RESUMEN
BACKGROUND: Gerstmann Sträussler Scheinker (GSS) is an inherited, invariably fatal prion disease. Like other human prion diseases, GSS is caused by missense mutations in the prion protein (PrP) gene (PRNP), and by the formation and overtime accumulation of the misfolded, pathogenic scrapie PrP (PrPSc). The first mutation identified in the PRNP gene, and the one blamed as the main cause of the disease, is c.C305T:p.P102L. METHODS AND RESULTS: The Sanger sequencing method was performed on the PRNP gene for the detection of c.C305T:p.P102L mutations in a cohort of 10 subjects; moreover, a study was carried out, using Next Generation Sequencing (NGS), by sequencing a group of genes related to amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), movement disorders and dementia which show a phenotypic profile similar to that of GSS. The results obtained from the study using NGS indicate the potential role of other genetic variants which could contribute to the various GSS phenotypes. CONCLUSIONS: In conclusion, we highlight the large clinical variability in subjects presenting with GSS and p.P102L, as well as the hypothesis that the mutation in PrP codon 102 alone is not sufficient to trigger the cardinal clinical signs of the disease; furthermore, we do not exclude the possibility that further genetic variants play a decisive role in the aspects of the various phenotypes with which GSS manifests itself.
Asunto(s)
Enfermedad de Gerstmann-Straussler-Scheinker , Priones , Animales , Humanos , Enfermedad de Gerstmann-Straussler-Scheinker/diagnóstico , Enfermedad de Gerstmann-Straussler-Scheinker/genética , Enfermedad de Gerstmann-Straussler-Scheinker/metabolismo , Priones/genética , Proteínas Priónicas/genética , Mutación/genética , Secuenciación de Nucleótidos de Alto RendimientoRESUMEN
PURPOSE: To assess the contribution of rare variants in the genetic background toward variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive variants. METHODS: We analyzed quantitative clinical information, exome sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated variants. RESULTS: The number of rare likely deleterious variants in functionally intolerant genes ("other hits") correlated with expression of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in autism probands carrying gene-disruptive variants (n=184, p=0.03) compared with their carrier family members. Probands with 16p12.1 deletion and a strong family history presented more severe clinical features (p=0.04) and higher burden of other hits compared with those with mild/no family history (p=0.001). The number of other hits also correlated with severity of cognitive impairment in probands carrying pathogenic CNVs (n=53) or de novo pathogenic variants in disease genes (n=290), and negatively correlated with head size among 80 probands with 16p11.2 deletion. These co-occurring hits involved known disease-associated genes such as SETD5, AUTS2, and NRXN1, and were enriched for cellular and developmental processes. CONCLUSION: Accurate genetic diagnosis of complex disorders will require complete evaluation of the genetic background even after a candidate disease-associated variant is identified.
Asunto(s)
Trastorno Autístico/genética , Moléculas de Adhesión Celular Neuronal/genética , Tamización de Portadores Genéticos , Metiltransferasas/genética , Proteínas del Tejido Nervioso/genética , Proteínas/genética , Trastorno Autístico/fisiopatología , Proteínas de Unión al Calcio , Cromosomas Humanos Par 16/genética , Cognición/fisiología , Proteínas del Citoesqueleto , Variaciones en el Número de Copia de ADN/genética , Femenino , Regulación de la Expresión Génica/genética , Antecedentes Genéticos , Humanos , Masculino , Moléculas de Adhesión de Célula Nerviosa , Padres , Linaje , Fenotipo , Eliminación de Secuencia/genética , Hermanos , Factores de TranscripciónRESUMEN
BACKGROUND AND AIM: Dementia is a disease associated with cognitive and/or behavioral changes that interfere with the ability to perform daily activities. Alzheimer's disease is the most common type of dementia. The aim of this mini-review is to summarize all the syndromes characterized by dementia and for which the associated gene is known. METHODS: We searched those syndromes in PubMed and OMIM database. RESULTS: Two forms of dementia exist: the multifactorial dementia results from the interaction of different genetic and environmental factors, the hereditary dementia associated with a single gene. Individuals with a family history of dementia and early onset of the disease are more likely to have a hereditary form of dementia. Dementias are mainly autosomal dominant, but they can also be autosomal recessive or X-linked. CONCLUSIONS: Since dementia has high clinical and genetic heterogeneity, the use in diagnostics of a large panel of genes may greatly help to speed up the determination of the molecular diagnosis and/or establish a risk of recurrence in family members for the purpose of planning appropriate preventive and/or therapeutic measures.
Asunto(s)
Enfermedad de Alzheimer , Demencia , Enfermedad de Alzheimer/genética , Demencia/genética , HumanosRESUMEN
Mutations in the WWOX gene cause a broad range of ultra-rare neurodevelopmental and brain degenerative disorders, associated with a high likelihood of premature death in animal models as well as in humans. The encoded Wwox protein is a WW domain-containing oxidoreductase that participates in crucial biological processes including tumor suppression, cell growth/differentiation and regulation of steroid metabolism, while its role in neural development is less understood. We analyzed the exomes of a family affected with multiple pre- and postnatal anomalies, including cerebellar vermis hypoplasia, severe neurodevelopmental impairment and refractory epilepsy, and identified a segregating homozygous WWOX mutation leading to a premature stop codon. Abnormal cerebral cortex development due to a defective architecture of granular and molecular cell layers was found in the developing brain of a WWOX-deficient human fetus from this family. A similar disorganization of cortical layers was identified in lde/lde rats (carrying a homozygous truncating mutation which disrupts the active Wwox C-terminal domain) investigated at perinatal stages. Transcriptomic analyses of Wwox-depleted human neural progenitor cells showed an impaired expression of a number of neuronal migration-related genes encoding for tubulins, kinesins and associated proteins. These findings indicate that loss of Wwox may affect different cytoskeleton components and alter prenatal cortical development, highlighting a regulatory role of the WWOX gene in migrating neurons across different species.
RESUMEN
CONTEXT: The pathogenesis of congenital hypothyroidism (CH) is still largely unexplained. We previously reported that perturbations of the Notch pathway and knockdown of the ligand jagged1 cause a hypothyroid phenotype in the zebrafish. Heterozygous JAG1 variants are known to account for Alagille syndrome type 1 (ALGS1), a rare multisystemic developmental disorder characterized by variable expressivity and penetrance. OBJECTIVE: Verify the involvement of JAG1 variants in the pathogenesis of congenital thyroid defects and the frequency of unexplained hypothyroidism in a series of ALGS1 patients. DESIGN, SETTINGS, AND PATIENTS: A total of 21 young ALGS1 and 100 CH unrelated patients were recruited in academic and public hospitals. The JAG1 variants were studied in vitro and in the zebrafish. RESULTS: We report a previously unknown nonautoimmune hypothyroidism in 6/21 ALGS1 patients, 2 of them with thyroid hypoplasia. We found 2 JAG1 variants in the heterozygous state in 4/100 CH cases (3 with thyroid dysgenesis, 2 with cardiac malformations). Five out 7 JAG1 variants are new. Different bioassays demonstrate that the identified variants exhibit a variable loss of function. In zebrafish, the knock-down of jag1a/b expression causes a primary thyroid defect, and rescue experiments of the hypothyroid phenotype with wild-type or variant JAG1 transcripts support a role for JAG1 variations in the pathogenesis of the hypothyroid phenotype seen in CH and ALGS1 patients. CONCLUSIONS: clinical and experimental data indicate that ALGS1 patients have an increased risk of nonautoimmune hypothyroidism, and that variations in JAG1 gene can contribute to the pathogenesis of variable congenital thyroid defects, including CH.