RESUMEN
BACKGROUND: Transcranial magnetic stimulation-electroencephalography (TMS-EEG) has demonstrated decreased excitability in the primary motor cortex (M1) and increased excitability in the pre-supplementary motor area (pre-SMA) in moderate-advanced Parkinson's disease (PD). OBJECTIVES: The aim was to investigate whether these abnormalities are evident from the early stages of the disease, their behavioral correlates, and relationship to cortico-subcortical connections. METHODS: Twenty-eight early, drug-naive (de novo) PD patients and 28 healthy controls (HCs) underwent TMS-EEG to record TMS-evoked potentials (TEPs) from the primary motor cortex (M1) and the pre-SMA, kinematic recording of finger-tapping movements, and a 3T-MRI (magnetic resonance imaging) scan to obtain diffusion tensor imaging (DTI) reconstruction of white matter (WM) tracts connecting M1 to the ventral lateral anterior thalamic nucleus and pre-SMA to the anterior putamen. RESULTS: We found reduced M1 TEP P30 amplitude in de novo PD patients compared to HCs and similar pre-SMA TEP N40 amplitude between groups. PD patients exhibited smaller amplitude and slower velocity in finger-tapping movements and altered structural integrity in WM tracts of interest, although these changes did not correlate with TEPs. CONCLUSIONS: M1 hypoexcitability is a characteristic of PD from early phases and may be a marker of the parkinsonian state. Pre-SMA hyperexcitability is not evident in early PD and possibly emerges at later stages of the disease. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Electroencefalografía , Potenciales Evocados Motores , Corteza Motora , Enfermedad de Parkinson , Estimulación Magnética Transcraneal , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Masculino , Femenino , Corteza Motora/fisiopatología , Corteza Motora/diagnóstico por imagen , Persona de Mediana Edad , Estimulación Magnética Transcraneal/métodos , Anciano , Potenciales Evocados Motores/fisiología , Electroencefalografía/métodos , Imagen por Resonancia Magnética , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Imagen de Difusión Tensora , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Mapeo EncefálicoRESUMEN
The interplay between predator and prey has catalyzed the evolution of venom systems, with predators honing their venoms in response to the evolving resistance of prey. A previous study showed that the African varanid species Varanus exanthematicus has heightened resistance to snake venoms compared to the Australian species V. giganteus, V. komodoensis, and V. mertensi, likely due to increased predation by sympatric venomous snakes on V. exanthematicus. To understand venom resistance among varanid lizards, we analyzed the receptor site targeted by venoms in 27 varanid lizards, including 25 Australian varanids. The results indicate an active evolutionary arms race between Australian varanid lizards and sympatric neurotoxic elapid snakes. Large species preying on venomous snakes exhibit inherited neurotoxin resistance, a trait potentially linked to their predatory habits. Consistent with the 'use it or lose it' aspect of venom resistance, this trait was secondarily reduced in two lineages that had convergently evolved gigantism (V. giganteus and the V. komodoensis/V. varius clade), suggestive of increased predatory success accompanying extreme size and also increased mechanical protection against envenomation due to larger scale osteoderms. Resistance was completely lost in the mangrove monitor V. indicus, consistent with venomous snakes not being common in their arboreal and aquatic niche. Conversely, dwarf varanids demonstrate a secondary loss at the base of the clade, with resistance subsequently re-evolving in the burrowing V. acanthurus/V. storri clade, suggesting an ongoing battle with neurotoxic predators. Intriguingly, within the V. acanthurus/V. storri clade, resistance was lost again in V. kingorum, which is morphologically and ecologically distinct from other members of this clade. Resistance was also re-evolved in V. glebopalma which is terrestrial in contrast to the arboreal/cliff dwelling niches occupied by the other members of its clade (V. glebopalma, V. mitchelli, V. scalaris, V. tristis). This 'Russian doll' pattern of venom resistance underscores the dynamic interaction between dwarf varanids and Australian neurotoxic elapid snakes. Our research, which included testing Acanthophis (death adder) venoms against varanid receptors as models for alpha-neurotoxic interactions, uncovered a fascinating instance of the Red Queen Hypothesis: some death adders have developed more potent toxins specifically targeting resistant varanids, a clear sign of the relentless predator-prey arms race. These results offer new insight into the complex dynamics of venom resistance and highlight the intricate ecological interactions that shape the natural world.
Asunto(s)
Lagartos , Animales , Lagartos/fisiología , Australia , Elapidae , Venenos de Serpiente , Serpientes Venenosas , Federación de Rusia , Venenos ElapídicosRESUMEN
In their commentary on our recently published paper about electroencephalographic responses induced by cerebellar transcranial magnetic stimulation (Fong et al., 2023), Gassmann and colleagues (Gassmann et al., 2023b) try to explain the differences between our results and their own previous work on the same topic. We agree with them that many of the differences arise from our use of a different magnetic stimulation coil. However, two unresolved questions remain. (1) Which method is most likely to achieve optimal activation of cerebellar output? (2) To what extent are the evoked cerebellar responses contaminated by concomitant sensory input? We highlight the role of careful experimental design and of combining electrophysiological and behavioural data to obtain reliable TMS-EEG data.
RESUMEN
BACKGROUND: Connections between the cerebellum and the cortex play a critical role in learning and executing complex behaviours. Dual-coil transcranial magnetic stimulation (TMS) can be used non-invasively to probe connectivity changes between the lateral cerebellum and motor cortex (M1) using the motor evoked potential as an outcome measure (cerebellar-brain inhibition, CBI). However, it gives no information about cerebellar connections to other parts of cortex. OBJECTIVES: We used electroencephalography (EEG) to investigate whether it was possible to detect activity evoked in any areas of cortex by single-pulse TMS of the cerebellum (cerebellar TMS evoked potentials, cbTEPs). A second experiment tested if these responses were influenced by the performance of a cerebellar-dependent motor learning paradigm. METHODS: In the first series of experiments, TMS was applied over either the right or left cerebellar cortex, and scalp EEG was recorded simultaneously. Control conditions that mimicked auditory and somatosensory inputs associated with cerebellar TMS were included to identify responses due to non-cerebellar sensory stimulation. We conducted a follow-up experiment that evaluated whether cbTEPs are behaviourally sensitive by assessing individuals before and after learning a visuomotor reach adaptation task. RESULTS: A TMS pulse over the lateral cerebellum evoked EEG responses that could be distinguished from those caused by auditory and sensory artefacts. Significant positive (P80) and negative peaks (N110) over the contralateral frontal cerebral area were identified with a mirrored scalp distribution after left vs. right cerebellar stimulation. The P80 and N110 peaks were replicated in the cerebellar motor learning experiment and changed amplitude at different stages of learning. The change in amplitude of the P80 peak was associated with the degree of learning that individuals retained following adaptation. Due to overlap with sensory responses, the N110 should be interpreted with caution. CONCLUSIONS: Cerebral potentials evoked by TMS of the lateral cerebellum provide a neurophysiological probe of cerebellar function that complements the existing CBI method. They may provide novel insight into mechanisms of visuomotor adaptation and other cognitive processes.
Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Electroencefalografía/métodos , Potenciales Evocados Motores/fisiología , Cerebelo/fisiología , Corteza Motora/fisiología , Cuero CabelludoRESUMEN
Motor fatigue is one of the most common symptoms in multiple sclerosis (MS) patients. Previous studies suggested that increased motor fatigue in MS may arise at the central nervous system level. However, the mechanisms underlying central motor fatigue in MS are still unclear. This paper investigated whether central motor fatigue in MS reflects impaired corticospinal transmission or suboptimal primary motor cortex (M1) output (supraspinal fatigue). Furthermore, we sought to identify whether central motor fatigue is associated with abnormal M1 excitability and connectivity within the sensorimotor network. Twenty-two patients affected by relapsing-remitting MS and 15 healthy controls (HCs) performed repeated blocks of contraction at different percentages of maximal voluntary contraction with the right first dorsal interosseus muscle until exhaustion. Peripheral, central, and supraspinal components of motor fatigue were quantified by a neuromuscular assessment based on the superimposed twitch evoked by peripheral nerve and transcranial magnetic stimulation (TMS). Corticospinal transmission, excitability and inhibition during the task were tested by measurement of motor evoked potential (MEP) latency, amplitude, and cortical silent period (CSP). M1 excitability and connectivity was measured by TMS-evoked electroencephalography (EEG) potentials (TEPs) elicited by M1 stimulation before and after the task. Patients completed fewer blocks of contraction and showed higher values of central and supraspinal fatigue than HCs. We found no MEP or CSP differences between MS patients and HCs. Patients showed a post-fatigue increase in TEPs propagation from M1 to the rest of the cortex and in source-reconstructed activity within the sensorimotor network, in contrast to the reduction observed in HCs. Post-fatigue increase in source-reconstructed TEPs correlated with supraspinal fatigue values. To conclude, MS-related motor fatigue is caused by central mechanisms related explicitly to suboptimal M1 output rather than impaired corticospinal transmission. Furthermore, by adopting a TMS-EEG approach, we proved that suboptimal M1 output in MS patients is associated with abnormal task-related modulation of M1 connectivity within the sensorimotor network. Our findings shed new light on the central mechanisms of motor fatigue in MS by highlighting a possible role of abnormal sensorimotor network dynamics. These novel results may point to new therapeutical targets for fatigue in MS.
Asunto(s)
Esclerosis Múltiple , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Esclerosis Múltiple/complicaciones , Electroencefalografía , Potenciales Evocados , Potenciales Evocados MotoresRESUMEN
Predatory innovations impose reciprocal selection pressures upon prey. The evolution of snake venom alpha-neurotoxins has triggered the corresponding evolution of resistance in the post-synaptic nicotinic acetylcholine receptors of prey in a complex chemical arms race. All other things being equal, animals like caecilians (an Order of legless amphibians) are quite vulnerable to predation by fossorial elapid snakes and their powerful alpha-neurotoxic venoms; thus, they are under strong selective pressure. Here, we sequenced the nicotinic acetylcholine receptor alpha-1 subunit of 37 caecilian species, representing all currently known families of caecilians from across the Americas, Africa, and Asia, including species endemic to the Seychelles. Three types of resistance were identified: (1) steric hindrance from N-glycosylated asparagines; (2) secondary structural changes due to the replacement of proline by another amino acid; and (3) electrostatic charge repulsion of the positively charged neurotoxins, through the introduction of a positively charged amino acid into the toxin-binding site. We demonstrated that resistance to alpha-neurotoxins convergently evolved at least fifteen times across the caecilian tree (three times in Africa, seven times in the Americas, and five times in Asia). Additionally, as several species were shown to possess multiple resistance modifications acting synergistically, caecilians must have undergone at least 20 separate events involving the origin of toxin resistance. On the other hand, resistance in non-caecilian amphibians was found to be limited to five origins. Together, the mutations underlying resistance in caecilians constitute a robust signature of positive selection which strongly correlates with elapid presence through both space (sympatry with caecilian-eating elapids) and time (Cenozoic radiation of elapids). Our study demonstrates the extent of convergent evolution that can be expected when a single widespread predatory adaptation triggers parallel evolutionary arms races at a global scale.
Asunto(s)
Elapidae , Neurotoxinas , Animales , Neurotoxinas/genética , Neurotoxinas/toxicidad , Neurotoxinas/química , Anfibios/genética , Venenos Elapídicos/química , Venenos de Serpiente , AminoácidosAsunto(s)
Corteza Motora , Enfermedad de Parkinson , Temblor , Humanos , Corteza Motora/fisiopatología , Temblor/fisiopatología , Temblor/etiología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/fisiopatología , Trastornos Parkinsonianos/fisiopatología , Red Nerviosa/fisiopatologíaRESUMEN
Juvenile myoclonic epilepsy is an idiopathic generalized epilepsy syndrome associated with photosensitivity in approximately 30-40% of cases. Microstates consist of a brief period of time during which the topography of the whole resting-state electroencephalography signal is characterized by a specific configuration. Previous neurophysiological and neuroimaging studies have suggested that Microstate B may represent activity within the visual network. In this case-control study, we aimed to investigate whether anatomical and functional alterations in the visual network observed in individuals with photosensitivity could lead to changes in Microstate B dynamics in photosensitive patients with juvenile myoclonic epilepsy. Resting-state electroencephalography microstate analysis was performed on 28 patients with juvenile myoclonic epilepsy. Of these, 15 patients exhibited photosensitivity, while the remaining 13 served as non-photosensitive controls. The two groups were carefully matched in terms of age, sex, seizure control and anti-seizure medications. Multivariate analysis of variance and repeated-measures analysis of variance were performed to assess significant differences in microstate metrics and syntax between the photosensitive and the non-photosensitive group. Post hoc false discovery rate adjusted unpaired t-tests were used to determine differences in specific microstate classes between the two groups. The four classical microstates (Classes A, B, C and D) accounted for 72.8% of the total electroencephalography signal variance in the photosensitive group and 75.64% in the non-photosensitive group. Multivariate analysis of variance revealed a statistically significant class-group interaction on microstate temporal metrics (P = 0.021). False discovery rate adjusted univariate analyses of variance indicated a significant class-group interaction for both mean occurrence (P = 0.002) and coverage (P = 0.03), but not for mean duration (P = 0.14). Post hoc false discovery rate adjusted unpaired t-tests showed significantly higher coverage (P = 0.02) and occurrence (P = 0.04) of Microstate B in photosensitive patients compared with non-photosensitive participants, along with an increased probability of transitioning from Microstates C (P = 0.04) and D (P = 0.02) to Microstate B. No significant differences were found concerning the other microstate classes between the two groups. Our study provides novel insights on resting-state electroencephalography microstate dynamics underlying photosensitivity in patients with juvenile myoclonic epilepsy. The increased representation of Microstate B in these patients might reflect the resting-state overactivation of the visual system underlying photosensitivity. Further research is warranted to investigate microstate dynamics in other photosensitive epilepsy syndromes.
RESUMEN
In the ongoing evolutionary arms race between predators and prey, adaptive innovations often trigger a reciprocal response. For instance, the emergence of α-neurotoxins in snake venom has driven prey species targeted by these snakes to evolve sophisticated defense mechanisms. This study zeroes in on the particular motifs within the orthosteric sites of post-synaptic nicotinic acetylcholine receptors (nAChR) that confer resistance to α-neurotoxins, often through structural alterations of nAChR. This research examined Australian agamid lizards, a primary prey group for Australian elapid snakes, which are subject to predatory selection pressures. We previously showed that Pogona vitticeps (Central bearded dragon) was resistant to α-neurotoxic snake venoms through a steric hindrance form resistance evolving within the nAChR orthosteric, specifically through the 187-189NVT motif resulting in the presence of N-glycosylation, with the branching carbohydrate chains impeding the binding by the neurotoxins. This adaptive trait is thought to be a compensatory mechanism for the lizard's limited escape capabilities. Despite the significance of this novel adaptation, the prevalence and evolutionary roots of such venom resistance in Australian agamids have not been thoroughly investigated. To fill this knowledge gap, we undertook a comprehensive sequencing analysis of the nAChR ligand-binding domain across the full taxonomical diversity of Australian agamid species. Our findings reveal that the N-glycosylation resistance mechanism is a trait unique to the Pogona genus and absent in other Australian agamids. This aligns with Pogona's distinctive morphology, which likely increases vulnerability to neurotoxic elapid snakes, thereby increasing selective pressures for resistance. In contrast, biolayer interferometry experiments with death adder (Acanthophis species) venoms did not indicate any resistance-related binding patterns in other agamids, suggesting a lack of similar resistance adaptations, consistent with these lineages either being fast-moving, covered with large defensive spines, or being arboreal. This research not only uncovers a novel α-neurotoxin resistance mechanism in Australian agamids but also highlights the complex dynamics of the predator-prey chemical arms race. It provides a deeper understanding of how evolutionary pressures shape the interactions between venomous snakes and their prey.
Asunto(s)
Lagartos , Receptores Nicotínicos , Animales , Lagartos/fisiología , Lagartos/metabolismo , Glicosilación , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Australia , Neurotoxinas/toxicidad , Conducta Predatoria/efectos de los fármacos , Proteínas de Reptiles/metabolismo , Proteínas de Reptiles/genética , FilogeniaRESUMEN
Chronic pain poses a widespread and distressing challenge; it can be resistant to conventional therapies, often having significant side effects. Non-invasive brain stimulation (NIBS) techniques offer promising avenues for the safe and swift modulation of brain excitability. NIBS approaches for chronic pain management targeting the primary motor area have yielded variable outcomes. Recently, the cerebellum has emerged as a pivotal hub in human pain processing; however, the clinical application of cerebellar NIBS in chronic pain treatment remains limited. This review delineates the cerebellum's role in pain modulation, recent advancements in NIBS for cerebellar activity modulation, and novel biomarkers for assessing cerebellar function in humans. Despite notable progress in NIBS techniques and cerebellar activity assessment, studies targeting cerebellar NIBS for chronic pain treatment are limited in number. Nevertheless, positive outcomes in pain alleviation have been reported with cerebellar anodal transcranial direct current stimulation. Our review underscores the potential for further integration between cerebellar NIBS and non-invasive assessments of cerebellar function to advance chronic pain treatment strategies.
RESUMEN
Transcranial magnetic stimulation coupled with electroencephalography (TMS-EEG) allows for the study of brain dynamics in health and disease. Cranial muscle activation can decrease the interpretability of TMS-EEG signals by masking genuine EEG responses and increasing the reliance on preprocessing methods but can be at least partly prevented by coil rotation coupled with the online monitoring of signals; however, the extent to which changing coil rotation may affect TMS-EEG signals is not fully understood. Our objective was to compare TMS-EEG data obtained with an optimal coil rotation to induce motor evoked potentials (M1standard) while rotating the coil to minimize cranial muscle activation (M1emg). TMS-evoked potentials (TEPs), TMS-related spectral perturbation (TRSP), and intertrial phase clustering (ITPC) were calculated in both conditions using two different preprocessing pipelines based on independent component analysis (ICA) or signal-space projection with source-informed reconstruction (SSP-SIR). Comparisons were performed with cluster-based correction. The concordance correlation coefficient was computed to measure the similarity between M1standard and M1emg TMS-EEG signals. TEPs, TRSP, and ITPC were significantly larger in M1standard than in M1emg conditions; a lower CCC than expected was also found. These results were similar across the preprocessing pipelines. While rotating the coil may be advantageous to reduce cranial muscle activation, it may result in changes in TMS-EEG signals; therefore, this solution should be tailored to the specific experimental context.
RESUMEN
Motor fatigue in Multiple Sclerosis (MS) is due to reduced motor cortex (M1) output and altered sensorimotor network (SMN) modulation. Natalizumab, a disease-modifying therapy, reduces neuroinflammation and improves fatigue. However, some patients treated with natalizumab experience fatigue recurrence ('wearing-off') before subsequent infusions. Wearing-off provides a valuable window into MS-related motor fatigue mechanisms in a controlled, clinically stable, setting. This study investigates whether wearing-off is associated with worsening motor fatigue and its neurophysiological mechanisms and assesses natalizumab's effect on MS-related fatigue. Forty-five relapsing-remitting MS patients with wearing-off symptoms were evaluated pre- and post-natalizumab infusion. Assessments included evaluating disability levels, depressive symptoms, and the impact of fatigue symptoms on cognitive, physical, and psychosocial functioning. The motor fatigue index was computed through the number of blocks completed during a fatiguing task and peripheral, central, and supraspinal fatigue (M1 output) were evaluated by measuring the superimposed twitches evoked by peripheral nerve and transcranial magnetic stimulation of M1. Transcranial magnetic stimulation-electroencephalography assessed M1 effective connectivity by measuring TMS-evoked potentials (TEPs) within the SMN before- and after the task. We found that wearing-off was associated with increased motor fatigue index, increased central and supraspinal fatigue, and diminished task-related modulation of TEPs compared to post-natalizumab infusion. Wearing-off was also associated with worsened fatigue impact and depression symptom scores. We conclude that the wearing-off phenomenon is associated with worsening motor fatigue due to altered M1 output and modulation of the SMN. Motor fatigue in MS may reflect reversible, inflammation-related changes in the SMN that natalizumab can modulate. Our findings apply primarily to MS patients receiving natalizumab, emphasizing the need for further research on other treatments with wearing-off.
Asunto(s)
Natalizumab , Estimulación Magnética Transcraneal , Humanos , Natalizumab/uso terapéutico , Natalizumab/efectos adversos , Femenino , Masculino , Adulto , Fatiga/etiología , Corteza Motora/fisiopatología , Corteza Motora/efectos de los fármacos , Persona de Mediana Edad , Potenciales Evocados Motores/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Esclerosis Múltiple Recurrente-Remitente/complicaciones , Factores Inmunológicos/uso terapéutico , Factores Inmunológicos/efectos adversos , Factores Inmunológicos/administración & dosificación , Fatiga Muscular/efectos de los fármacos , ElectroencefalografíaRESUMEN
OBJECTIVE: To assess the changes in effective connectivity of important regions of the visual network (VIS) and dorsal attention network (DAN) underlying visual hallucinations (VHs) in Dementia with Lewy Bodies (DLB), Parkinson's Disease (PD) and Parkinson's Disease Dementia (PDD), as measured by a transcranial magnetic stimulation-electroencephalographic technique (TMS-EEG). METHODS: We stimulated the right visual cortex (V1/V2), the right intraparietal sulcus and the right frontal eye fields, two key regions of the DAN, and measured TMS-evoked cortical activation within the VIS and the DAN. We compared 11 patients with VHs and 15 patients without VHs. RESULTS: Patients with VHs showed lower TMS-evoked cortical activation within the DAN following intraparietal sulcus and frontal eye fields stimulation than patients without VHs. No difference was found between patients with and without cognitive impairment. Also, when considering only patients with cognitive impairment, VHs were associated with lower TMS-evoked cortical activation following intraparietal sulcus stimulation. CONCLUSIONS: DLB, PD, and PDD patients with VHs had less effective connectivity of the right intraparietal sulcus within the DAN than patients without VHs. SIGNIFICANCE: We provided the first evidence that VHs are associated with specific intraparietal sulcus dysfunction within the DAN in patients with PDD, PD, and DLB.
Asunto(s)
Enfermedad de Alzheimer , Demencia , Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/psicología , AlucinacionesRESUMEN
Paired associative stimulation (PAS) is a non-invasive brain stimulation technique that modulates synaptic plasticity in the human motor cortex (M1). Since previous studies have primarily used motor-evoked potentials (MEPs) as outcome measure, cortical correlates of PAS-induced plasticity remain unknown. Therefore, the aim of this observational study was to investigate cortical correlates of a standard PAS induced plasticity in the primary motor cortex by using a combined TMS-EEG approach in a cohort of eighteen healthy subjects. In addition to the expected long-lasting facilitatory modulation of MEPs amplitude, PAS intervention also induced a significant increase in transcranial magnetic stimulation-evoked potentials (TEPs) P30 and P60 amplitude. No significant correlation between the magnitude of PAS-induced changes in TEP components and MEP amplitude were observed. However, the linear regression analysis revealed that the combined changes in P30 and P60 component amplitudes significantly predicted the MEP facilitation after PAS. The findings of our study offer novel insight into the neurophysiological changes associated with PAS-induced plasticity at M1 cortical level and suggest a complex relationship between TEPs and MEPs changes following PAS.
RESUMEN
Over the past decades, among all the non-invasive brain stimulation (NIBS) techniques, those aiming for neuromodulatory protocols have gained special attention. The traditional neurophysiological outcome to estimate the neuromodulatory effect is the motor evoked potential (MEP), the impact of NIBS techniques is commonly estimated as the change in MEP amplitude. This approach has several limitations: first, the use of MEP limits the evaluation of stimulation to the motor cortex excluding all the other brain areas. Second, MEP is an indirect measure of brain activity and is influenced by several factors. To overcome these limitations several studies have used new outcomes to measure brain changes after neuromodulation techniques with the concurrent use of transcranial magnetic stimulation (TMS) and electroencephalogram (EEG). In the present review, we examine studies that use TMS-EEG before and after a single session of neuromodulatory TMS. Then, we focused our literature research on the description of the different metrics derived from TMS-EEG to measure the effect of neuromodulation.
RESUMEN
Introduction: Transcranial magnetic stimulation-evoked electroencephalography potentials (TEPs) have been used to study motor cortical excitability in healthy subjects and several neurological conditions. However, optimal recording parameters for TEPs are still debated. Stimulation rates could affect TEP amplitude due to plasticity effects, thus confounding the assessment of cortical excitability. We tested whether short interpulse intervals (IPIs) affect TEP amplitude. Methods: We investigated possible changes in TEP amplitude and global mean field amplitude (GMFA) obtained with stimulation of the primary motor cortex at IPIs of 1.1-1.4 s in a group of healthy subjects. Results: We found no differences in TEP amplitude or GMFA between the first, second and last third of trials. Discussion: Short IPIs do not affect TEP size and can be used without the risk of confounding effects due to short-term plasticity.
RESUMEN
There is an urgent need to understand the nature of awareness in people with severe Alzheimer's disease (AD) to ensure effective person-centered care. Objective biomarkers of awareness validated in other clinical groups (e.g., anesthesia, minimally conscious states) offer an opportunity to investigate awareness in people with severe AD. In this article we demonstrate the feasibility of using Transcranial magnetic stimulation (TMS) combined with EEG, event related potentials (ERPs) and fMRI to assess awareness in severe AD. TMS-EEG was performed in six healthy older controls and three people with severe AD. The perturbational complexity index (PCIST) was calculated as a measure of capacity for conscious awareness. People with severe AD demonstrated a PCIST around or below the threshold for consciousness, suggesting reduced capacity for consciousness. ERPs were recorded during a visual perception paradigm. In response to viewing faces, two patients with severe AD provisionally demonstrated similar visual awareness negativity to healthy controls. Using a validated fMRI movie-viewing task, independent component analysis in two healthy controls and one patient with severe AD revealed activation in auditory, visual and fronto-parietal networks. Activation patterns in fronto-parietal networks did not significantly correlate between the patient and controls, suggesting potential differences in conscious awareness and engagement with the movie. Although methodological issues remain, these results demonstrate the feasibility of using objective measures of awareness in severe AD. We raise a number of challenges and research questions that should be addressed using these biomarkers of awareness in future studies to improve understanding and care for people with severe AD.
RESUMEN
BACKGROUND: Patients with Parkinson's disease (PD) and rest tremor may also have tremor during posture holding, with tremor being transiently suppressed during the transition between resting and posture holding. Other PD patients show no tremor suppression between resting and posture holding. The mechanisms responsible for tremor suppression in PD are unknown. Understanding the mechanisms of tremor suppression would expand our knowledge of tremor pathophysiology in PD. OBJECTIVE: To investigate whether tremor suppression reflects the activity of the primary motor cortex (M1) and assess whether tremor features are different in patients with and without tremor suppression. METHODS: We compared corticomuscular coherence (CMC) at tremor frequency and transcranial magnetic stimulation tremor resetting between 10 PD patients with tremor suppression and 10 patients without suppression. We also compared tremor spectral features between the two groups. RESULTS: Patients with tremor suppression had higher CMC at tremor frequency during both rest tremor and postural tremor, and a higher postural tremor resetting index and stability when compared with patients without tremor suppression. Rest tremor frequency was similar between the two groups, but postural tremor frequency was lower in patients with tremor suppression as compared to patients without. CONCLUSION: M1 plays a major role in tremor suppression in PD, and the mechanisms of postural tremor may differ between patients with and without tremor suppression.
Asunto(s)
Corteza Motora , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Postura/fisiología , Estimulación Magnética Transcraneal , Temblor/etiologíaRESUMEN
Electroencephalographic (EEG) signals evoked by transcranial magnetic stimulation (TMS) are usually recorded with passive electrodes (PE). Active electrode (AE) systems have recently become widely available; compared to PE, they allow for easier electrode preparation and a higher-quality signal, due to the preamplification at the electrode stage, which reduces electrical line noise. The performance between the AE and PE can differ, especially with fast EEG voltage changes, which can easily occur with TMS-EEG; however, a systematic comparison in the TMS-EEG setting has not been made. Therefore, we recorded TMS-evoked EEG potentials (TEPs) in a group of healthy subjects in two sessions, one using PE and the other using AE. We stimulated the left primary motor cortex and right medial prefrontal cortex and used two different approaches to remove early TMS artefacts, Independent Component Analysis and Signal Space Projection-Source Informed Recovery. We assessed statistical differences in amplitude and topography of TEPs, and their similarity, by means of the concordance correlation coefficient (CCC). We also tested the capability of each system to approximate the final TEP waveform with a reduced number of trials. The results showed that TEPs recorded with AE and PE do not differ in amplitude and topography, and only few electrodes showed a lower-than-expected CCC between the two methods of amplification. We conclude that AE are a viable solution for TMS-EEG recording.