Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Toxicol Appl Pharmacol ; 491: 117050, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111554

RESUMEN

Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant posing various toxicity effects on organisms. Previous studies demonstrated that BaP could induce hepatotoxicity, while the underlying mechanism remains incompletely elucidated. In this study, a comprehensive strategy including network toxicology, transcriptomics and gut microbiomics was applied to investigate the hepatotoxicity and the associated mechanism of BaP exposure in mice. The results showed that BaP induced liver damage, liver oxidative stress and hepatic lipid metabolism disorder. Mechanistically, BaP may disrupt hepatic lipid metabolism through increasing the uptake of free fatty acid (FFA), promoting the synthesis of FA and triglyceride (TG) in the liver and suppressing lipid synthesis in white adipose tissue. Moreover, integrated network toxicology and hepatic transcriptomics revealed that BaP induced hepatotoxicity by acting on several core targets, such as signal transducer and activator of transcription 1 (STAT1), C-X-C motif chemokine ligand 10 (CXCL10) and toll-like receptor 2 (TLR2). Further analysis suggested that BaP inhibited JAK2-STAT3 signaling pathway, as supported by molecular docking and western blot. The 16S rRNA sequencing showed that BaP changed the composition of gut microbiota which may link to the hepatotoxicity based on the correlation analysis. Taken together, this study demonstrated that BaP caused liver injury, hepatic lipid metabolism disorder and gut microbiota dysbiosis, providing novel insights into the hepatotoxic mechanism induced by BaP exposure.


Asunto(s)
Benzo(a)pireno , Enfermedad Hepática Inducida por Sustancias y Drogas , Microbioma Gastrointestinal , Hígado , Animales , Benzo(a)pireno/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Transcriptoma/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Disbiosis/inducido químicamente , Contaminantes Ambientales/toxicidad
2.
J Appl Toxicol ; 43(11): 1594-1603, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37189300

RESUMEN

The metabolism of polycyclic aromatic hydrocarbons (PAHs) and the elimination kinetics of their mono-hydroxylated metabolites (OH-PAHs) following single exposure to different combinations of four PAHs (PAH4) were studied. Male Sprague-Dawley rats were orally exposed to a single dose of benzo[a]pyrene (B[a]P) or PAH2 (B[a]P + chrysene), PAH3 (B[a]P + chrysene + benz[a]anthracene), and PAH4 (B[a]P + chrysene + B[a]A + benzo[b]fluoranthene) with each combination adjusted to the same dose of individual compound. OH-PAHs including 3-hydroxybenzo[a]pyrene, 3-hydroxychrysene, 3-hydroxybenz[a]anthracene, and 1-hydroxypyrene (1-OHP) were detected in serum and urine samples collected at six intervals over a 72-h period post-dosing. The hepatic mRNA levels of cytochrome P450 (CYPs) were determined to ascertain the expression induction of PAHs metabolic enzymes. Results showed OH-PAHs (except 1-OHP) peaked within 8 h in serum and were excreted from urine within 24-48 h. The serum and urinary concentration of 3-hydroxybenzo[a]pyrene was significantly increased after PAH4 exposure compared with other PAHs combinations. Inversely, urinary concentration of 3-hydroxychrysene was decreased after PAH4 exposure, and the kinetics of 3-hydroxybenz[a]anthracene or 1-OHP were not different depending on the PAHs combinations. Also, CYPs were markedly induced by PAHs. Notably, the induction levels of CYP1A1 and CYP1B1 were significantly higher after PAH4 exposure compared with B[a]P exposure. The results indicated the metabolism of B[a]P was accelerated after PAH4 exposure which might be partly due to the induction of CYPs. These results confirmed PAHs are rapidly metabolized and suggested potential interactions of PAHs may happen among PAH4 mixture.

3.
J Neuroinflammation ; 18(1): 295, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930303

RESUMEN

BACKGROUND: Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), accompanied by accumulation of α-synuclein, chronic neuroinflammation and autophagy dysfunction. Previous studies suggested that misfolded α-synuclein induces the inflammatory response and autophagy dysfunction in microglial cells. The NLRP3 inflammasome signaling pathway plays a crucial role in the neuroinflammatory process in the central nervous system. However, the relationship between autophagy deficiency and NLRP3 activation induced by α-synuclein accumulation is not well understood. METHODS: Through immunoblotting, immunocytochemistry, immunofluorescence, flow cytometry, ELISA and behavioral tests, we investigated the role of p38-TFEB-NLRP3 signaling pathways on neuroinflammation in the α-synuclein A53T PD models. RESULTS: Our results showed that increased protein levels of NLRP3, ASC, and caspase-1 in the α-synuclein A53T PD models. P38 is activated by overexpression of α-synuclein A53T mutant, which inhibited the master transcriptional activator of autophagy TFEB. And we found that NLRP3 was degraded by chaperone-mediated autophagy (CMA) in microglial cells. Furthermore, p38-TFEB pathways inhibited CMA-mediated NLRP3 degradation in Parkinson's disease. Inhibition of p38 had a protective effect on Parkinson's disease model via suppressing the activation of NLRP3 inflammasome pathway. Moreover, both p38 inhibitor SB203580 and NLRP3 inhibitor MCC950 not only prevented neurodegeneration in vivo, but also alleviated movement impairment in α-synuclein A53T-tg mice model of Parkinson's disease. CONCLUSION: Our research reveals p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease, which could be a potential therapeutic strategy for PD. p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease. In this model, p38 activates NLRP3 inflammasome via inhibiting TFEB in microglia. TFEB signaling negatively regulates NLRP3 inflammasome through increasing LAMP2A expression, which binds to NLRP3 and promotes its degradation via chaperone-mediated autophagy (CMA). NLRP3-mediated microglial activation promotes the death of dopaminergic neurons.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Autofagia Mediada por Chaperones/fisiología , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Autofagia Mediada por Chaperones/efectos de los fármacos , Imidazoles/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Enfermedad de Parkinson/genética , Proteolisis/efectos de los fármacos , Piridinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
4.
Toxicol Appl Pharmacol ; 388: 114874, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31881179

RESUMEN

Abnormal accumulation of α-synuclein and mitochondria dynamics dysfunction are considered to be implicated in the pathogenesis of Parkinson's disease. However, the underlying mechanisms how α-synuclein abnormal accumulation causes mitochondrial dynamics dysfunction remains unclear. Here, we demonstrate that dynamin-related protein 1(DRP1) is a substrate for p38 MAPK, mutant α-synuclein overexpression in SN4741 cell caused p38 MAPK activation, p38 MAPK-mediated phosphorylation DRP1 at serine 616 to activate DRP1 and is associated with increased mitochondrial fission, which resulted in mitochondrial dysfunction and neuronal loss. Inhibition of p38 MAPK or expression of a kinase death form of p38 MAPK not only attenuates DRP1-mediated mitochondrial fission,but also restores the mitochondrial dysfunction and cell death in α-synuclein A53T model. These findings showed that inhibition of p38 MAPK-DRP1 signaling pathway may be a viable therapeutic strategy of PD on maintenance of mitochondrial homeostasis.


Asunto(s)
Imidazoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Piridinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Dinaminas/metabolismo , Humanos , Imidazoles/uso terapéutico , Sistema de Señalización de MAP Quinasas/genética , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Dinámicas Mitocondriales/genética , Mutación , Neuronas/citología , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Piridinas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Serina/metabolismo , alfa-Sinucleína/genética , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Biochem Biophys Res Commun ; 509(2): 390-394, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30594390

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Prevailing evidence suggests that abnormal autophagy and mitochondrial dysfunction participate in the process of PD. However, many damages of neuronal functions are regulated by intracellular Ca2+ signaling and the contribution of mitochondrial Ca2+ to the process of neurodegeneration is still unclear. MPP+, the metabolite of a neurotoxin MPTP, causes symptom of PD in animal models by selectively destroying dopaminergic neurons in substantia nigra. Here we report that mitochondrial Ca2+ uniporter (MCU) participated in MPP+-induced autophagic cell death in SH-SY5Y cells. Pharmacological agonist of MCU or exogenous expressed MCU can partially reduce MPP+-induced autophagic cell death. Down-regulation of MCU enhanced autophagic cell death via AMPK activation, which was independent of Beclin1 and PI3K. These findings show that the mitochondrial calcium dyshomeostasis contributes to MPP+-induced neuronal degeneration, and MCU may be a potential therapeutic target of PD through the prevention of pathological autophagy.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/efectos de los fármacos , Calcio/metabolismo , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/genética , Beclina-1/genética , Beclina-1/metabolismo , Biotransformación , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas/metabolismo , Neuronas/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo
6.
Food Chem ; 463(Pt 2): 141178, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39303477

RESUMEN

Yeast, identified as a microorganism, boasts a considerable protein content, positioning yeast protein as a highly promising alternative in the quest for sustainable protein sources. The primary aim of this study is to evaluate the protein quality of yeast protein and compare it with animal proteins (whey concentrate/isolate proteins) and plant proteins (soy, wheat, pea proteins). Notably, yeast protein exhibits the highest ratio of indispensable/dispensable amino acids (IAAs/DAAs, 0.91). However, in both in vivo and in vitro digestion experiments, yeast protein demonstrated lower true protein digestibility (TPD) and true ileal digestibility (TID) compared to other proteins. Despite this, the yeast protein's amino acid score (AAS, 1.37 for >3 years), protein digestibility-corrected amino acid score (PDCAAS, 100 % for >3 years), and digestibility-corrected amino acid score (DIAAS, 82.42 % for >3 years) of yeast protein surpassed those of plant proteins, yet remained lower than animal proteins primarily due to its lower digestibility.

7.
Chem Biol Interact ; 400: 111158, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39033796

RESUMEN

Multi-walled carbon nanotube (MWCNT) induced respiratory toxicity has become a growing concern, with ferroptosis emerging as a novel mechanism implicated in various respiratory diseases. However, whether ferroptosis is involved in MWCNT-elicited lung injury and the underlying molecular mechanisms warrant further exploration. In this study, we found that MWCNT-induced ferroptosis is autophagy-dependent, contributing to its cellular toxicity. Inhibiting of autophagy by pharmacological inhibitors 3-MA or ATG5 gene knockdown significantly attenuated MWCNT-induced ferroptosis, concomitant with rescued mitochondrial biogenesis. Rapamycin, the autophagy agonist, exacerbated the mitochondrial damage and MWCNT-induced ferroptosis. Moreover, lentivirus-mediated overexpression of PGC-1α inhibited ferroptosis, while inhibition of PGC-1α aggravated ferroptosis. In summary, our study unveils ferroptosis as a novel mechanism underlying MWCNT-induced respiratory toxicity, with autophagy promoting MWCNT-induced ferroptosis by hindering PGC-1α-dependent mitochondrial biogenesis.


Asunto(s)
Autofagia , Ferroptosis , Pulmón , Nanotubos de Carbono , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Nanotubos de Carbono/toxicidad , Ferroptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Pulmón/citología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Biogénesis de Organelos , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Animales , Sirolimus/farmacología , Ratones , Línea Celular
8.
Food Chem Toxicol ; 177: 113820, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37172713

RESUMEN

Mercury is one heavy metal toxin that could cause severe health impairments. Mercury exposure has become a global environmental issue. Mercury chloride (HgCl2) is one of mercury's main chemical forms, but it lacks detailed hepatotoxicity data. The present study aimed to investigate the mechanism of hepatotoxicity induced by HgCl2 through proteomics and network toxicology at the animal and cellular levels. HgCl2 showed apparent hepatotoxicity after being administrated with C57BL/6 mice (16 mg/kg.bw, oral once a day, 28 days) and HepG2 cells (100 µmol/L, 12 h). Otherwise, oxidative stress, mitochondrial dysfunction and inflammatory infiltration play an important role in HgCl2-induced hepatotoxicity. The differentially expressed proteins (DEPs) after HgCl2 treatment and enriched pathways were obtained through proteomics and network toxicology. Western blot and qRT-PCR results showed acyl-CoA thioesterase 1 (ACOT1), acyl-CoA synthetase short chain family member 3 (ACSS3), epidermal growth factor receptor (EGFR), apolipoprotein B (APOB), signal transducer and activator of transcription 3 (STAT3), alanine--glyoxylate aminotransferase (AGXT), cytochrome P450 3A5 (CYP3A5), CYP2E1 and CYP1A2 may be the major biomarkers for HgCl2-induced hepatotoxicity, which involved chemical carcinogenesis, fatty acid metabolism, CYPs-mediated metabolism, GSH metabolism and others. Therefore, this study can provide scientific evidence for the biomarkers and mechanism of HgCl2-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Mercurio , Ratones , Animales , Humanos , Cloruro de Mercurio/toxicidad , Cloruros , Células Hep G2 , Proteómica , Ratones Endogámicos C57BL , Estrés Oxidativo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Biomarcadores/metabolismo
9.
FEBS J ; 289(8): 2013-2024, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33460497

RESUMEN

Neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by progressive memory loss and motor impairment. Aging is a major risk factor for neurodegenerative diseases. Neurodegenerative diseases and aging often develop in an irreversible manner and cause a significant socioeconomic burden. When considering their pathogenesis, many studies usually focus on mitochondrial dysfunction and DNA damage. More recently, neuroinflammation, autophagy dysregulation, and SIRT1 inactivation were shown to be involved in the pathogenesis of neurodegenerative diseases and aging. In addition, studies uncovered the role of poly (ADP-ribose)-polymerase-1 (PARP1) in neurodegenerative diseases and aging. PARP1 links to a cluster of stress signals, including those originated by inflammation and autophagy dysregulation. In this review, we summarized the recent research progresses on PARP1 in neurodegenerative diseases and aging, with an emphasis on the relationship among PARP1, neuroinflammation, mitochondria, and autophagy. We discussed the possibilities of treating neurodegenerative diseases and aging through targeting PARP1.


Asunto(s)
Enfermedades Neurodegenerativas , Envejecimiento/genética , Autofagia/genética , Humanos , Mitocondrias/genética , Enfermedades Neurodegenerativas/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Sirtuina 1
10.
Food Funct ; 13(23): 12170-12181, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36326424

RESUMEN

Hepatic steatosis is a common pathological change of liver that manifests as abnormal lipid accumulation. Epidemiological findings support that diseases such as obesity, diabetes, and hyperlipidemia are mostly accompanied by the development of hepatic steatosis. By screening the disease targets of several traditional Chinese medicines (TCMs) with lipid-reducing effects (hawthorn, semen cassiae, etc.) through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), we found that peroxisome-activated receptor gamma (PPAR-γ) is involved in regulating several lipid metabolism-related signaling pathways. Further experiments confirmed that PPAR-γ was correlated with aggravated endoplasmic reticulum (ER) stress in overnutrition-induced hepatic steatosis. The stimulation of hepatocytes by abnormal lipid metabolism signals causes an imbalance in ER homeostasis, which subsequently exacerbates hepatocyte lipid abnormalities. The inhibition of glucose regulatory protein 78 (GRP78, a master regulator of ER homeostasis) was effective in reducing hepatocyte PPAR-γ and lipid synthesis levels. In fact, the hawthorn/semen cassiae treatment effectively downregulated hepatocyte ER stress in high-fat-diet fed rats and reduced the PPAR-γ expression as well as related lipid synthesis. Herein, we confirmed that TCMs characterized by natural lipid-lowering effectively target hepatic PPAR-γ and GRP78, improve ER stress, and have a protective effect against obesity-related hepatic steatosis.


Asunto(s)
Crataegus , Hígado Graso , Ratas , Animales , Dieta Alta en Grasa/efectos adversos , Estrés del Retículo Endoplásmico , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Semillas/metabolismo , Hígado Graso/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Lípidos/farmacología , Metabolismo de los Lípidos
11.
Aging Cell ; 19(6): e13163, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32475059

RESUMEN

Poly (ADP-ribose) polymerase 1 (PARP1) is a master regulator of diverse biological processes such as DNA repair, oxidative stress, and apoptosis. PARP1 can be activated by aggregated α-synuclein, and this process in turn exacerbates toxicity of α-synuclein. This circle is closely linked to the evolution of Parkinson's disease (PD) that characterized by progressive neurodegeneration and motor deficits. Here, we reported the PARP1, as a novel upstream molecular of transcription factor EB (TFEB), participates in regulation of autophagy in α-synuclein aggregated cells and mice. PARP1 inhibition not only enhances the nuclear transcription of TFEB via SIRT1 mediated down-regulation of mTOR signaling but also reduces nuclear export of TFEB by attenuating the TFEB-CRM1 interaction. Our results revealed that PARP1 inhibition lessened the accumulation of α-synuclein in PD models. Also, oral administration of PARP1 inhibitor Veliparib prevented neurodegeneration and improved motor ability in α-synucleinA53T transgenic mice. These findings identify that PARP1 signaling pathway regulates TFEB-mediated autophagy, pointing to potential therapeutic strategy of PD via enhancing protein degradation systems.


Asunto(s)
Autofagia/genética , Enfermedad de Parkinson/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , alfa-Sinucleína/metabolismo , Animales , Humanos , Ratones , Transfección
12.
Toxicol Sci ; 165(1): 232-243, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30165626

RESUMEN

Impairment in autophagy-lysosomal pathway (ALP) results in accumulation of misfolded proteins and dysfunctional organelles, which is the hallmark of neurodegenerative diseases including Parkinson's disease (PD). Recent studies revealed activated nonreceptor tyrosine kinase Abelson (c-Abl) in PD models and brain specimen of PD patients. Inhibition of c-Abl through pharmacological inhibitors has been shown to enhance ALP function and provide neuroprotective effects in cells and animal models of PD. However, the molecular mechanisms of neuroprotective effects underlying c-Abl inhibition remain elusive. In this study, STI-571, a c-Abl inhibitor, rescued the ALP function through facilitating the nuclear translocation of TFEB and protected against MPP+-induced neuronal cell death. Furthermore, siRNA-mediated knock-down or pharmacological inhibition of GSK3ß mitigated the MPP+-induced neuronal cell death, which was achieved through promoting TFEB nuclear localization and subsequently reversing the function of ALP. Intriguingly, either DPH, c-Abl activator, or MPP+ led to the activation of GSK3ß, which is a negative regulator of TFEB. In addition, c-Abl directly interacted with GSK3ß and catalyzed its phosphorylation at tyrosine 216, and their interaction was enhanced under MPP+ treatment. In contrast, STI-571 abrogated phosphorylation of GSK3ß-Tyr216 induced by MPP+ in SN4741 cells and in primary midbrain neurons. Taken together, these results demonstrate that GSK3ß is a novel c-Abl substrate, and c-Abl-GSk3ß pathway mediates MPP+-induced ALP defects and neuronal cell death, which may represent a potential therapeutic target for PD.


Asunto(s)
Autofagia/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Mesilato de Imatinib/farmacología , Lisosomas/efectos de los fármacos , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-abl/metabolismo , 1-Metil-4-fenilpiridinio/toxicidad , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Lisosomas/metabolismo , Lisosomas/patología , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Ratas Sprague-Dawley , Transducción de Señal
13.
Cell Death Dis ; 9(6): 700, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899409

RESUMEN

α-synuclein abnormal accumulation and mitochondria dysfunction are involved in the pathogenesis of Parkinson's disease. Selective autophagy of mitochondria (mitophagy) is a crucial component of the network controlling the mitochondrial homeostasis. However, the underlying mechanism that mutant α-synuclein induces mitochondrial abnormality through mitophagy impairment is not fully understood. Here, we showed that mutant A53T α-synuclein accumulation impaired mitochondrial function and Parkin-mediated mitophgy in α-synucleinA53T model. α-synucleinA53T overexpression caused p38 MAPK activation, then p38 MAPK directly phosphorylated Parkin at serine 131 to disrupt the Parkin's protective function. The p38 MAPK inhibition significantly reduced cellular apoptosis, restored mitochondrial membrane potential as well as increased synaptic density both in SN4741 cells and primary midbrain neurons. These findings show that the p38 MAPK-Parkin signaling pathway regulates mitochondrial homeostasis and neuronal degeneration, which may be a potential therapeutic strategy of PD via enhancing mitochondrial turn-over and maintenance.


Asunto(s)
Apoptosis , Mitocondrias/metabolismo , Proteínas Mutantes/metabolismo , Neuronas/patología , Enfermedad de Parkinson/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Activación Enzimática/efectos de los fármacos , Humanos , Imidazoles/farmacología , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Mitofagia/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Proteínas Quinasas/metabolismo , Piridinas/farmacología , Sinapsis/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA