Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Sci Technol ; 84(3): 737-751, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34388131

RESUMEN

The authors reported a potential candidate methylated mud snail protein (MeMsp) as an effective and eco-friendly flocculant to treat the high turbidity wastewater. MeMsp was obtained by extraction of mud snail protein (Msp) through isoelectric precipitation (PSC-IP) and then methylated via the esterification with side-chain carboxyl. Structural characterization of FT-IR, zeta potential and elemental analysis were carried out and further confirmed the successful of the methylation. Flocculation experiments with kaolin suspension simulated wastewater indicated that MeMsp-24 displayed more excellent flocculation efficiency at a low dosage. At the optimum dosage 27 mg/L, the maximum clarification efficiency of MeMsp-24 was 97.46% under pH 7.0. Furthermore, MeMsp-24 exhibited a wide flocculation window in the pH range 1.0-9.0, and faster sedimentation velocity and larger flocs size. In addition, MeMsp-24 exhibited 92.12% clarification efficiency in treating railway tunnel construction effluent. The flocculation kinetic and mechanism analysis revealed that the most effective particle collision occurred at the optimal dosage, with charge neutralization and adhesion playing irreplaceable roles in different environments, respectively. Therefore, through extraction and methylation modification, MeMsp could be a promising eco-friendly flocculant for high turbidity wastewater treatment.


Asunto(s)
Purificación del Agua , Animales , Floculación , Caolín , Caracoles , Espectroscopía Infrarroja por Transformada de Fourier
2.
Front Chem ; 8: 639045, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33490044

RESUMEN

[This corrects the article DOI: 10.3389/fchem.2020.00752.].

3.
Front Chem ; 8: 752, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088799

RESUMEN

Under the excitation of ultraviolet, X-ray, and mechanical stress, intense orange luminescence (Mn2+, 4T1 → 6A1) can be generated in Mn2+-doped SrZn2S2O crystal in orthorhombic space group of Pmn21. Herein, the multiple energy conversion in SrZn2S2O:Mn2+, that is, photoluminescence (PL), X-ray-induced luminescence, and mechanoluminescence, is investigated. Insight in luminescence mechanisms is gained by evaluating the Mn2+ concentration effects. Under the excitation of metal-to-ligand charge-transfer transition, the most intense PL is obtained. X-ray-induced luminescence shows similar features with PL excited by band edge UV absorption due to the same valence band to conduction band transition nature. Benefiting much from trap levels introduced by Mn2+ impurities, the quenching behavior mechanoluminescence is more like the directly excited PL from Mn2+ d-d transitions. Interestingly, this concentration preference leads to varying degrees of spectral redshift in each mode luminescence. Further, SrZn2S2O:Mn2+ exhibits a good linear response to the excitation power, which makes it potential candidates for applications in X-ray radiation detection and mechanical stress sensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA