Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 15(6): 1223-1242, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30556082

RESUMEN

The origin of the precipitous dynamic arrest known as the glass transition is a grand open question of soft condensed matter physics. It has long been suspected that this transition is driven by an onset of particle localization and associated emergence of a glassy modulus. However, progress towards an accepted understanding of glass formation has been impeded by an inability to obtain data sufficient in chemical diversity, relaxation timescales, and spatial and temporal resolution to validate or falsify proposed theories for its physics. Here we first describe a strategy enabling facile high-throughput simulation of glass-forming liquids to nearly unprecedented relaxation times. We then perform simulations of 51 glass-forming liquids, spanning polymers, small organic molecules, inorganics, and metallic glass-formers, with longest relaxation times exceeding one microsecond. Results identify a universal particle-localization transition accompanying glass formation across all classes of glass-forming liquid. The onset temperature of non-Arrhenius dynamics is found to serve as a normalizing condition leading to a master collapse of localization data. This transition exhibits a non-universal relationship with dynamic arrest, suggesting that the nonuniversality of supercooled liquid dynamics enters via the dependence of relaxation times on local cage scale. These results suggest that a universal particle-localization transition may underpin the glass transition, and they emphasize the potential for recent theoretical developments connecting relaxation to localization and emergent elasticity to finally explain the origin of this phenomenon. More broadly, the capacity for high-throughput prediction of glass formation behavior may open the door to computational inverse design of glass-forming materials.

2.
J Chem Phys ; 146(20): 203316, 2017 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-28571374

RESUMEN

Despite decades of research on the effects of nanoconfinement on the glass transition temperature Tg, apparent discrepancies between pseudothermodynamic and dynamic measurements of these effects have raised questions regarding the presence of long-ranged interfacial dynamic gradients in glass-forming liquids. Here we show that these differences can be accounted for based on disparities in these methods' weightings over local Tg's within an interfacial gradient. This finding suggests that a majority of experimental data are consistent with a broad interfacial dynamic interphase in glass-forming liquids.

3.
J Chem Phys ; 146(10): 104902, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28298103

RESUMEN

Nanoscale confinement has been shown to alter the glass transition and associated mechanical and transport properties of glass-forming materials. Inspired by expected interrelations between nanoconfinement effects, cooperative dynamics in supercooled liquids, and the "fragility" (or temperature-abruptness) of the glass transition, it is commonly expected that nanoconfinement effects on Tg should be more pronounced for more fragile glass formers. Here we employ molecular dynamics simulations of glass formation in the bulk and under nanoconfinement of model polymers in which we systematically tune fragility by several routes. Results indicate that a correlation between fragility and the strength of nanoconfinement effects is weak to modest at best when considering all systems but can appear to be stronger when considering a subset of systems. This outcome is consistent with a reanalysis of the Adam-Gibbs theory of glass formation indicating that fragility does not necessarily track in a universal way with the scale of cooperative motion in glass-forming liquids. Finally, we find that factors such as composition gradients or variability in measurement sensitivity to different parts of the dynamic gradient have the potential to significantly confound efforts to identify trends in Tg-nanoconfinement effects with variables such as fragility, emphasizing the importance of employing diverse data sets and multiple metrologies in the study of this problem.

4.
J Phys Chem B ; 120(21): 4861-5, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27171532

RESUMEN

Ultrastable glasses produced by vapor deposition exhibit properties consistent with glasses that have been aged for thousands of years or more. These materials' properties are believed to emerge from the presence of a mobile layer at the surface of supercooled liquids that allows access to lower-energy states. However, the precise mechanism by which this enhanced mobility is translated into ultrastable glass behavior remains incompletely understood. Here we show that enhanced densities and stabilities consistent with ultrastable glasses specifically can emerge as a result of a mismatch in the length scales of thermodynamic and dynamic gradients at the surfaces of equilibrium supercooled liquids. In particular, ultrastable glass properties can be understood within a three-layer model of the interface in which a "facilitated layer" intermediate between the surface and bulk exhibits bulk-like liquid-state density but suppressed Tg. This mismatch in length-scale has previously been correlated with the scale of cooperative rearrangements in the supercooled state, suggesting that ultrastable glasses may be a direct consequence of the cooperative nature of dynamics in equilibrium supercooled liquids.

5.
ACS Macro Lett ; 4(10): 1134-1138, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35614818

RESUMEN

Small-molecule diluents are important tools in the control of polymers' glass formation, transport, and mechanical properties. While recent work has indicated that these diluents can impose a more diverse range of effects than previously appreciated, use of these additives to rationally control polymer properties requires a predictive understanding of their effects. Here we employ molecular dynamics simulations to show that diluent-induced changes in a polymer's glass transition temperature Tg can be predicted based on the diluent's Debye-Waller factor ⟨u2⟩, a measure of picosecond time scale rattle-space, via a functional form previously found to predict nanoconfinement-induced shifts in polymer Tg. Moreover, we show that diluent-induced alterations in polymer segmental relaxation time are related to changes in modulus and ⟨u2⟩ via the Generalized Localization Model of relaxation. These results provide new design principles for the use of oligomeric diluents in achieving independent, targeted control of structural relaxation and glassy moduli.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA