-II) complex and the miRNA processing machinery has emerged as a central hub modulating transcription and cotranscriptional processing of primary miRNA transcripts (pri-miRNAs). However, it remains unclear how miRNA-specific transcriptional regulators recognize MIRNA loci. Here, we show that the Arabidopsis (Arabidopsis thaliana) HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE15 (HOS15)-HISTONE DEACETYLASE9 (HDA9) complex is a conditional suppressor of miRNA biogenesis, particularly in response to abscisic acid (ABA). When treated with ABA, hos15/hda9 mutants show enhanced transcription of pri-miRNAs that is accompanied by increased processing, leading to overaccumulation of a set of mature miRNAs. Moreover, upon recognition of the nascent pri-miRNAs, the ABA-induced recruitment of the HOS15-HDA9 complex to MIRNA loci is guided by HYPONASTIC LEAVES 1 (HYL1). The HYL1-dependent recruitment of the HOS15-HDA9 complex to MIRNA loci suppresses expression of MIRNAs and processing of pri-miRNA. Most importantly, our findings indicate that nascent pri-miRNAs serve as scaffolds for recruiting transcriptional regulators, specifically to MIRNA loci. This indicates that RNA molecules can act as regulators of their own expression by causing a negative feedback loop that turns off their transcription, providing a self-buffering system.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismoRESUMEN
The study of RNAs has become one of the most influential research fields in contemporary biology and biomedicine. In the last few years, new sequencing technologies have produced an explosion of new and exciting discoveries in the field but have also given rise to many open questions. Defining these questions, together with old, long-standing gaps in our knowledge, is the spirit of this article. The breadth of topics within RNA biology research is vast, and every aspect of the biology of these molecules contains countless exciting open questions. Here, we asked 12 groups to discuss their most compelling question among some plant RNA biology topics. The following vignettes cover RNA alternative splicing; RNA dynamics; RNA translation; RNA structures; R-loops; epitranscriptomics; long non-coding RNAs; small RNA production and their functions in crops; small RNAs during gametogenesis and in cross-kingdom RNA interference; and RNA-directed DNA methylation. In each section, we will present the current state-of-the-art in plant RNA biology research before asking the questions that will surely motivate future discoveries in the field. We hope this article will spark a debate about the future perspective on RNA biology and provoke novel reflections in the reader.
Asunto(s)
Regulación de la Expresión Génica , ARN , ARN de Planta/genética , ARN/genética , Interferencia de ARN , Metilación , BiologíaRESUMEN
The stability and translation efficiency of many messenger RNAs is regulated by microRNAs (miRNAs), which exert their effects through associated Argonaute proteins. In this issue, Zhu, Zhang, and colleagues reveal that plants also exploit miRNA binding by Argonautes as a sequestering mechanism that prevents miRNAs from fulfilling their normal roles.
RESUMEN
MicroRNAs (miRNAs) play an essential role in plant growth and development, and as such, their biogenesis is fine-tuned via regulation of the core microprocessor components. Here, we report that Arabidopsis AAR2, a homolog of a U5 snRNP assembly factor in yeast and humans, not only acts in splicing but also promotes miRNA biogenesis. AAR2 interacts with the microprocessor component hyponastic leaves 1 (HYL1) in the cytoplasm, nucleus, and dicing bodies. In aar2 mutants, abundance of nonphosphorylated HYL1, the active form of HYL1, and the number of HYL1-labeled dicing bodies are reduced. Primary miRNA (pri-miRNA) accumulation is compromised despite normal promoter activities of MIR genes in aar2 mutants. RNA decay assays show that the aar2-1 mutation leads to faster degradation of pri-miRNAs in a HYL1-dependent manner, which reveals a previously unknown and negative role of HYL1 in miRNA biogenesis. Taken together, our findings reveal a dual role of AAR2 in miRNA biogenesis and pre-messenger RNA splicing.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Eucariontes/genética , Regulación de la Expresión Génica de las Plantas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , Factores de Empalme de ARN/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genéticaRESUMEN
For many years we have studied the processes involved in producing miRNAs in plants and the numerous differences from their metazoan counterpart. A well-defined catalytic process, mostly carried out by the RNase III enzyme DICER-LIKE1 (DCL1), it was identified early after the discovery of RNAi and was followed by the isolation of a plethora of miRNA biogenesis cofactors. The production of miRNAs, which later are loaded in ARGONAUTE (AGO) proteins to perform their RNA silencing functions both within the cell and non-cell autonomously, appears to be a highly regulated and dynamic process. Many regulatory events during miRNA biogenesis require the action of specific proteins. However, in recent years, many post-transcriptional modifications, structural features, and coupling with other cellular processing emerged as critical elements controlling the production of miRNA and, thus, a plant's physiology. This review discusses new evidence that has changed the way we understand how miRNAs are produced in plants. We also provide an updated view of the miRNA biogenesis pathways, focusing on the gaps in our knowledge and the most compelling questions that remain open.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Animales , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Unión al ARN/genética , Plantas/genética , Plantas/metabolismoRESUMEN
Plants use molecular mechanisms to sense temperatures, trigger quick adaptive responses and thereby cope with environmental changes. MicroRNAs (miRNAs) are key regulators of plant development under such conditions. The catalytic action of DICER LIKE 1 (DCL1), in conjunction with HYPONASTIC LEAVES 1 (HYL1) and SERRATE (SE), produces miRNAs from double-stranded RNAs. As plants lack a stable internal temperature to which enzymatic reactions could be optimized during evolution, reactions such as miRNA processing have to be adjusted to fluctuating environmental temperatures. Here, we report that with decreasing ambient temperature, the plant miRNA biogenesis machinery becomes more robust, producing miRNAs even in the absence of the key DCL1 co-factors HYL1 and SE. This reduces the morphological and reproductive defects of se and hyl1 mutants, restoring seed production. Using small RNA-sequencing and bioinformatics analyses, we have identified specific miRNAs that become HYL1/SE independent for their production in response to temperature decrease. We found that the secondary structure of primary miRNAs is key for this temperature recovery. This finding may have evolutionary implications as a potential adaptation-driving mechanism to a changing climate.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo , Frío , Biología Computacional , Genes de Plantas , Mutación , Fenotipo , Polen/metabolismo , Estructura Secundaria de Proteína , Análisis de Secuencia de ARNRESUMEN
Transposable elements (TEs) are extremely abundant in complex plant genomes. siRNAs of 24 nucleotides in length control transposon activity in a process that involves de novo methylation of targeted loci. Usually, these epigenetic modifications trigger nucleosome condensation and a permanent silencing of the affected loci. Here, we show that a TE-derived inverted repeat (IR) element, inserted near the sunflower HaWRKY6 locus, dynamically regulates the expression of the gene by altering chromatin topology. The transcripts of this IR element are processed into 24-nt siRNAs, triggering DNA methylation on its locus. These epigenetic marks stabilize the formation of tissue-specific loops in the chromatin. In leaves, an intragenic loop is formed, blocking HaWRKY6 transcription. While in cotyledons (Cots), formation of an alternative loop, encompassing the whole HaWRKY6 gene, enhances transcription of the gene. The formation of this loop changes the promoter directionality, reducing IR transcription, and ultimately releasing the loop. Our results provide evidence that TEs can act as active and dynamic regulatory elements within coding loci in a mechanism that combines RNA silencing, epigenetic modification, and chromatin remodeling machineries.
Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , Regulación de la Expresión Génica de las Plantas , Helianthus/genética , Secuencias Invertidas Repetidas , ARN de Planta/genética , ARN Interferente Pequeño/genética , Transcripción Genética , Conformación de Ácido Nucleico , ARN no Traducido/genética , Secuencias Reguladoras de Ácidos NucleicosRESUMEN
In plants, small RNAs are loaded into ARGONAUTE (AGO) proteins to fulfill their regulatory functions. MicroRNAs (miRNAs), one of the most abundant classes of endogenous small RNAs, are preferentially loaded into AGO1. Such loading, long believed to happen exclusively in the cytoplasm, was recently proposed to also occur in the nucleus. Here, we identified CONSTITUTIVE ALTERATIONS IN THE SMALL RNAS PATHWAYS9 (CARP9), a nuclear-localized, intrinsically disordered protein, as a factor promoting miRNA activity in Arabidopsis (Arabidopsis thaliana). Mutations in the CARP9-encoding gene led to a mild reduction of miRNAs levels, impaired gene silencing, and characteristic morphological defects, including young leaf serration and altered flowering time. Intriguingly, we found that CARP9 was able to interact with HYPONASTIC LEAVES1 (HYL1), but not with other proteins of the miRNA biogenesis machinery. In the same way, CARP9 appeared to interact with mature miRNA, but not with primary miRNA, positioning it after miRNA processing in the miRNA pathway. CARP9 was also able to interact with AGO1, promoting its interaction with HYL1 to facilitate miRNA loading in AGO1. Plants deficient in CARP9 displayed reduced levels of AGO1-loaded miRNAs, partial retention of miRNA in the nucleus, and reduced levels of AGO1. Collectively, our data suggest that CARP9 might modulate HYL1-AGO1 cross talk, acting as a scaffold for the formation of a nuclear post-primary miRNA-processing complex that includes at least HYL1, AGO1, and HEAT SHOCK PROTEIN 90. In such a complex, CARP9 stabilizes AGO1 and mature miRNAs, allowing the proper loading of miRNAs in the effector complex.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Intrínsecamente Desordenadas/genética , Proteínas de Unión al ARN/genéticaRESUMEN
Population growth has been closely associated with agricultural production, since the first famine predicted by Malthus (1798) up to the Green Revolution of the past century. Today, we continue to face increasing demand for food and crop production (Tilman et al., 2011). Considering the combined caloric or protein content of the 275 major crops used directly as human foods or as livestock and fish feeds, Tilman et al. (2011) forecast a 100% increase in global demand for crops from 2005 to 2050. Meeting this demand with the lowest impact on the environment could be achieved by sustainable intensification of existing cropland with reduced land clearing (Tilman et al., 2011; Fischer and Connor, 2018).
Asunto(s)
Agricultura , Productos Agrícolas , Animales , Producción de Cultivos , PredicciónRESUMEN
Transposable elements (TEs) are major contributors to genome complexity in eukaryotes. TE mobilization may cause genome instability, although it can also drive genome diversity throughout evolution. TE transposition may influence the transcriptional activity of neighboring genes by modulating the epigenomic profile of the region or by altering the relative position of regulatory elements. Notably, TEs have emerged in the last few years as an important source of functional long and small non-coding RNAs. A plethora of small RNAs derived from TEs have been linked to the trans regulation of gene activity at the transcriptional and post-transcriptional levels. Furthermore, TE-derived long non-coding RNAs have been shown to modulate gene expression by interacting with protein partners, sequestering active small RNAs, and forming duplexes with DNA or other RNA molecules. In this review, we summarize our current knowledge of the functional and mechanistic paradigms of TE-derived long and small non-coding RNAs and discuss their role in plant development and evolution.
Asunto(s)
Elementos Transponibles de ADN , Plantas , Elementos Transponibles de ADN/genética , ADN Intergénico , Técnicas Genéticas , Plantas/genética , ARN Interferente PequeñoRESUMEN
MicroRNAs (miRNAs) are major post-transcriptional regulators of gene expression. Their biogenesis relies on the cleavage of longer precursors by a nuclear localized processing machinery. The evolutionary preference of plant miRNAs to silence transcription factors turned these small molecules into key actors during growth and adaptive responses. Furthermore, during their life cycle plants are subject to changes in the environmental conditions surrounding them. In order to face these changes, plants display unique adaptive capacities based on an enormous developmental plasticity, where miRNAs play central roles. Many individual miRNAs have been shown to modulate the plant response to different environmental cues and stresses. In the last few years, increasing evidence has shown that not only individual genes encoding miRNAs but also the miRNA pathway as a whole is subject to regulation in response to external stimulus. In this review, we discuss the current knowledge about the miRNA pathway. We dissect the pathway to analyze the events leading to the generation of these small RNAs and emphasize the regulation of core components of the miRNA biogenesis machinery.
Asunto(s)
MicroARNs/biosíntesis , Plantas/metabolismo , ARN de Planta/biosíntesis , Estrés Fisiológico/fisiología , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , MicroARNs/genética , Proteínas de Plantas , Plantas/genética , Procesamiento Postranscripcional del ARN , ARN de Planta/genética , Factores de TranscripciónRESUMEN
The presence of small tooth-like indentations, or serrations, characterizes leaf margins of Arabidopsis thaliana plants. The NAC family member CUP-SHAPED COTYLEDON 2 (CUC2), which undergoes post-transcriptional gene silencing by three micro-RNA genes (MIR164A, B and C), controls the extension of leaf serration. Here, we analyzed the role of AtHB1, a transcription factor (TF) belonging to the homeodomain-leucine zipper subfamily I, in shaping leaf margins. Using mutants with an impaired silencing pathway as background, we obtained transgenic plants expressing AtHB1 over 100 times compared to controls. These plants presented an atypical developmental phenotype characterized by leaves with deep serration. Transcript measurements revealed that CUC2 expression was induced in plants overexpressing AtHB1 and repressed in athb1 mutants, indicating a positive regulation exerted by this TF. Moreover, molecular analyses of AtHB1 overexpressing and mutant plants revealed that AtHB1 represses MIR164 transcription. We found that overexpression of MIR164B was able to reverse the serration phenotype of plants overexpressing AtHB1. Finally, chromatin immunoprecipitation assays revealed that AtHB1 was able to bind in vivo the promoter regions of all three MIR164 encoding loci. Altogether, our results indicate that AtHB1 directly represses MIR164 expression to enhance leaf serration by increasing CUC2 levels.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroARNs/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Fenotipo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , TranscriptomaRESUMEN
In all eukaryotic organisms, gene expression correlates with the condensation state of the chromatin. Highly packed genome regions, known as heterochromatins, are associated with repressed loci, whereas euchromatic regions represent a relaxed state of the chromatin actively transcribed. However, even in these active regions, associations between chromatin domains dynamically modify genome topology and alter gene expression. Long-range interaction within and between chromosomes determines chromatin domains that help to coordinate transcriptional events. On the other hand, short-range chromatin interactions emerged as dynamic mechanisms regulating the expression of specific loci. Our current capacity to decipher genome topology at high resolution allowed us to identify numerous cases of short-range regulatory chromatin interactions, which are reviewed in this Insight article.
Asunto(s)
Cromatina , Regulación de la Expresión Génica de las Plantas , Genoma , Heterocromatina , Plantas/genéticaRESUMEN
RNA-directed DNA methylation (RdDM) and histone H3 lysine 9 dimethylation (H3K9me2) are related transcriptional silencing mechanisms that target transposable elements (TEs) and repeats to maintain genome stability in plants. RdDM is mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a luciferase-based DNA methylation reporter, LUCL, we found that camptothecin, a compound with anti-cancer properties that targets DNA topoisomerase 1α (TOP1α) was able to de-repress LUCL by reducing its DNA methylation and H3K9me2 levels. Further studies with Arabidopsis top1α mutants showed that TOP1α silences endogenous RdDM loci by facilitating the production of Pol V-dependent long non-coding RNAs, AGONAUTE4 recruitment and H3K9me2 deposition at TEs and repeats. This study assigned a new role in epigenetic silencing to an enzyme that affects DNA topology.
Asunto(s)
Metilación de ADN/genética , ADN-Topoisomerasas de Tipo I/genética , Elementos Transponibles de ADN/genética , Epigénesis Genética , Transcripción Genética , Arabidopsis/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Silenciador del Gen , Histonas/genética , Lisina/genética , Mutación , ARN/genética , ARN Largo no Codificante/genéticaRESUMEN
Processing of microRNA (miRNA) precursors results in the release of a double-stranded miRNA/miRNA* duplex. The miRNA or guide strand, is loaded onto the Argonaute (AGO) effector, and the miRNA* or passenger strand is typically degraded. The loaded AGO-containing RNA-induced silencing complex specifically recognizes a target mRNA, leading to its degradation or translational inhibition. In plants, miRNA-mediated cleavage of a target triggers in some cases the production of secondary small interfering RNAs (siRNAs), which in turn can silence other genes in trans. This alternative pathway depends on the length of the miRNA and the specific AGO in the effector complex. However, 22-nt miRNAs are sufficient, but not essential for this pathway. Using a combination of computational and experimental approaches, we show that transitivity can be triggered when the small RNA that is not retained in AGO is 22-nt long. Moreover, we demonstrate that asymmetrically positioned bulged bases in the miRNA:miRNA* duplex, regardless of miRNA or miRNA* length, are sufficient for the initiation of transitivity. We propose that the RNA-induced silencing complex reprogramming occurs during the early steps of miRNA loading, before the miRNA duplex is disassembled and the guide strand is selected.
Asunto(s)
Arabidopsis/genética , MicroARNs/genética , ARN Interferente Pequeño/biosíntesis , Silenciador del GenRESUMEN
MicroRNAs (miRNAs) are produced from double-stranded precursors, from which a short duplex is excised. The strand of the duplex that remains more abundant is usually the active form, the miRNA, while steady-state levels of the other strand, the miRNA*, are generally lower. The executive engines of miRNA-directed gene silencing are RNA-induced silencing complexes (RISCs). During RISC maturation, the miRNA/miRNA* duplex associates with the catalytic subunit, an ARGONAUTE (AGO) protein. Subsequently, the guide strand, which directs gene silencing, is retained, while the passenger strand is degraded. Under certain circumstances, the miRNA*s can be retained as guide strands. miR170 and miR171 are prototypical miRNAs in Arabidopsis (Arabidopsis thaliana) with well-defined targets. We found that the corresponding star molecules, the sequence-identical miR170* and miR171a*, have several features of active miRNAs, such as sequence conservation and AGO1 association. We confirmed that active AGO1-miR171a* complexes are common in Arabidopsis and that they trigger silencing of SU(VAR)3-9 HOMOLOG8, a new miR171a* target that was acquired very recently in the Arabidopsis lineage. Our study demonstrates that each miR171a strand can be loaded onto RISC with separate regulatory outcomes.