Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Clin Periodontol ; 50(9): 1253-1263, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37381658

RESUMEN

AIM: Porphyromonas gingivalis (P. gingivalis), a major periodontal pathogen, increases the risk of systemic diseases. P. gingivalis infection is closely associated with alcoholic liver disease (ALD), but the underlying mechanism remains unclear. We aimed to investigate the role of P. gingivalis in the pathogenesis of ALD. MATERIALS AND METHODS: An ALD mouse model was established using a Lieber-DeCarli liquid diet, and C57BL/6 mice were treated with P. gingivalis to detect the pathological indicators of ALD. RESULTS: Oral administration of P. gingivalis exacerbated alcohol-induced alterations in the gut microbiota, leading to gut barrier dysfunction and inflammatory response and disruption of the T-helper 17 cell/T-regulatory cell ratio in the colon of ALD mice. Furthermore, P. gingivalis worsened liver inflammation in ALD mice by increasing the protein expression of toll-like receptor 4 (TLR4) and p65, increasing the mRNA expression of interleukins-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) and up-regulating the transforming growth factor-beta 1 (TGF-ß1) and galectin-3 (Gal-3) production. CONCLUSIONS: These results indicate that P. gingivalis accelerates the pathogenesis of ALD via the oral-gut-liver axis, necessitating a new treatment strategy for patients with ALD complicated by periodontitis.


Asunto(s)
Microbioma Gastrointestinal , Hepatopatías Alcohólicas , Animales , Ratones , Porphyromonas gingivalis , Microbioma Gastrointestinal/genética , Ratones Endogámicos C57BL , Inmunidad
2.
J Antimicrob Chemother ; 77(2): 391-399, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34747464

RESUMEN

OBJECTIVES: The msr(E)-mph(E) operon exists widely in diverse species of bacteria and msr(E) and mph(E) genes confer high resistance to macrolides. We aimed to explore whether macrolides regulate the transcription of the operon. METHODS: Antibiotic resistance genes in clinical isolates of Klebsiella pneumoniae were analysed by WGS. The transcription of the msr(E)-mph(E) operon was investigated by quantitative PCR. Construction of enhanced green fluorescent protein (eGFP) reporter plasmids, gene knockout and complementation experiments were used to further explore the induction mechanism of macrolides for the operon. Sequence analysis was finally used to investigate whether the operon exists widely in diverse species of bacteria. RESULTS: We originally found that the treatment of a pandrug-resistant isolate of K. pneumoniae (KP1517) with macrolides obviously up-regulated the msr(E)-mph(E) operon, which was further confirmed in another nine clinical isolates of K. pneumoniae. The induction mechanism of macrolides for the operon was partly elucidated. Macrolides could activate the operon promoter, and the J10/J35 regions (J10: 5'-AGTTATCAT-3'; J35: 5'-TTGTCT-3') of the promoter were determined. Histone-like nucleoid-structuring protein (HNS) and cAMP receptor protein (CRP) were involved in the erythromycin-mediated activation of the operon promoter. The 476 strains of bacteria carrying the msr(E)-mph(E) operon currently in the NCBI database are mainly Acinetobacter baumannii (158; 33%), K. pneumoniae (95; 20%), Escherichia coli (26; 5%) and Proteus mirabilis (25; 5%). They were mainly isolated from human clinical samples (287; 60%) and had a wide geographical distribution. CONCLUSIONS: Macrolides could activate transcription of the msr(E)-mph(E) operon through HNS and CRP in K. pneumoniae and E. coli, and this might occur in diverse species of bacteria.


Asunto(s)
Proteínas Bacterianas , Proteína Receptora de AMP Cíclico , Macrólidos , Operón , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Unión al ADN , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Proteínas de Escherichia coli , Histonas/genética , Histonas/metabolismo , Humanos , Klebsiella pneumoniae/genética , Macrólidos/farmacología , Activación Transcripcional
3.
Appl Environ Microbiol ; 88(18): e0106822, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36073944

RESUMEN

Pseudomonas aeruginosa is a notorious pathogen that causes various nosocomial infections. Several prophage genes located on the chromosomes of P. aeruginosa have been reported to contribute to bacterial pathogenesis via host phenotype transformations, such as serotype conversion and antibiotic resistance. However, our understanding of the molecular mechanism behind host phenotype shifts induced by prophage genes remains largely unknown. Here, we report a systematic study around a hypothetical recombinase, Pg54 (RecT), located on a 48-kb putative prophage (designated PP9W) of a clinical P. aeruginosa strain P9W. Using a ΔrecT mutant (designated P9D), we found that RecT promoted prophage PP9W excision and gene transcription via the inhibition of the gene expression level of pg40, which encodes a CI-like repressor protein. Further transcriptomic profiling and various phenotypic tests showed that RecT modulated like a suppressor to some transcription factors and vital genes of diverse cellular processes, providing multiple advantages for the host, including cell growth, biofilm formation, and virulence. The versatile functions of RecT hint at a strong impact of phage proteins on host P. aeruginosa phenotypic flexibility. IMPORTANCE Multidrug-resistant and metabolically versatile P. aeruginosa are difficult to eradicate by anti-infective therapy and frequently lead to significant morbidity and mortality. This study characterizes a putative recombinase (RecT) encoded by a prophage of a clinical P. aeruginosa strain isolated from severely burned patients, altering prophage lifestyle and host core cellular processes. It implies the potential role of RecT in the coevolution arm race between bacteria and phage. The excised free phages from the chromosome of host bacteria can be used as weapons against other sensitive competitors in diverse environments, which may increase the lysogeny frequency of different P. aeruginosa subgroups. Subsequent analyses revealed that RecT both positively and negatively affects different phenotypic traits of the host. These findings concerning RecT functions of host phenotypic flexibility improve our understanding of the association between phage recombinases and clinical P. aeruginosa, providing new insight into mitigating the pathogen infection.


Asunto(s)
Bacteriófagos , Profagos , Bacteriófagos/genética , Profagos/fisiología , Pseudomonas aeruginosa/genética , Recombinasas/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
4.
Environ Sci Technol ; 55(15): 10462-10470, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34114802

RESUMEN

Applications of animal manure and treated wastewater could enrich antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the plant microbiome. However, the mechanistic studies of the transmission of ARB and ARGs from the environment to plant endophytic bacteria were few. Herein, a genetically engineered fluorescent Escherichia coli harboring a conjugative RP4 plasmid that carries three ARGs was used to trace its spread into Arabidopsis thaliana interior in a tetracycline-amended hydroponic system in the absence or presence of a simulated soil bacterial community. Confocal microscope observation demonstrated that E. coli was internalized into plant tissues and the carried RP4 plasmid was transferred into plant endophytic bacteria. More importantly, we observed that soil bacteria inhibited the internalization of E. coli but substantially promoted RP4 plasmid spread into the plant microbiome. The altered RP4-carrying bacterial community composition in the plant microbiome and the increased core-shared RP4-carrying bacteria number between plant interior and exterior in the presence of soil bacteria collectively confirmed that soil bacteria, especially Proteobacteria, might capture RP4 from E. coli and then translocate into plant microbiome, resulting in the increased RP4 plasmid spread in the plant endophytes. Overall, our findings provided important insights into the dissemination of ARB and ARGs from the environment to the plant microbiome.


Asunto(s)
Escherichia coli , Suelo , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Animales , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana , Escherichia coli/genética , Genes Bacterianos , Plásmidos/genética
5.
Environ Sci Technol ; 54(7): 3900-3908, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32208626

RESUMEN

Landfill and incineration are the primary disposal practices for municipal solid waste (MSW) and have been considered as the critical reservoir of antibiotic resistance genes (ARGs). However, the possible transmission of ARGs from the municipal solid waste treatment system (MSWT system) to ambient air is still unclear. In this study, we collected inside and ambient air samples (PM10 and PM2.5) and potential source samples (leachate and solid waste) in the MSWT system. The results showed that the MSWT system contributed to the increased ambient airborne bacteria and associated ARGs. Forty-one antibiotic-resistant bacteria (ARB) harboring blaTEM-1 were isolated, and the full-length nucleotide sequences of the blaTEM-1 gene (harbored by identical bacillus) from air (downwind samples) were 100% identical with those in the leachate and solid waste, indicating that the MSWT system was the important source of disperse bacteria and associated ARGs in the ambient air. The daily intake (DI) burden level of ARGs via PM inhalation was comparable with that via ingestion of drinking water but lower than the DI level via ingestion of raw vegetables. The antibiotic-resistant opportunistic pathogen Bacillus cereus was isolated from air, with a relatively high DI level of Bacillus via inhalation (104-106 copies/day) in the MSWT system. This study highlights the key pathway of airborne ARGs to human exposure.


Asunto(s)
Antibacterianos , Residuos Sólidos , Bacterias , Farmacorresistencia Microbiana , Genes Bacterianos , Humanos , Instalaciones de Eliminación de Residuos , Aguas Residuales
6.
Environ Sci Technol ; 54(7): 4305-4315, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-31944684

RESUMEN

An expanding list of chemicals may permeabilize bacterial cells and facilitate horizontal gene transfer (HGT), which enhances propagation of antibiotic resistance genes (ARGs) in the environment. Previous studies showed that 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]), an ionic liquid, can facilitate HGT of some ARGs among bacteria. However, the dynamic response of a wider range of ARGs and associated mobile genetic elements (MGEs) in different environments is unknown. Here, we used metagenomic tools to study shifts of the resistome and microbiome in both sediments and freshwater microcosms exposed to [BMIm][PF6]. Exposure for 16 h to 0.1 or 1.0 g/L significantly enriched more than 207 ARG subtypes primarily encoding efflux pumps in freshwater microcosms as well as cultivable antibiotic-resistant bacteria. This resistome enrichment was attributed to HGT facilitated by MGEs (428 plasmids, 61 integron-integrase genes, and 45 gene cassettes were enriched) as well as to HGT-related functional genes. Interestingly, resistome enrichment occurred fast (within 16 h) after [BMIm][PF6] exposure, before any significant changes in bacterial community structure. Similar ARG enrichment occurred in sediment microcosms exposed to [BMIm][PF6] for 28 d, and this longer exposure affected the microbial community structure (e.g., Proteobacteria abundance increased significantly). Overall, this study suggests that [BMIm][PF6] releases could rapidly enrich the antibiotic resistome in receiving environments by increasing HGT and fortuitously selecting for efflux pump genes, thus contributing to ARG propagation.


Asunto(s)
Líquidos Iónicos , Microbiota , Antibacterianos , Farmacorresistencia Microbiana , Genes Bacterianos
7.
Environ Sci Technol ; 49(14): 8731-40, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26120784

RESUMEN

The dissemination and propagation of antibiotic resistance genes (ARGs) is an emerging global health concern. In our previous study, the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) had been proven to facilitate the dissemination of ARGs via horizontal gene transfer. In this study, we further confirm that this compound facilitates the horizontal transfer of plasmid RP4 through a conjugation mechanism and not by natural transformation. The mechanisms for [BMIm][PF6] promoting conjugative transfer are attributable to enhancing the mRNA expression levels of conjugative and global regulatory genes, as well as by inhibiting the genes that are responsible for the vertical transfer of cell growth. [BMIm][PF6] significantly enhanced the expression of the outer membrane porin proteins (OMPs) OmpC and OmpA and the corresponding mRNA expression levels of ompC and ompA genes in recipient bacteria, which contributed to pore formation and increased cell membrane permeability. The increased expression of pilin and pili allowed the donor pilus to attach to and access the recipient cells, thereby assisting cell-to-cell contact to facilitate the conjugative transfer of plasmid RP4. To the best of our knowledge, this is the first insightful exploration of [BMIm][PF6] facilitating the conjugative transfer of ARGs mediated by plasmid RP4 and of several other ILs with different cations or anions that are capable of promoting plasmid transfer. It is therefore suggested that the application of some ILs in industrial processes should be carefully evaluated before their bulk emission into the environment.


Asunto(s)
Farmacorresistencia Microbiana/genética , Transferencia de Gen Horizontal/efectos de los fármacos , Líquidos Iónicos/farmacología , Plásmidos/metabolismo , Antibacterianos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Conjugación Genética/efectos de los fármacos , Electroforesis en Gel de Poliacrilamida , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas Fimbrias/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Bacterianos , Imidazoles/farmacología , Porinas/genética , Porinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Salmonella enterica/efectos de los fármacos , Salmonella enterica/genética
8.
Environ Sci Technol ; 48(1): 71-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24328397

RESUMEN

The propagation of antibiotic resistance genes (ARGs) represents a global threat to both human health and food security. Assessment of ARG reservoirs and persistence is therefore critical for devising and evaluating strategies to mitigate ARG propagation. This study developed a novel, internal standard method to extract extracellular DNA (eDNA) and intracellular DNA (iDNA) from water and sediments, and applied it to determine the partitioning of ARGs in the Haihe River basin in China, which drains an area of intensive antibiotic use. The concentration of eDNA was higher than iDNA in sediment samples, likely due to the enhanced persistence of eDNA when associated with clay particles and organic matter. Concentrations of sul1, sul2, tetW, and tetT antibiotic resistance genes were significantly higher in sediment than in water, and were present at higher concentrations as eDNA than as iDNA in sediment. Whereas ARGs (frequently located on plasmid DNA) were detected for over 20 weeks, chromosomally encoded 16S rRNA genes were undetectable after 8 weeks, suggesting higher persistence of plasmid-borne ARGs in river sediment. Transformation of indigenous bacteria with added extracellular ARG (i.e., kanamycin resistance genes) was also observed. Therefore, this study shows that extracellular DNA in sediment is a major ARG reservoir that could facilitate antibiotic resistance propagation.


Asunto(s)
ADN Bacteriano/análisis , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Sedimentos Geológicos/microbiología , Ríos/microbiología , China , ARN Ribosómico 16S/genética , Microbiología del Agua
9.
J Hazard Mater ; 469: 133892, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38461662

RESUMEN

Managed bees commonly suffer from cross-contamination with acaricides and neonicotinoids, posing robust threats to bee population health. However, their residual characteristics and spatial distribution in beehives and surrounding environments are poorly understood. This study detected two common acaricides and five neonicotinoids in 240 beehive samples and 44 surrounding environmental samples collected from 25 Chinese provinces. The results showed that 40.0% of the honey samples contained acaricides and 83.1% contained neonicotinoids. Neonicotinoid concentrations in honey were geographically distinguished by the "Hu Huanyong line", and concentrations of neonicotinoids in honey from eastern areas were 2.65-fold higher than those in honey from western areas. Compared to the approved acaricide amitraz, the banned acaricide coumaphos was detected more frequently in honey and was positively correlated with that quantified in the paired pollen samples. Although coumaphos was identified in only three soil samples, lower coumaphos residues in honey might be associated with persistent pollution in the surrounding environment. Conversely, neonicotinoids were detected at higher levels in honey than in the pollen and soil, demonstrating that the neonicotinoid residues in honey have a cumulative effect. This study contributes to a better understanding of the pesticide contamination scenarios that underlie the exposure risks of bees.


Asunto(s)
Acaricidas , Insecticidas , Plaguicidas , Abejas , Animales , Acaricidas/toxicidad , Neonicotinoides , Cumafos , Suelo , Insecticidas/análisis
10.
J Hazard Mater ; 470: 134102, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554506

RESUMEN

The inappropriate use of antibiotics is widely recognized as the primary driver of bacterial antibiotic resistance. However, less attention has been given to the potential induction of multidrug-resistant bacteria through exposure to disinfectants. In this study, Klebsiella pneumonia, an opportunistic pathogen commonly associated with hospital and community-acquired infection, was experimentally exposed to NaClO at both minimum inhibitory concentration (MIC) and sub-MIC levels over a period of 60 days. The result demonstrated that NaClO exposure led to enhanced resistance of K. pneumonia to both NaClO itself and five antibiotics (erythromycin, polymyxin B, gentamicin, tetracycline, and ciprofloxacin). Concurrently, the evolved resistant strains exhibited fitness costs, as evidenced by decreased growth rates. Whole population sequencing revealed that both concentrations of NaClO exposure caused genetic mutations in the genome of K. pneumonia. Some of these mutations were known to be associated with antibiotic resistance, while others had not previously been identified as such. In addition, 11 identified mutations were located in the virulence factors, demonstrating that NaClO exposure may also impact the pathogenicity of K. pneumoniae. Overall, this study highlights the potential for the widespread use of NaClO-containing disinfectants during the COVID-19 pandemic to contribute to the emergence of antibiotic-resistant bacteria. ENVIRONMENTAL IMPLICATION: Considering the potential hazardous effects of disinfectant residues on environment, organisms and biodiversity, the sharp rise in use of disinfectants during COVID-19 pandemic has been considered highly likely to cause worldwide secondary disasters in ecosystems and human health. This study demonstrated that NaClO exposure enhanced the resistance of K. pneumonia to both NaClO and five antibiotics (erythromycin, polymyxin B, gentamicin, tetracycline, and ciprofloxacin), highlighting the widespread use of NaClO-containing disinfectants during the COVID-19 pandemic may increase the emergence of antibiotic-resistant bacteria in the environment.


Asunto(s)
Antibacterianos , COVID-19 , Desinfectantes , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Antibacterianos/farmacología , Humanos , Hipoclorito de Sodio/farmacología , Farmacorresistencia Bacteriana , SARS-CoV-2/efectos de los fármacos , Mutación , Farmacorresistencia Bacteriana Múltiple , Infecciones por Klebsiella/tratamiento farmacológico
11.
Sci Total Environ ; 918: 170674, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38316309

RESUMEN

Human bocavirus (HBoV) is an emerging health concern worldwide, associated with range of clinical manifestations, including gastroenteritis and respiratory infections. Therefore, it is crucial to comprehend and minimize their prevalence in different systems. In this study, we conducted regular sampling throughout the year in two different sizes and work processes of wastewater treatment plants (WWTPs) in Tianjin, China. Our objective was to investigate the occurrence, prevalence, and endurance of HBoV in wastewater, while also evaluating the efficacy of amplicon target sequencing in directly detecting HBoV in wastewater. At two WWTPs, HBoV2 (45.51 %-45.67 %) and HBoV3 (38.30 %-40.25 %) were the most common genotypes identified, and the mean concentration range of HBoV was 2.54-7.40 log10 equivalent copies/l as determined by multiplex real-time quantitative PCR assay. A positive rate of HBoV was found in 96.6 % (29/30) samples of A-WWTP, and 96.6 % (26/27) samples of B-WWTP. The phylogenetic analysis indicated that the nucleotide similarity between the HBoV DNA sequences to the reference HBoV sequences published globally ranged from 90.14 %-100 %. A significant variation in the read abundance of HBoV2 and HBoV3 in two wastewater treatment plants (p < 0.05) was detected, specifically in the Winter and Summer seasons. The findings revealed a strong correlation between the genotypes detected in wastewater and the clinical data across various regions in China. In addition, it is worth mentioning that HBoV4 was exclusively detected in wastewater and not found in the clinical samples from patients. This study highlights the high prevalence of human bocavirus in municipal wastewater. This finding illustrates that amplicon target sequencing can amplify a wide variety of viruses, enabling the identification of newly discovered viruses.


Asunto(s)
Bocavirus Humano , Infecciones por Parvoviridae , Humanos , Lactante , Bocavirus Humano/genética , Aguas Residuales , Filogenia , Infecciones por Parvoviridae/epidemiología , Heces
12.
Environ Pollut ; 355: 124215, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38797349

RESUMEN

Environmental viruses in wastewater and sludge are widely recognized for their roles in waterborne diseases. However, previous studies mainly focused on RNA viruses, and little is known about the diversity of DNA viral communities and their driving factors in municipal wastewater treatment environments. Herein, we conducted a pilot study to explore DNA virus profiles in municipal wastewater and recycled sludge by metagenomics method, and track their temporal changes in northern China. Results showed that 467 viral species were co-shared among all the samples. We identified six families of human viruses with a prevalence of 0.1%, which were rare but relatively stable in wastewater and sludge for six months. Adenoviridae, Parvoviridae, and Herpersviridae were the most dominant human viral families in municipal wastewater and recycled sludge. A time series of samples revealed that the dynamic changes of human DNA viruses were stable based on qPCR results, particularly for high-risk fecal-oral transmission viruses of adenovirus, bocavirus, polyomavirus, human gamma herpesvirus, human papillomavirus, and hepatitis B virus. Concentrations of Adenovirus (5.39-7.48 log10 copies/L) and bocavirus (4.36-7.48 log10 copies/L) were observed to be the highest in these samples compared to other viruses. Our findings demonstrated the DNA viruses' high prevalence and persistence in municipal wastewater treatment environments, highlighting the value of enhancing public health responses based on wastewater-based epidemiology.


Asunto(s)
Virus ADN , Aguas del Alcantarillado , Aguas Residuales , China , Aguas Residuales/virología , Virus ADN/genética , Aguas del Alcantarillado/virología , Humanos , Metagenómica , Eliminación de Residuos Líquidos/métodos , Monitoreo del Ambiente/métodos
13.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38366209

RESUMEN

Antimicrobial resistance is a major threat for public health. Plasmids play a critical role in the spread of antimicrobial resistance via horizontal gene transfer between bacterial species. However, it remains unclear how plasmids originally recruit and assemble various antibiotic resistance genes (ARGs). Here, we track ARG recruitment and assembly in clinically relevant plasmids by combining a systematic analysis of 2420 complete plasmid genomes and experimental validation. Results showed that ARG transfer across plasmids is prevalent, and 87% ARGs were observed to potentially transfer among various plasmids among 8229 plasmid-borne ARGs. Interestingly, recruitment and assembly of ARGs occur mostly among compatible plasmids within the same bacterial cell, with over 88% of ARG transfers occurring between compatible plasmids. Integron and insertion sequences drive the ongoing ARG acquisition by plasmids, especially in which IS26 facilitates 63.1% of ARG transfer events among plasmids. In vitro experiment validated the important role of IS26 involved in transferring gentamicin resistance gene aacC1 between compatible plasmids. Network analysis showed four beta-lactam genes (blaTEM-1, blaNDM-4, blaKPC-2, and blaSHV-1) shuffling among 1029 plasmids and 45 clinical pathogens, suggesting that clinically alarming ARGs transferred accelerate the propagation of antibiotic resistance in clinical pathogens. ARGs in plasmids are also able to transmit across clinical and environmental boundaries, in terms of the high-sequence similarities of plasmid-borne ARGs between clinical and environmental plasmids. This study demonstrated that inter-plasmid ARG transfer is a universal mechanism for plasmid to recruit various ARGs, thus advancing our understanding of the emergence of multidrug-resistant plasmids.


Asunto(s)
Antibacterianos , Bacterias , Antibacterianos/farmacología , Plásmidos/genética , Farmacorresistencia Microbiana/genética , Bacterias/genética , Genes Bacterianos , Transferencia de Gen Horizontal , Farmacorresistencia Bacteriana/genética
14.
Gut Microbes ; 16(1): 2316923, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38400721

RESUMEN

S-amlodipine, a commonly prescribed antihypertensive agent, is widely used in clinical settings to treat hypertension. However, the potential adverse effects of long-term S-amlodipine treatment on the liver remain uncertain, given the cautionary recommendations from clinicians regarding its administration in individuals with impaired liver function. To address this, we conducted a study using an eight-week-old male rat model and administered a daily dose of 0.6 ~ 5 mg/kg of S-amlodipine for 7 weeks. Our findings demonstrated that 1.2 ~ 5 mg/kg of S-amlodipine treatment induced liver inflammation and associated dysfunction in rats, further in vitro experiments revealed that the observed liver inflammation and dysfunction were not attributable to direct effects of S-amlodipine on the liver. Metagenome sequencing analysis revealed that S-amlodipine treatment led to alterations in the gut microbiome of rats, with the bloom of E. coli (4.5 ~ 6.6-fold increase) and a decrease in A. muciniphila (1,613.4 ~ 2,000-fold decrease) and B. uniformis (20.6 ~ 202.7-fold decrease), subsequently causing an increase in the gut bacterial lipopolysaccharide (LPS) content (1.4 ~ 1.5-fold increase in feces). S-amlodipine treatment also induced damage to the intestinal barrier and increased intestinal permeability, as confirmed by elevated levels of fecal albumin; furthermore, the flux of gut bacterial LPS into the bloodstream through the portal vein resulted in an increase in serum LPS content (3.3 ~ 4-fold increase). LPS induces liver inflammation and subsequent dysfunction in rats by activating the TLR4 pathway. This study is the first to show that S-amlodipine induces liver inflammation and dysfunction by perturbing the rat gut microbiome. These results indicate the adverse effects of S-amlodipine on the liver and provide a rich understanding of the safety of long-term S-amlodipine administration.


Asunto(s)
Amlodipino , Microbioma Gastrointestinal , Ratas , Masculino , Animales , Amlodipino/efectos adversos , Lipopolisacáridos , Escherichia coli , Hígado , Bacterias , Inflamación
15.
J Hazard Mater ; 442: 130005, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36179618

RESUMEN

Discharged wastewater treatment plant (WWTP) effluents can contaminate receiving water bodies with human feces and alter the abundance of antibiotic resistance genes (ARGs). In this study, we examined the co-occurrence of ARGs, human fecal pollution indicator crAssphage, and antibiotics in human feces and a series of connected receiving water bodies affected by human feces, including water from different treatment units of a WWTP, river, lake, and tap waters. Results showed that crAssphage was detected in 68.2 % of the studied water bodies, confirming widespread human fecal contamination. Both ARG and crAssphage abundances exhibited a distance-decay effect from the emission source to the receiving environment. Interestingly, the detected ARG abundance in the water bodies was significantly correlated with crAssphage abundance but not with the residual antibiotic concentration, demonstrating that the presence of ARG could largely be explained by the extent of fecal pollution, with no clear signs of antibiotic selection. In addition, 14 ARGs co-shared by human feces and water bodies were significantly correlated with crAssphage. Furthermore, a close evolutionary relationship was observed between the blaTEM-1 gene from human feces and aquatic environments. These results imply a potential ARG exchange between human feces and receiving water bodies. Overall, this study provides important insights into the distribution and sources of ARGs in water bodies affected by human fecal contamination.


Asunto(s)
Antibacterianos , Contaminación del Agua , Humanos , Farmacorresistencia Microbiana/genética , Heces , Contaminación del Agua/análisis , Antibacterianos/farmacología , Agua , Aguas Residuales , Genes Bacterianos
16.
J Hazard Mater ; 442: 130042, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36182890

RESUMEN

The emergence of antimicrobial resistance (AMR) is a growing public health threat worldwide and antibiotic consumption is being increasingly recognized as the main selective pressure driving this resistance. However, global trend in antibiotic resistance in response to antibiotic consumption is not fully understood. In this study, we collected national resistance data on specific resistant pathogens considered by the World Health Organization (WHO) as priority and antibiotic consumption data for 61 countries to assess the global trends in antibiotic resistance of those common bacterial pathogens and their association with antibiotic consumption. The low- and middle-income countries (LMICs) represented the largest hotspots of resistance, which presented relatively higher resistance rates in common bacterial pathogens but lower antibiotic consumption rates compared to high-income countries (HICs). Specifically, we developed the Normalized Antibiotic Resistance/Consumption Index (NARCI) and produced global maps of NARCI to roughly assess the appropriateness of antibiotic consumption across countries and to indicate the potentially inappropriate antibiotic consumption in LMICs compared with HICs. Additionally, we linked antibiotic consumption rates and resistance rates of target pathogens, in conjunction with NARCI and the correlation analysis between antibiotic use and resistance, to inform strategies to alleviate the threat of antibiotic resistance worldwide.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Antibacterianos/uso terapéutico , Bacterias , Renta
17.
Microbiol Spectr ; : e0447822, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36946731

RESUMEN

Antibiotic resistance is propagating worldwide, but the predominant dissemination mechanisms are not fully understood. Here, we report that antibiotic resistance gene (ARG) abundance in conjugative plasmids that are recorded in the National Center for Biotechnology Information (NCBI) RefSeq plasmid database is increasing globally, which is likely a key factor in the propagation of resistance. ARG abundance in plasmids increased by 10-fold on a global scale from the year 2000 to the year 2020 (from 0.25 to 2.93 ARG copies/plasmid), with a more pronounced increase being observed in low-to-middle income countries. This increasing trend of plasmid-borne ARGs was corroborated by bootstrap resampling from each year of the NCBI RefSeq plasmid database. The results of a correlation analysis imply that if antibiotic consumption keeps growing at the current rates, a 2.7-fold global increase in the ARG abundance of clinically relevant plasmids may be reached by 2030. High sequence similarities of clinically relevant, conjugative plasmids that are isolated both from clinics and from the environment raise concerns about the environmental resistome serving as a potential ARG maintenance reservoir that facilitates transmission across these ecological boundaries. IMPORTANCE Antibiotic resistance propagation is a significant concern due to its projected impacts on both global health and the economy. However, global propagation mechanisms are not fully understood, including regional and temporal trends in the abundance of resistance plasmids that facilitate antibiotic resistance gene (ARG) dissemination. This unprecedented study reports that ARG abundance in the conjugative plasmids that are recorded in the National Center for Biotechnology Information (NCBI) database and harbor ARGs is increasing globally with antibiotic consumption, especially in low-to-medium income countries. Through network and comparative genomic analyses, we also found high sequence similarities of clinically relevant conjugative resistance plasmids that were isolated from clinical and environmental sources, suggesting transmission between these ecological boundaries. Therefore, this study informs the One Health perspective to develop effective strategies by which to curtail the propagation of plasmid-borne antibiotic resistance.

18.
Microbiol Spectr ; 10(6): e0351122, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36445133

RESUMEN

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen, the leading cause of acute and chronic infections in immunocompromised patients, frequently with high morbidity and mortality rates. The xenobiotic response element (XRE) family proteins are the second most common transcriptional regulators (TRs) in P. aeruginosa. However, only a few XRE-like TRs have been reported to regulate multiple bacterial cellular processes, encompassing virulence, metabolism, antibiotic synthesis or resistance, stress responses, and phage infection, etc. Our understanding of what roles these XRE-like small regulatory proteins play in P. aeruginosa remains limited. Here, we aimed to decipher the role of a putative XRE-type transcriptional regulator (designated LfsT) from a prophage region on the chromosome of a clinical P. aeruginosa isolate, P8W. Southern blot and reverse transcription quantitative PCR (RT-qPCR) assays demonstrated that LfsT controlled host sensitivity to the phage PP9W2 and was essential for efficient phage replication. In addition, electrophoretic mobility shift assays (EMSAs) and transcriptional lacZ fusion analyses indicated that LfsT repressed the lysogenic development and promoted the lytic cycle of phage PP9W2 by binding to the promoter regions of the gp71 gene (encoding a CI-like repressor) and several vital phage genes. Combined with RNA-seq and a series of phenotypic validation tests, our results showed that LfsT bound to the flexible palindromic sites within the promoters upstream of several genes in the bacterial genome, regulating fatty acid (FA) metabolism, spermidine (SPD) transport, as well as the type III secretion system (T3SS). Overall, this study reveals novel regulatory roles of LfsT in P. aeruginosa, improving our understanding of the molecular mechanisms behind bacterium-phage interactions. IMPORTANCE This work elucidates the novel roles of a putative XRE family TR, LfsT, in the intricate regulatory systems of P. aeruginosa. We found that LfsT bound directly to the core promoter regions upstream of the start codons of numerous genes involved in various processes, including phage infection, FA metabolism, SPD transport, and the T3SS, regulating as the repressor or activator. The identified partial palindromic motif NAACN(5,8)GTTN recognized by LfsT suggests extensive effects of LfsT on gene expression by maintaining preferential binding to nucleotide sites under evolutionary pressure. In summary, these findings indicate that LfsT enhances metabolic activity in P. aeruginosa, while it reduces host resistance to the phage. This study helps us better understand the coevolution of bacteria and phages (e.g., survival comes at a cost) and provides clues for designing novel antimicrobials against P. aeruginosa infections.


Asunto(s)
Pseudomonas aeruginosa , Xenobióticos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Profagos/genética , Elementos de Respuesta , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xenobióticos/metabolismo , Xenobióticos/farmacología
19.
J Hazard Mater ; 423(Pt B): 127220, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34844350

RESUMEN

The development of antimicrobial resistance (AMR) is accelerated by the selective pressure exerted by the widespread use of antimicrobial drugs, posing an increasing danger to public health. However, long-term spatiotemporal variation in AMR genes in microorganisms, particularly in bacterial pathogens in response to antibiotic consumption, is not fully understood. Here, we used the NCBI RefSeq database to collect 478 whole-genome sequences for Serratia marcescens ranging from 1961 up to 2019, to document global long-term AMR trends in S. marcescens populations. In total, 100 AMR gene subtypes (16 AMR gene types) were detected in the genomes of S. marcescens populations. We identified 3 core resistance genes in S. marcescens genomes, and a high diversity of AMR genes was observed in S. marcescens genomes after corresponding antibiotics were discovered and introduced into clinical practice, suggesting the adaptation of S. marcescens populations to challenges with therapeutic antibiotics. Our findings indicate spatiotemporal variation of AMR genes in S. marcescens populations in relation to antibiotic consumption and suggest the potential transmission of S. marcescens isolates harboring AMR genes among countries and between the environment and the clinic, representing a public health threat that necessitates international solidarity to overcome.


Asunto(s)
Antibacterianos , Serratia marcescens , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Serratia marcescens/genética
20.
J Hazard Mater ; 421: 126707, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34315018

RESUMEN

Triclosan (TCS) is an antimicrobial ingredient that has been widely incorporated in consumer products. TCS can cause hepatic damage by disturbing lipid metabolism, which is often accompanied with gut microbiota dysbiosis. However, the effects of gut microbiota on the TCS-induced liver injury are still unknown. Therefore, we constructed a mouse model based on five-week-old male C57BL/6 mice to investigate the effects of dietary TCS exposure (40 ppm) on liver injury. We found that TCS treatment for 4 weeks dramatically disturbed gut microbiota homeostasis, resulting in overproduction of lipopolysaccharides (LPS) and deficiency of secondary bile acids such as deoxycholic acid (DCA) and lithocholic acid (LCA). In addition, TCS considerably increased intestinal permeability by reducing mucus excretion and expression of tight junction proteins (ZO-1, occludin and claudin 4), which facilitated translocation of LPS. The LPS accumulation in blood contributed to liver injury by triggering the inflammatory response via TLR4 pathway. In summary, this study provides novel insights into the underlying mechanisms of TCS-associated liver injury induced by gut microbiota via the gut-liver axis, and contributes to better interpretation of the health impact of the environmentally emerging contaminant TCS.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Microbioma Gastrointestinal , Triclosán , Animales , Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Triclosán/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA