Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(4): e2310854121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38241433

RESUMEN

Noncoding mutation hotspots have been identified in melanoma and many of them occur at the binding sites of E26 transformation-specific (ETS) proteins; however, their formation mechanism and functional impacts are not fully understood. Here, we used UV (Ultraviolet) damage sequencing data and analyzed cyclobutane pyrimidine dimer (CPD) formation, DNA repair, and CPD deamination in human cells at single-nucleotide resolution. Our data show prominent CPD hotspots immediately after UV irradiation at ETS binding sites, particularly at sites with a conserved TTCCGG motif, which correlate with mutation hotspots identified in cutaneous melanoma. Additionally, CPDs are repaired slower at ETS binding sites than in flanking DNA. Cytosine deamination in CPDs to uracil is suggested as an important step for UV mutagenesis. However, we found that CPD deamination is significantly suppressed at ETS binding sites, particularly for the CPD hotspot on the 5' side of the ETS motif, arguing against a role for CPD deamination in promoting ETS-associated UV mutations. Finally, we analyzed a subset of frequently mutated promoters, including the ribosomal protein genes RPL13A and RPS20, and found that mutations in the ETS motif can significantly reduce the promoter activity. Thus, our data identify high UV damage and low repair, but not CPD deamination, as the main mechanism for ETS-associated mutations in melanoma and uncover important roles of often-overlooked mutation hotspots in perturbing gene transcription.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Citosina , Desaminación , Neoplasias Cutáneas/genética , Mutación , Dímeros de Pirimidina , Sitios de Unión , Rayos Ultravioleta , Daño del ADN , Reparación del ADN/genética
2.
Proc Natl Acad Sci U S A ; 120(10): e2216907120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36853943

RESUMEN

Ultraviolet (UV) light induces different classes of mutagenic photoproducts in DNA, namely cyclobutane pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and atypical thymine-adenine photoproducts (TA-PPs). CPD formation is modulated by nucleosomes and transcription factors (TFs), which has important ramifications for Ultraviolet (UV) mutagenesis. How chromatin affects the formation of 6-4PPs and TA-PPs is unclear. Here, we use UV damage endonuclease-sequencing (UVDE-seq) to map these UV photoproducts across the yeast genome. Our results indicate that nucleosomes, the fundamental building block of chromatin, have opposing effects on photoproduct formation. Nucleosomes induce CPDs and 6-4PPs at outward rotational settings in nucleosomal DNA but suppress TA-PPs at these settings. Our data also indicate that DNA binding by different classes of yeast TFs causes lesion-specific hotspots of 6-4PPs or TA-PPs. For example, DNA binding by the TF Rap1 generally suppresses CPD and 6-4PP formation but induces a TA-PP hotspot. Finally, we show that 6-4PP formation is strongly induced at the binding sites of TATA-binding protein (TBP), which is correlated with higher mutation rates in UV-exposed yeast. These results indicate that the formation of 6-4PPs and TA-PPs is modulated by chromatin differently than CPDs and that this may have important implications for UV mutagenesis.


Asunto(s)
Cromatina , Saccharomyces cerevisiae , Cromatina/genética , Saccharomyces cerevisiae/genética , Nucleosomas/genética , Mutagénesis , Mutágenos , Adenina , Dímeros de Pirimidina/genética
3.
EMBO J ; 40(20): e107795, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34487363

RESUMEN

Somatic mutations in DNA-binding sites for CCCTC-binding factor (CTCF) are significantly elevated in many cancers. Prior analysis has suggested that elevated mutation rates at CTCF-binding sites in skin cancers are a consequence of the CTCF-cohesin complex inhibiting repair of UV damage. Here, we show that CTCF binding modulates the formation of UV damage to induce mutation hot spots. Analysis of genome-wide CPD-seq data in UV-irradiated human cells indicates that formation of UV-induced cyclobutane pyrimidine dimers (CPDs) is primarily suppressed by CTCF binding but elevated at specific locations within the CTCF motif. Locations of CPD hot spots in the CTCF-binding motif coincide with mutation hot spots in melanoma. A similar pattern of damage formation is observed at CTCF-binding sites in vitro, indicating that UV damage modulation is a direct consequence of CTCF binding. We show that CTCF interacts with binding sites containing UV damage and inhibits repair by a model repair enzyme in vitro. Structural analysis and molecular dynamic simulations reveal the molecular mechanism for how CTCF binding modulates CPD formation.


Asunto(s)
Factor de Unión a CCCTC/química , Reparación del ADN , Melanoma/genética , Proteínas Serina-Treonina Quinasas/química , Dímeros de Pirimidina/efectos de la radiación , Neoplasias Cutáneas/genética , Sitios de Unión , Unión Competitiva , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Línea Celular Tumoral , Daño del ADN , Expresión Génica , Humanos , Melanoma/metabolismo , Melanoma/patología , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Dímeros de Pirimidina/biosíntesis , Dímeros de Pirimidina/química , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Rayos Ultravioleta
4.
Genome Res ; 32(10): 1930-1940, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36100435

RESUMEN

Mutation density patterns reveal unique biological properties of specific genomic regions and shed light on the mechanisms of carcinogenesis. Although previous studies reported insightful mutation density patterns associated with certain genomic regions such as transcription start sites and DNA replication origins, a tool that can systematically investigate mutational spatial patterns is still lacking. Thus, we developed MutDens, a bioinformatic tool for comprehensive analysis of mutation density patterns around genomic features, namely, genomic positions, in humans and model species. By scanning the bidirectional vicinity regions of given positions, MutDens systematically characterizes the mutation density for single-base substitution mutational classes after adjusting for total mutation burden and local nucleotide proportion. Analysis results using MutDens not only verified the previously reported transcriptional strand bias around transcription start sites and replicative strand bias around DNA replication origins, but also identified novel mutation density patterns around other genomics features, such as enhancers and retrotransposon insertion polymorphism sites. To our knowledge, MutDens is the first tool that systematically calculates, examines, and compares mutation density patterns, thus providing a valuable avenue for investigating the mutational landscapes associated with important genomic features.


Asunto(s)
Genómica , Origen de Réplica , Humanos , Mutación , Sitio de Iniciación de la Transcripción , ADN
5.
PLoS Genet ; 18(3): e1010085, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35263330

RESUMEN

Helix-distorting DNA lesions, including ultraviolet (UV) light-induced damage, are repaired by the global genomic-nucleotide excision repair (GG-NER) and transcription coupled-nucleotide excision repair (TC-NER) pathways. Previous studies have shown that histone post-translational modifications (PTMs) such as histone acetylation and methylation can promote GG-NER in chromatin. Whether histone PTMs also regulate the repair of DNA lesions by the TC-NER pathway in transcribed DNA is unknown. Here, we report that histone H3 K36 methylation (H3K36me) by the Set2 histone methyltransferase in yeast regulates TC-NER. Mutations in Set2 or H3K36 result in UV sensitivity that is epistatic with Rad26, the primary TC-NER factor in yeast, and cause a defect in the repair of UV damage across the yeast genome. We further show that mutations in Set2 or H3K36 in a GG-NER deficient strain (i.e., rad16Δ) partially rescue its UV sensitivity. Our data indicate that deletion of SET2 rescues UV sensitivity in a GG-NER deficient strain by activating cryptic antisense transcription, so that the non-transcribed strand (NTS) of yeast genes is repaired by TC-NER. These findings indicate that Set2 methylation of H3K36 establishes transcriptional asymmetry in repair by promoting canonical TC-NER of the transcribed strand (TS) and suppressing cryptic TC-NER of the NTS.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfatasas/genética , ADN/metabolismo , Reparación del ADN/genética , Histona Metiltransferasas/genética , Histonas/genética , Histonas/metabolismo , Metiltransferasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
6.
J Cell Mol Med ; 28(2): e18048, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37986543

RESUMEN

Intervertebral disc degeneration (IVDD) is a common chronic musculoskeletal disease that causes chronic low back pain and imposes an immense financial strain on patients. The pathological mechanisms underlying IVDD have not been fully elucidated. The development of IVDD is closely associated with abnormal epigenetic changes, suggesting that IVDD progression may be controlled by epigenetic mechanisms. Consequently, this study aimed to investigate the role of epigenetic regulation, including DNA methyltransferase 3a (DNMT3a)-mediated methylation and peroxisome proliferator-activated receptor γ (PPARγ) inhibition, in IVDD development. The expression of DNMT3a and PPARγ in early and late IVDD of nucleus pulposus (NP) tissues was detected using immunohistochemistry and western blotting analyses. Cellularly, DNMT3a inhibition significantly inhibited IL-1ß-induced apoptosis and extracellular matrix (ECM) degradation in rat NP cells. Pretreatment with T0070907, a specific inhibitor of PPARγ, significantly reversed the anti-apoptotic and ECM degradation effects of DNMT3a inhibition. Mechanistically, DNMT3a modified PPARγ promoter hypermethylation to activate the nuclear factor-κB (NF-κB) pathway. DNMT3a inhibition alleviated IVDD progression. Conclusively, the results of this study show that DNMT3a activates the NF-κB pathway by modifying PPARγ promoter hypermethylation to promote apoptosis and ECM degradation. Therefore, we believe that the ability of DNMT3a to mediate the PPARγ/NF-κB axis may provide new ideas for the potential pathogenesis of IVDD and may become an attractive target for the treatment of IVDD.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animales , Humanos , Ratas , ADN Metiltransferasa 3A , Epigénesis Genética , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/patología , Metilación , FN-kappa B/metabolismo , Núcleo Pulposo/patología , PPAR gamma/genética , PPAR gamma/metabolismo , Ratas Sprague-Dawley , Transducción de Señal
7.
J Am Chem Soc ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943576

RESUMEN

Manipulating single electrons at the atomic scale is vital for mastering complex surface processes governed by the transfer of individual electrons. Polarons, composed of electrons stabilized by electron-phonon coupling, offer a pivotal medium for such manipulation. Here, using scanning tunneling microscopy and spectroscopy (STM/STS) and density functional theory (DFT) calculations, we report the identification and manipulation of a new type of polaron, dubbed van der Waals (vdW) polaron, within mono- to trilayer ultrathin films composed of Sb2O3 molecules that are bonded via vdW attractions. The Sb2O3 films were grown on a graphene-covered SiC(0001) substrate via molecular beam epitaxy. Unlike prior molecular polarons, STM imaging observed polarons at the interstitial sites of the molecular film, presenting unique electronic states and localized band bending. DFT calculations revealed the lowest conduction band as an intermolecular bonding state, capable of ensnaring an extra electron through locally diminished intermolecular distances, thereby forming an intermolecular vdW polaron. We also demonstrated the ability to generate, move, and erase such vdW polarons using an STM tip. Our work uncovers a new type of polaron stabilized by coupling with intermolecular vibrations where vdW interactions dominate, paving the way for designing atomic-scale electron transfer processes and enabling precise tailoring of electron-related properties and functionalities.

8.
Genome Res ; 31(6): 1047-1059, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34001524

RESUMEN

Nucleosomes are a significant barrier to the repair of UV damage because they impede damage recognition by nucleotide excision repair (NER). The RSC and SWI/SNF chromatin remodelers function in cells to promote DNA access by moving or evicting nucleosomes, and both have been linked to NER in yeast. Here, we report genome-wide repair maps of UV-induced cyclobutane pyrimidine dimers (CPDs) in yeast cells lacking RSC or SWI/SNF activity. Our data indicate that SWI/SNF is not generally required for NER but instead promotes repair of CPD lesions at specific yeast genes. In contrast, mutation or depletion of RSC subunits causes a general defect in NER across the yeast genome. Our data indicate that RSC is required for repair not only in nucleosomal DNA but also in neighboring linker DNA and nucleosome-free regions (NFRs). Although depletion of the RSC catalytic subunit also affects base excision repair (BER) of N-methylpurine (NMP) lesions, RSC activity is less important for BER in linker DNA and NFRs. Furthermore, our data indicate that RSC plays a direct role in transcription-coupled NER (TC-NER) of transcribed DNA. These findings help to define the specific genomic and chromatin contexts in which each chromatin remodeler functions in DNA repair, and indicate that RSC plays a unique function in facilitating repair by both NER subpathways.


Asunto(s)
Cromatina , Proteínas de Saccharomyces cerevisiae , Cromatina/genética , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genómica , Nucleosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética
9.
Phys Chem Chem Phys ; 26(17): 13364-13373, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639921

RESUMEN

In this study, we successfully synthesize palladium-decorated indium trioxide (Pd/In2O3) hybrid nanoclusters (NCs) using an advanced dual-target cluster beam deposition (CBD) method, a significant stride in developing high-performance ethanol sensors. The prepared Pd/In2O3 hybrid NCs exhibit exceptional sensitivity, stability, and selectivity to low concentrations of ethanol vapor, with a maximum response value of 101.2 at an optimal operating temperature of 260 °C for 6 at% Pd loading. The dynamic response of the Pd/In2O3-based sensor shows an increase in response with increasing ethanol vapor concentrations within the range of 50 to 1000 ppm. The limit of detection is as low as 24 ppb. The sensor exhibits a high sensitivity of 28.24 ppm-1/2, with response and recovery times of 2.7 and 4.4 seconds, respectively, for 100 ppm ethanol vapor. Additionally, the sensor demonstrates excellent repeatability and stability, with only a minor decrease in response observed over 30 days and notable selectivity for ethanol compared to other common volatile organic compounds. The study highlights the potential of Pd/In2O3 NCs as promising materials for ethanol gas sensors, leveraging the unique capabilities of CBD for controlled synthesis and the catalytic properties of Pd for enhanced gas-sensing performance.

10.
Mol Cell ; 64(2): 376-387, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27720644

RESUMEN

Nucleotide excision repair (NER) is an evolutionarily conserved mechanism that processes helix-destabilizing and/or -distorting DNA lesions, such as UV-induced photoproducts. Here, we investigate the dynamic protein-DNA interactions during the damage recognition step using single-molecule fluorescence microscopy. Quantum dot-labeled Rad4-Rad23 (yeast XPC-RAD23B ortholog) forms non-motile complexes or conducts a one-dimensional search via either random diffusion or constrained motion. Atomic force microcopy analysis of Rad4 with the ß-hairpin domain 3 (BHD3) deleted reveals that this motif is non-essential for damage-specific binding and DNA bending. Furthermore, we find that deletion of seven residues in the tip of ß-hairpin in BHD3 increases Rad4-Rad23 constrained motion at the expense of stable binding at sites of DNA lesions, without diminishing cellular UV resistance or photoproduct repair in vivo. These results suggest a distinct intermediate in the damage recognition process during NER, allowing dynamic DNA damage detection at a distance.


Asunto(s)
Reparación del ADN , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Daño del ADN , ADN de Hongos/química , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Puntos Cuánticos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Imagen Individual de Molécula , Rayos Ultravioleta
11.
Nucleic Acids Res ; 50(1): e4, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34606615

RESUMEN

Efficient annotation of alterations in binding sequences of molecular regulators can help identify novel candidates for mechanisms study and offer original therapeutic hypotheses. In this work, we developed Somatic Binding Sequence Annotator (SBSA) as a full-capacity online tool to annotate altered binding motifs/sequences, addressing diverse types of genomic variants and molecular regulators. The genomic variants can be somatic mutation, single nucleotide polymorphism, RNA editing, etc. The binding motifs/sequences involve transcription factors (TFs), RNA-binding proteins, miRNA seeds, miRNA-mRNA 3'-UTR binding target, or can be any custom motifs/sequences. Compared to similar tools, SBSA is the first to support miRNA seeds and miRNA-mRNA 3'-UTR binding target, and it unprecedentedly implements a personalized genome approach that accommodates joint adjacent variants. SBSA is empowered to support an indefinite species, including preloaded reference genomes for SARS-Cov-2 and 25 other common organisms. We demonstrated SBSA by annotating multi-omics data from over 30,890 human subjects. Of the millions of somatic binding sequences identified, many are with known severe biological repercussions, such as the somatic mutation in TERT promoter region which causes a gained binding sequence for E26 transformation-specific factor (ETS1). We further validated the function of this TERT mutation using experimental data in cancer cells. Availability:http://innovebioinfo.com/Annotation/SBSA/SBSA.php.


Asunto(s)
COVID-19/virología , Biología Computacional/instrumentación , Genómica/instrumentación , Mutación , Proteómica/instrumentación , SARS-CoV-2 , Regiones no Traducidas 3' , Algoritmos , Secuencias de Aminoácidos , COVID-19/metabolismo , Biología Computacional/métodos , Computadores , Técnicas Genéticas , Genoma Humano , Genómica/métodos , Humanos , Internet , MicroARNs/metabolismo , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica , Proteómica/métodos , Proteína Proto-Oncogénica c-ets-1/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteínas de Unión al ARN/metabolismo , Telomerasa/metabolismo
12.
Nano Lett ; 23(15): 7236-7243, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37326318

RESUMEN

Plasmonic metasurfaces have been realized for efficient light absorption, thereby leading to photothermal conversion through nonradiative decay of plasmonic modes. However, current plasmonic metasurfaces suffer from inaccessible spectral ranges, costly and time-consuming nanolithographic top-down techniques for fabrication, and difficulty of scale-up. Here, we demonstrate a new type of disordered metasurface created by densely packing plasmonic nanoclusters of ultrasmall size on a planar optical cavity. The system either operates as a broadband absorber or offers a reconfigurable absorption band right across the visible region, resulting in continuous wavelength-tunable photothermal conversion. We further present a method to measure the temperature of plasmonic metasurfaces via surface-enhanced Raman spectroscopy (SERS), by incorporating single-walled carbon nanotubes (SWCNTs) as an SERS probe within the metasurfaces. Our disordered plasmonic system, generated by a bottom-up process, offers excellent performance and compatibility with efficient photothermal conversion. Moreover, it also provides a novel platform for various hot-electron and energy-harvesting functionalities.

13.
J Proteome Res ; 22(8): 2593-2607, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37494005

RESUMEN

When it comes to mass spectrometry data analysis for identification of peptide pairs linked by N-hydroxysuccinimide (NHS) ester cross-linkers, search engines bifurcate in their setting of cross-linkable sites. Some restrict NHS ester cross-linkable sites to lysine (K) and protein N-terminus, referred to as K only for short, whereas others additionally include serine (S), threonine (T), and tyrosine (Y) by default. Here, by setting amino acids with chemically inert side chains such as glycine (G), valine (V), and leucine (L) as cross-linkable sites, which serves as a negative control, we show that software-identified STY-cross-links are only as reliable as GVL-cross-links. This is true across different NHS ester cross-linkers including DSS, DSSO, and DSBU, and across different search engines including MeroX, xiSearch, and pLink. Using a published data set originated from synthetic peptides, we demonstrate that STY-cross-links indeed have a high false discovery rate. Further analysis revealed that depending on the data and the search engine used to analyze the data, up to 65% of the STY-cross-links identified are actually K-K cross-links of the same peptide pairs, up to 61% are actually K-mono-links, and the rest tend to contain short peptides at high risk of false identification.


Asunto(s)
Ésteres , Proteínas , Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Péptidos/química , Proteínas/metabolismo
14.
Genome Res ; 30(1): 12-21, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31871068

RESUMEN

Nucleosomes inhibit excision repair of DNA damage caused by ultraviolet (UV) light, and it has been generally assumed that repair inhibition is equivalent on both sides of the nucleosome dyad. Here, we use genome-wide repair data to show that repair of UV damage in nucleosomes is asymmetric. In yeast, nucleosomes inhibit nucleotide excision repair (NER) of the nontranscribed strand (NTS) of genes in an asymmetric manner, with faster repair of UV damage occurring on the 5' side of the nucleosomal DNA. Analysis of genomic repair data from UV-irradiated human cells indicates that NER activity along the NTS is also elevated on the 5' side of nucleosomes, consistent with the repair asymmetry observed in yeast nucleosomes. Among intergenic nucleosomes, repair activity is elevated on the 5' side of both DNA strands. The distribution of somatic mutations in nucleosomes shows the opposite asymmetry in NER-proficient skin cancers, but not in NER-deficient cancers, indicating that asymmetric repair of nucleosomal DNA imposes a strand polarity on UV mutagenesis. Somatic mutations are enriched on the relatively slow-repairing 3' side of the nucleosomal DNA, particularly at positions where the DNA minor groove faces away from the histone octamer. Asymmetric repair and mutagenesis are likely caused by differential accessibility of the nucleosomal DNA, a consequence of its left-handed wrapping around the histone octamer.


Asunto(s)
Daño del ADN/efectos de la radiación , Reparación del ADN , Mutación , Nucleosomas/genética , Nucleosomas/metabolismo , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/metabolismo , Rayos Ultravioleta/efectos adversos , Susceptibilidad a Enfermedades , Humanos , Mutagénesis/efectos de la radiación , Neoplasias Cutáneas/patología , Transcripción Genética , Levaduras/genética , Levaduras/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(31): 18608-18616, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32690696

RESUMEN

Transcription-coupled nucleotide excision repair (TC-NER) is an important DNA repair mechanism that removes RNA polymerase (RNAP)-stalling DNA damage from the transcribed strand (TS) of active genes. TC-NER deficiency in humans is associated with the severe neurological disorder Cockayne syndrome. Initiation of TC-NER is mediated by specific factors such as the human Cockayne syndrome group B (CSB) protein or its yeast homolog Rad26. However, the genome-wide role of CSB/Rad26 in TC-NER, particularly in the context of the chromatin organization, is unclear. Here, we used single-nucleotide resolution UV damage mapping data to show that Rad26 and its ATPase activity is critical for TC-NER downstream of the first (+1) nucleosome in gene coding regions. However, TC-NER on the transcription start site (TSS)-proximal half of the +1 nucleosome is largely independent of Rad26, likely due to high occupancy of the transcription initiation/repair factor TFIIH in this nucleosome. Downstream of the +1 nucleosome, the combination of low TFIIH occupancy and high occupancy of the transcription elongation factor Spt4/Spt5 suppresses TC-NER in Rad26-deficient cells. We show that deletion of SPT4 significantly restores TC-NER across the genome in a rad26∆ mutant, particularly in the downstream nucleosomes. These data demonstrate that the requirement for Rad26 in TC-NER is modulated by the distribution of TFIIH and Spt4/Spt5 in transcribed chromatin and Rad26 mainly functions downstream of the +1 nucleosome to remove TC-NER suppression by Spt4/Spt5.


Asunto(s)
Adenosina Trifosfatasas , Reparación del ADN/genética , Nucleosomas/genética , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , ADN Helicasas , Enzimas Reparadoras del ADN , Genoma Fúngico/genética , Humanos , Nucleosomas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
J Am Chem Soc ; 144(23): 10640-10646, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35653731

RESUMEN

Cephanolides A-D are cephalotane-type diterpenoids featuring a novel 6/6/6/5 tetracyclic core embedded with a bridged δ-lactone. The asymmetric and divergent total syntheses of cephanolides A-D have been accomplished, proceeding in 11-14 steps from a known alcohol. The salient features of the present work include (i) a substrate-controlled diastereoselective intermolecular Diels-Alder reaction to form the 6-6 cis-fused rings, (ii) a palladium-catalyzed formal bimolecular [2 + 2 + 2] cycloaddition reaction via a partially intermolecular cascade reaction sequence involving multiple carbometalations to rapidly install the key tetracyclic skeleton, and (iii) lactonization and late-stage oxidative diversification to complete total syntheses of the four benzenoid cephanolides.


Asunto(s)
Diterpenos , Reacción de Cicloadición , Estructura Molecular , Oxidación-Reducción , Paladio
17.
Small ; 18(23): e2200634, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35435324

RESUMEN

The development of hydrogen sensors is of paramount importance for timely leak detection and remains a crucial unmet need. Palladium-based materials, well known as hydrogen sensors, still suffer from poisoning and deactivation. Here, a hybrid hydrogen sensor consisting of a Pd nanocluster (NC) film, a metal-organic framework (MOF), and a polymer, are proposed. The polymer coating, as a protection layer, endows the sensor with excellent H2 selectivity and CO-poisoning resistance. The MOF serves as an interface layer between the Pd NC film and the polymer layer, which alters the nature of the interaction with hydrogen and leads to significant sensing performance improvements, owing to the interfacial electronic coupling between Pd NCs and the MOF. The strategy overcomes the shortcomings of retarded response speed and degraded sensitivity induced by the polymer coating of a Pd NC film-polymer hybrid system. This is the first exhibition of a hydrogen-sensing enhancement mechanism achieved by engineering the electronic coupling between Pd and a MOF. The work establishes a deep understanding of the hydrogen-sensing enhancement mechanism at the nanoscale and provides a feasible strategy to engineer next-generation gas-sensing nanodevices with superior sensing figures of merit via hybrid material systems.


Asunto(s)
Estructuras Metalorgánicas , Nanoestructuras , Hidrógeno , Paladio , Polímeros
18.
Acta Pharmacol Sin ; 43(8): 1905-1915, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34873317

RESUMEN

Virus-induced cell death has long been thought of as a double-edged sword in the inhibition or exacerbation of viral infections. The vital role of iron, an essential element for various enzymes in the maintenance of cellular physiology and efficient viral replication, places it at the crossroads and makes it a micronutrient of competition between the viruses and the host. Viruses can interrupt iron uptake and the antioxidant response system, while others can utilize iron transporter proteins as receptors. Interestingly, the unavailability of iron facilitates certain viral infections and causes cell death characterized by lipid peroxide accumulation and malfunction of the antioxidant system. In this review, we discuss how iron uptake, regulation and metabolism, including the redistribution of iron in the host defense system during viral infection, can induce ferroptosis. Fenton reactions, a central characteristic of ferroptosis, are caused by the increased iron content in the cell. Therefore, viral infections that increase cellular iron content or intestinal iron absorption are likely to cause ferroptosis. In addition, we discuss the hijacking of the iron regulatoy pathway and the antioxidant response, both of which are typical in viral infections. Understanding the potential signaling mechanisms of ferroptosis in viral infections will aid in the development of new therapeutic agents.


Asunto(s)
Ferroptosis , Virosis , Antioxidantes/metabolismo , Antioxidantes/uso terapéutico , Muerte Celular , Humanos , Hierro/metabolismo , Peroxidación de Lípido
19.
J Proteome Res ; 20(5): 2570-2582, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33821641

RESUMEN

In cross-linking mass spectrometry, the identification of cross-linked peptide pairs heavily relies on the ability of a database search engine to measure the similarities between experimental and theoretical MS/MS spectra. However, the lack of accurate ion intensities in theoretical spectra impairs the performance of search engines, in particular, on proteome scales. Here we introduce pDeepXL, a deep neural network to predict MS/MS spectra of cross-linked peptide pairs. To train pDeepXL, we used the transfer-learning technique because it facilitated the training with limited benchmark data of cross-linked peptide pairs. Test results on more than ten data sets showed that pDeepXL accurately predicted the spectra of both noncleavable DSS/BS3/Leiker cross-linked peptide pairs (>80% of predicted spectra have Pearson's r values higher than 0.9) and cleavable DSSO/DSBU cross-linked peptide pairs (>75% of predicted spectra have Pearson's r values higher than 0.9). pDeepXL also achieved the accurate prediction on unseen data sets using an online fine-tuning technique. Lastly, integrating pDeepXL into a database search engine increased the number of identified cross-link spectra by 18% on average.


Asunto(s)
Aprendizaje Profundo , Espectrometría de Masas en Tándem , Algoritmos , Redes Neurales de la Computación , Péptidos , Proteoma
20.
Langmuir ; 37(42): 12346-12355, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34648710

RESUMEN

Most researchers focus on the collision of a single droplet with a solid surface, while it is common for a droplet to collide with a sessile droplet on a solid surface in reality. This study performed the head-on collision of two nanodroplets on a solid surface using the molecular dynamics simulation method. The effects of impact velocity, interaction intensity between solid and liquid atoms, and the solid fraction of the surface on the collision process are studied with independent simulation cases. The maximum spreading factor and the dimensionless maximum spreading time are recorded and calculated to describe the collision process quantitatively. The simulation results indicate that the maximum spreading factor depends more on the solid fraction than the interaction intensity since it does not fundamentally change the wetting state of the droplet at its maximum spreading state. Because of two different effects, the maximum dimensionless spreading time decreases first and then increases with the interaction intensity, and both effects weaken with the increase of impact velocity. As the solid fraction increases, the maximum spreading factor increases significantly at high impact velocity, and the maximum dimensionless spreading time first decreases and then increases because the wetting state of the coalescent droplet at the maximum spreading moment gradually changes from the Wenzel state to the Cassie state. In general, the initial wetting state of the sessile droplet and the wetting state of the coalescent droplet at the maximum spreading moment have important effects on the maximum spreading factor and the maximum spreading time. We establish a theoretical prediction model for the maximum spreading factor on a smooth surface based on energy conservation with quite good accuracy. This research has improved our understanding of the head-on collision process of two nanodroplets on a solid surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA