Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37050733

RESUMEN

The early detection of fatal diseases is crucial for medical diagnostics and treatment, both of which benefit the individual and society. Portable devices, such as thermometers and blood pressure monitors, and large instruments, such as computed tomography (CT) and X-ray scanners, have already been implemented to collect health-related information. However, collecting health information using conventional medical equipment at home or in a hospital can be inefficient and can potentially affect the timeliness of treatment. Therefore, on-time vital signal collection via healthcare monitoring has received increasing attention. As the largest organ of the human body, skin delivers significant signals reflecting our health condition; thus, receiving vital signals directly from the skin offers the opportunity for accessible and versatile non-invasive monitoring. In particular, emerging flexible and stretchable electronics demonstrate the capability of skin-like devices for on-time and continuous long-term health monitoring. Compared to traditional electronic devices, this type of device has better mechanical properties, such as skin conformal attachment, and maintains compatible detectability. This review divides the health information that can be obtained from skin using the sensor aspect's input energy forms into five categories: thermoelectrical signals, neural electrical signals, photoelectrical signals, electrochemical signals, and mechanical pressure signals. We then summarize current skin-wearable health monitoring devices and provide outlooks on future development.


Asunto(s)
Piel , Dispositivos Electrónicos Vestibles , Humanos , Piel/diagnóstico por imagen , Electrónica , Monitoreo Fisiológico/métodos
2.
ACS Appl Mater Interfaces ; 15(28): 33797-33808, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37406185

RESUMEN

Healthcare systems worldwide have been stressed to provide sufficient resources to serve the increasing and aging population in our society. The situation became more challenging at the time of pandemic. Technology advancement, especially the adoption of wearable health monitoring devices, has provided an important supplement to current clinical equipment. Most health monitoring devices are rigid, however, human tissues are soft. Such a difference has prohibited intimate contact between the two and jeopardized wearing comfortableness, which hurdles measurement accuracy especially during longtime usage. Here, we report a soft and stretchable photodiode that can conformally adhere onto the human body without any pressure and measure cardiovascular variables for an extended period with higher reliability than commercial devices. The photodiode used a composite light absorber consisting of an organic bulk heterojunction embedded into an elastic polymer matrix. It is discovered that the elastic polymer matrix not only improves the morphology of the bulk heterojunction for obtaining the desired mechanical properties but also alters its electronic band structure and improves the electrical properties that lead to a reduced dark current and enhanced photovoltage in the stretchable photodiode. The work has demonstrated high fidelity measurements and longtime monitoring of heat rate variability and oxygen saturation, potentially enabling next-generation wearable photoplethysmography devices for point-of-care diagnosis of cardiovascular diseases in a more accessible and affordable way.


Asunto(s)
Nanocables , Dispositivos Electrónicos Vestibles , Humanos , Anciano , Polímeros/química , Fotopletismografía , Reproducibilidad de los Resultados , Semiconductores
3.
Adv Mater ; 33(48): e2102095, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34623708

RESUMEN

Halide perovskites have great potential for use in high-performance light-emitting diodes (LEDs) and displays. Here, a perovskite LEDs (PeLEDs) fabricated directly on an elastomer substrate, in which every single layer in the device from bottom anode to top cathode is patterned solely using a highly scalable inkjet printing process, is reported. Compared to PeLEDs made using conventional microfabrication processes, the printing process significantly shortens the fabrication time by at least tenfold (from over 5 h to less than 25 min). The all-printed PeLEDs have a novel 4-layer structure (bottom electrode, perovskite emissive layer, buffer layer, top electrode) without separate electron or hole transporting layers. For flexible PeLEDs printed directly in ambient conditions, a turn-on voltage, maximum luminance intensity, and maximum current efficiency of 3.46 V, 10227 cd m-2 , and 2.01 cd A-1 , respectively, is achieved. The devices also exhibit excellent robustness and stability even when bent to a curvature radius of 2.5 mm. The reported device structure and fabrication processes can enable high-performance flexible PeLEDs to be manufactured over a larger area at extremely low cost and fast speed, which can facilitate the adoption of the promising PeLED technology in the emerging foldable displays, smart wearables, and many other applications.

4.
Nanomaterials (Basel) ; 9(9)2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461887

RESUMEN

PbS quantum dots (QDs) are a promising nanostructured material for solar cells. However, limited works have been done to explore the active layer thickness, layer deposition techniques, stability improvement, and cost reduction for PbS QD solar cells. We address those issues of device fabrication herein and suggest their possible solutions. In our work, to get the maximum current density from a PbS QD solar cell, we estimated the optimized active layer thickness using Matlab simulation. After that, we fabricated a high-performance and low-cost QD photovoltaic (PV) device with the simulated optimized active layer thickness. We implemented this low-cost device using a 10 mg/mL PbS concentration. Here, spin coating and drop-cast layer deposition methods were used and compared. We found that the device prepared by the spin coating method was more efficient than that by the drop cast method. The spin-coated PbS QD solar cell provided 6.5% power conversion efficiency (PCE) for the AM1.5 light spectrum. Besides this, we observed that Cr (chromium) interfaced with the Ag (Cr-Ag) electrode can provide a highly air-stable electrode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA