Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 12(30): 16113-16122, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32699875

RESUMEN

Creating effective and stable catalyst nanoparticle-coated electrodes that can withstand extensive cycling is a current roadblock in realising the potential of polymer electrolyte membrane fuel cells. Graphene has been proposed as an ideal electrode support material due to its corrosion resistance, high surface area and high conductivity. However, to date, graphene-based electrodes suffer from high defect concentrations and non-uniform nanoparticle coverage that negatively affects performance; moreover, production methods are difficult to scale. Herein we describe a scalable synthesis for Pt nanoparticle-coated graphene whereby PtCl2 is reduced directly by negatively charged single layer graphene sheets in solution. The resultant nanoparticles are of optimal dimensions and can be uniformly dispersed, yielding high catalytic activity, remarkable stability, and showing a much smaller decrease in electrochemical surface area compared with an optimised commercial catalyst over 30 000 cycles. The stability is rationalised by identical location TEM which shows minimal nanoparticle agglomeration and no nanoparticle detachment.

2.
ACS Appl Mater Interfaces ; 8(45): 30687-30691, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27809469

RESUMEN

A hybrid membrane of superacid sulfated Zr-MOF (SZM) and Nafion shows much superior performance to Nafion, particularly for fuel cell operating under low humidity. The Brønsted acidic sites in SZM networks retain an ample amount of water which facilitated proton conduction under low humidity. The water retention properties of Nafion-SZM hybrid membranes with 1 wt % loading of SZM increased at 35% relative humidity and outperformed commercial unfilled Nafion membrane. The proton conductivity increases by 23% for Nafion-SZM hybrid compared to unfilled Nafion membrane. The Nafion-SZM membrane also shows higher performance stability at 35% relative humidity than Nafion, as confirmed by close monitoring of the change of open circuit voltage for 24 h.

3.
ACS Nano ; 10(6): 5922-32, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27214056

RESUMEN

High surface area N-doped mesoporous carbon capsules with iron traces exhibit outstanding electrocatalytic activity for the oxygen reduction reaction in both alkaline and acidic media. In alkaline conditions, they exhibit more positive onset (0.94 V vs RHE) and half-wave potentials (0.83 V vs RHE) than commercial Pt/C, while in acidic media the onset potential is comparable to that of commercial Pt/C with a peroxide yield lower than 10%. The Fe-N-doped carbon catalyst combines high catalytic activity with remarkable performance stability (3500 cycles between 0.6 and 1.0 V vs RHE), which stems from the fact that iron is coordinated to nitrogen. Additionally, the newly developed electrocatalyst is unaffected by the methanol crossover effect in both acid and basic media, contrary to commercial Pt/C. The excellent catalytic behavior of the Fe-N-doped carbon, even in the more relevant acid medium, is attributable to the combination of chemical functions (N-pyridinic, N-quaternary, and Fe-N coordination sites) and structural properties (large surface area, open mesoporous structure, and short diffusion paths), which guarantees a large number of highly active and fully accessible catalytic sites and rapid mass-transfer kinetics. Thus, this catalyst represents an important step forward toward replacing Pt catalysts with cheaper alternatives. In this regard, an alkaline anion exchange membrane fuel cell was assembled with Fe-N-doped mesoporous carbon capsules as the cathode catalyst to provide current and power densities matching those of a commercial Pt/C, which indicates the practical applicability of the Fe-N-carbon catalyst.

4.
J Phys Chem C Nanomater Interfaces ; 118(13): 6831-6838, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24748912

RESUMEN

Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl-), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl- catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA