Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33782122

RESUMEN

Ultrafast structural dynamics with different spatial and temporal scales were investigated during photodissociation of carbon monoxide (CO) from iron(II)-heme in bovine myoglobin during the first 3 ps following laser excitation. We used simultaneous X-ray transient absorption (XTA) spectroscopy and X-ray transient solution scattering (XSS) at an X-ray free electron laser source with a time resolution of 80 fs. Kinetic traces at different characteristic X-ray energies were collected to give a global picture of the multistep pathway in the photodissociation of CO from heme. In order to extract the reaction coordinates along different directions of the CO departure, XTA data were collected with parallel and perpendicular relative polarizations of the laser pump and X-ray probe pulse to isolate the contributions of electronic spin state transition, bond breaking, and heme macrocycle nuclear relaxation. The time evolution of the iron K-edge X-ray absorption near edge structure (XANES) features along the two major photochemical reaction coordinates, i.e., the iron(II)-CO bond elongation and the heme macrocycle doming relaxation were modeled by time-dependent density functional theory calculations. Combined results from the experiments and computations reveal insight into interplays between the nuclear and electronic structural dynamics along the CO photodissociation trajectory. Time-resolved small-angle X-ray scattering data during the same process are also simultaneously collected, which show that the local CO dissociation causes a protein quake propagating on different spatial and temporal scales. These studies are important for understanding gas transport and protein deligation processes and shed light on the interplay of active site conformational changes and large-scale protein reorganization.


Asunto(s)
Monóxido de Carbono/química , Simulación de Dinámica Molecular , Mioglobina/química , Animales , Bovinos , Hemo/química , Hemo/metabolismo , Hierro/química , Mioglobina/metabolismo , Unión Proteica
2.
J Am Chem Soc ; 145(34): 18977-18991, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37590931

RESUMEN

Fe K-edge X-ray absorption spectroscopy (XAS) has long been used for the study of high-valent iron intermediates in biological and artificial catalysts. 4p-mixing into the 3d orbitals complicates the pre-edge analysis but when correctly understood via 1s2p resonant inelastic X-ray scattering and Fe L-edge XAS, it enables deeper insight into the geometric structure and correlates with the electronic structure and reactivity. This study shows that in addition to the 4p-mixing into the 3dz2 orbital due to the short iron-oxo bond, the loss of inversion in the equatorial plane leads to 4p mixing into the 3dx2-y2,xy, providing structural insight and allowing the distinction of 6- vs 5-coordinate active sites as shown through application to the Fe(IV)═O intermediate of taurine dioxygenase. Combined with O K-edge XAS, this study gives an unprecedented experimental insight into the electronic structure of Fe(IV)═O active sites and their selectivity for reactivity enabled by the π-pathway involving the 3dxz/yz orbitals. Finally, the large effect of spin polarization is experimentally assigned in the pre-edge (i.e., the α/ß splitting) and found to be better modeled by multiplet simulations rather than by commonly used time-dependent density functional theory.


Asunto(s)
Electrónica , Hierro , Rayos X , Espectroscopía de Absorción de Rayos X , Teoría Funcional de la Densidad
3.
J Synchrotron Radiat ; 29(Pt 1): 67-79, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985424

RESUMEN

Soft X-ray spectromicroscopy at the O K-edge, U N4,5-edges and Ce M4,5-edges has been performed on focused ion beam sections of spent nuclear fuel for the first time, yielding chemical information on the sub-micrometer scale. To analyze these data, a modification to non-negative matrix factorization (NMF) was developed, in which the data are no longer required to be non-negative, but the non-negativity of the spectral components and fit coefficients is largely preserved. The modified NMF method was utilized at the O K-edge to distinguish between two components, one present in the bulk of the sample similar to UO2 and one present at the interface of the sample which is a hyperstoichiometric UO2+x species. The species maps are consistent with a model of a thin layer of UO2+x over the entire sample, which is likely explained by oxidation after focused ion beam (FIB) sectioning. In addition to the uranium oxide bulk of the sample, Ce measurements were also performed to investigate the oxidation state of that fission product, which is the subject of considerable interest. Analysis of the Ce spectra shows that Ce is in a predominantly trivalent state, with a possible contribution from tetravalent Ce. Atom probe analysis was performed to provide confirmation of the presence and localization of Ce in the spent fuel.

4.
Inorg Chem ; 61(48): 19119-19133, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36383429

RESUMEN

Facilitating photoinduced electron transfer (PET) while minimizing rapid charge-recombination processes to produce a long-lived charge-separated (CS) state represents a primary challenge associated with achieving efficient solar fuel production. Natural photosynthetic systems employ intermolecular interactions to arrange the electron-transfer relay in reaction centers and promote a directional flow of electrons. This work explores a similar tactic through the synthesis and ground- and excited-state characterization of two Cu(I)bis(phenanthroline) chromophores with homoleptic and heteroleptic coordination geometries and which are functionalized with negatively charged sulfonate groups. The addition of sulfonate groups enables solubility in pure water, and it also induces assembly with the dicationic electron acceptor methyl viologen (MV2+) via bimolecular, dynamic electrostatic interactions. The effect of the sulfonate groups on the ground- and excited-state properties was evaluated by comparison with the unsulfonated analogues in 1:1 acetonitrile/water. The excited-state lifetimes for all sulfonated complexes are similar to what we expect from previous literature, with the exception of the sulfonated heteroleptic complex whose metal-to-ligand charge-transfer (MLCT) lifetime in water has two components that are fit to 10 and 77 ns. For the sulfonated complexes, we detected reduced MV+• in both solvent environments following MLCT excitation, but control measurements in 1:1 acetonitrile/water with the unsulfonated analogues showed no PET to MV2+, indicating that electrostatically driven supramolecular assemblies of the sulfonated complexes with MV2+ facilitate the observed PET. Additionally, the strength of the intermolecular interactions driving the formation of these assemblies changes drastically with the solvent environment. In 1:1 acetonitrile/water, PET occurred from both sulfonated complexes with quantum yields (ΦET) of 2-3% but increased to a remarkable 98% for the sulfonated heteroleptic complex with a 3 µs CS-state lifetime in water.


Asunto(s)
Fenantrolinas , Agua , Ligandos , Solventes , Acetonitrilos
5.
Nat Mater ; 19(5): 517-521, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32015534

RESUMEN

Industrial processes prominently feature π-acidic gases, and an adsorbent capable of selectively interacting with these molecules could enable important chemical separations1-4. Biological systems use accessible, reducing metal centres to bind and activate weakly π-acidic species, such as N2, through backbonding interactions5-7, and incorporating analogous moieties into a porous material should give rise to a similar adsorption mechanism for these gaseous substrates8. Here, we report a metal-organic framework featuring exposed vanadium(II) centres capable of back-donating electron density to weak π acids to successfully target π acidity for separation applications. This adsorption mechanism, together with a high concentration of available adsorption sites, results in record N2 capacities and selectivities for the removal of N2 from mixtures with CH4, while further enabling olefin/paraffin separations at elevated temperatures. Ultimately, incorporating such π-basic metal centres into porous materials offers a handle for capturing and activating key molecular species within next-generation adsorbents.

6.
J Phys Chem A ; 125(40): 8891-8898, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34597043

RESUMEN

Interactions between metal centers in dimeric transition metal complexes (TMCs) play important roles in their excited-state energetics and pathways and, thus, affect their photophysical properties relevant to their applications, for example, photoluminescent materials and photocatalysis. Here, we report electronic and nuclear structural dynamics studies of two photoexcited pyrazolate-bridged [Pt(ppy)(µ-R2pz)]2-type Pt(II) dimers (ppy = 2-phenylpyridine, µ-R2pz = 3,5-substituted pyrazolate): [Pt(ppy)(µ-H2pz)]2 (1) and [Pt(NDI-ppy)(µ-Ph2pz)]2 (2, NDI = 1,4,5,8-naphthalenediimide), both of which have distinct ground-state Pt-Pt distances. X-ray transient absorption (XTA) spectroscopy at the Pt LIII-edge revealed a new d-orbital vacancy due to the one-electron oxidation of the Pt centers in 1 and 2. However, while a transient Pt-Pt contraction was observed in 2, such an effect was completely absent in 1, demonstrating how the excited states of these complexes are determined by the overlap of the Pt (dz2) orbitals, which is tuned by the steric bulk of the pyrazolate R-groups in the 3- and 5-positions. In tandem with analysis of the Pt-Pt distance structural parameter, we observed photoinduced electron transfer in 2 featuring a covalently linked NDI acceptor on the ppy ligand. The formation and subsequent decay of the NDI radical anion absorption signals were detected upon photoexcitation using optical transient absorption spectroscopy. The NDI radical anion decayed on the same time scale, hundreds of picoseconds, as that of the d-orbital vacancy signal of the oxidized Pt-Pt core observed in the XTA measurements. The data indicated an ultrafast formation of the charge-separated state and subsequent charge recombination to the original Pt(II-II) species.

7.
J Chem Phys ; 153(12): 124903, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33003752

RESUMEN

We report a study of chromophore-catalyst assemblies composed of light harvesting hexabenzocoronene (HBC) chromophores axially coordinated to two cobaloxime complexes. The chromophore-catalyst assemblies were prepared using bottom-up synthetic methodology and characterized using solid-state NMR, IR, and x-ray absorption spectroscopy. Detailed steady-state and time-resolved laser spectroscopy was utilized to identify the photophysical properties of the assemblies, coupled with time-dependent DFT calculations to characterize the relevant excited states. The HBC chromophores tend to assemble into aggregates that exhibit high exciton diffusion length (D = 18.5 molecule2/ps), indicating that over 50 chromophores can be sampled within their excited state lifetime. We find that the axial coordination of cobaloximes leads to a significant reduction in the excited state lifetime of the HBC moiety, and this finding was discussed in terms of possible electron and energy transfer pathways. By comparing the experimental quenching rate constant (1.0 × 109 s-1) with the rate constant estimates for Marcus electron transfer (5.7 × 108 s-1) and Förster/Dexter energy transfers (8.1 × 106 s-1 and 1.0 × 1010 s-1), we conclude that both Dexter energy and Marcus electron transfer process are possible deactivation pathways in CoQD-A. No charge transfer or energy transfer intermediate was detected in transient absorption spectroscopy, indicating fast, subpicosecond return to the ground state. These results provide important insights into the factors that control the photophysical properties of photocatalytic chromophore-catalyst assemblies.

8.
J Am Chem Soc ; 141(28): 11071-11081, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31268312

RESUMEN

A series of highly luminescent europium(III) complexes which exhibit photoluminescence from the Eu(III) center following energy transfer from the UV absorbing organic sensitizer have been investigated using a combination of ultrafast optical transient absorption and Eu L3 X-ray transient absorption techniques. We have previously demonstrated that the latter can be used as a signature of 4f-4f excitation responsible for the photoluminescence in these Eu(III) coordination complexes, but the long time scale of the earlier measurements did not allow direct observation of the ligand-to-metal energy transfer step, preventing a determination of the sensitization mechanism. Here, we provide the first direct experimental verification that Dexter electron exchange from the ligand triplet state is the dominant energy transfer mechanism in these photoluminescent systems. Moreover, the optical transient absorption results obtained herein imply that energy transfer for all three compounds has near unity yield, regardless of differences in the sensitization efficiencies, suggesting that the variations in the sensitization efficiencies are determined almost entirely by differences in the ligand-centered intersystem crossing rates. The implications for the rational design of more effective photoluminescent lanthanide complexes are discussed.


Asunto(s)
Complejos de Coordinación/química , Europio/química , Sustancias Luminiscentes/química , Transferencia de Energía , Ligandos , Espectrofotometría Ultravioleta , Espectroscopía de Absorción de Rayos X
9.
Coord Chem Rev ; 345: 182-208, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28970624

RESUMEN

Continual advancements in the development of synchrotron radiation sources have resulted in X-ray based spectroscopic techniques capable of probing the electronic and structural properties of numerous systems. This review gives an overview of the application of metal K-edge and L-edge X-ray absorption spectroscopy (XAS), as well as K resonant inelastic X-ray scattering (RIXS), to the study of electronic structure in transition metal sites with emphasis on experimentally quantifying 3d orbital covalency. The specific sensitivities of K-edge XAS, L-edge XAS, and RIXS are discussed emphasizing the complementary nature of the methods. L-edge XAS and RIXS are sensitive to mixing between 3d orbitals and ligand valence orbitals, and to the differential orbital covalency (DOC), that is, the difference in the covalencies for different symmetry sets of the d orbitals. Both L-edge XAS and RIXS are highly sensitive to and enable separation of and donor bonding and back bonding contributions to bonding. Applying ligand field multiplet simulations, including charge transfer via valence bond configuration interactions, DOC can be obtained for direct comparison with density functional theory calculations and to understand chemical trends. The application of RIXS as a probe of frontier molecular orbitals in a heme enzyme demonstrates the potential of this method for the study of metal sites in highly covalent coordination sites in bioinorganic chemistry.

10.
J Am Chem Soc ; 138(28): 8752-64, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27286410

RESUMEN

Photoexcited Nickel(II) tetramesitylporphyrin (NiTMP), like many open-shell metalloporphyrins, relaxes rapidly through multiple electronic states following an initial porphyrin-based excitation, some involving metal centered electronic configuration changes that could be harnessed catalytically before excited state relaxation. While a NiTMP excited state present at 100 ps was previously identified by X-ray transient absorption (XTA) spectroscopy at a synchrotron source as a relaxed (d,d) state, the lowest energy excited state (J. Am. Chem. Soc., 2007, 129, 9616 and Chem. Sci., 2010, 1, 642), structural dynamics before thermalization were not resolved due to the ∼100 ps duration of the available X-ray probe pulse. Using the femtosecond (fs) X-ray pulses of the Linac Coherent Light Source (LCLS), the Ni center electronic configuration from the initial excited state to the relaxed (d,d) state has been obtained via ultrafast Ni K-edge XANES (X-ray absorption near edge structure) on a time scale from hundreds of femtoseconds to 100 ps. This enabled the identification of a short-lived Ni(I) species aided by time-dependent density functional theory (TDDFT) methods. Computed electronic and nuclear structure for critical excited electronic states in the relaxation pathway characterize the dependence of the complex's geometry on the electron occupation of the 3d orbitals. Calculated XANES transitions for these excited states assign a short-lived transient signal to the spectroscopic signature of the Ni(I) species, resulting from intramolecular charge transfer on a time scale that has eluded previous synchrotron studies. These combined results enable us to examine the excited state structural dynamics of NiTMP prior to thermal relaxation and to capture intermediates of potential photocatalytic significance.


Asunto(s)
Metaloporfirinas/química , Electrones , Cinética , Modelos Moleculares , Conformación Molecular , Teoría Cuántica , Espectroscopía de Absorción de Rayos X
11.
Faraday Discuss ; 194: 639-658, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27711898

RESUMEN

This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(ii) tetramesitylporphyrin (NiTMP) were measured for optically excited states at a timescale from 100 fs to 50 ps, providing insight into its sub-ps electronic and structural relaxation processes. Importantly, a transient reduced state Ni(i) (π, 3dx2-y2) electronic state is captured through the interpretation of a short-lived excited state absorption on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of the electronic configuration on specific metal orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could influence d-orbital energies up to a few eV and any attempt to steer the reaction pathway should account for this to ensure that external energies can be used optimally in driving desirable processes. NiTMP structural evolution and the influence of the porphyrin macrocycle conformation on relaxation kinetics can be likewise inferred from this study.


Asunto(s)
Complejos de Coordinación , Electrones , Rayos Láser , Conformación Molecular , Porfirinas/química , Teoría Cuántica , Rayos X
12.
J Phys Chem A ; 120(38): 7475-83, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27569379

RESUMEN

Pyrazolate-bridged dinuclear Pt(II) complexes represent a series of molecules with tunable absorption and emission properties that can be directly modulated by structural factors, such as the Pt-Pt distance. However, direct experimental information regarding the structure of the emissive triplet excited state has remained scarce. Using time-resolved wide-angle X-ray scattering (WAXS), the excited triplet state molecular structure of [Pt(ppy)(µ-t-Bu2pz)]2 (ppy = 2-phenylpyridine; t-Bu2pz = 3,5-di-tert-butylpyrazolate), complex 1, was obtained in a dilute (0.5 mM) toluene solution utilizing the monochromatic X-ray pulses at Beamline 11IDD of the Advanced Photon Source. The excited-state structural analysis of 1 was performed based on the results from both transient WAXS measurements and density functional theory calculations to shed light on the primary structural changes in its triplet metal-metal-to-ligand charge-transfer (MMLCT) state, in particular, the Pt-Pt distance and ligand rotation. We found a pronounced Pt-Pt distance contraction accompanied by rotational motions of ppy ligands toward one another in the MMLCT state of 1. Our results suggest that the contraction is larger than what has previously been reported, but they are in good agreement with recent theoretical efforts and suggest the ppy moieties as targets for rational synthesis aimed at tuning the excited-state structure and properties.

13.
J Am Chem Soc ; 137(30): 9670-84, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26154849

RESUMEN

Copper(I) diimine complexes have emerged as low cost replacements for ruthenium complexes as light sensitizers and electron donors, but their shorter metal-to-ligand-charge-transfer (MLCT) states lifetimes and lability of transient Cu(II) species impede their intended functions. Two carboxylated Cu(I) bis-2,9-diphenylphenanthroline (dpp) complexes [Cu(I)(dpp-O(CH2CH2O)5)(dpp-(COOH)2)](+) and [Cu(I)(dpp-O(CH2CH2O)5)(dpp-(Φ-COOH)2)](+) (Φ = tolyl) with different linker lengths were synthesized in which the MLCT-state solvent quenching pathways are effectively blocked, the lifetime of the singlet MLCT state is prolonged, and the transient Cu(II) ligands are stabilized. Aiming at understanding the mechanisms of structural influence to the interfacial charge transfer in the dye-sensitized solar cell mimics, electronic and geometric structures as well as dynamics for the MLCT state of these complexes and their hybrid with TiO2 nanoparticles were investigated using optical transient spectroscopy, X-ray transient absorption spectroscopy, time-dependent density functional theory, and quantum dynamics simulations. The combined results show that these complexes exhibit strong absorption throughout the visible spectrum due to the severely flattened ground state, and a long-lived charge-separated Cu(II) has been achieved via ultrafast electron injection (<300 fs) from the (1)MLCT state into TiO2 nanoparticles. The results also indicate that the TiO2-phen distance in these systems does not have significant effect on the efficiency of the interfacial electron-transfer process. The mechanisms for electron transfer in these systems are discussed and used to develop new strategies in optimizing copper(I) diimine complexes in solar energy conversion devices.

14.
J Am Chem Soc ; 136(24): 8804-9, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24875220

RESUMEN

Determining the electronic and geometric structures of photoexcited transient species with high accuracy is crucial for understanding their fundamental photochemistry and controlling their photoreactivity. We have applied X-ray transient absorption spectroscopy to measure the XANES and EXAFS spectra of a dilute (submillimolar) solution of the osmium(II) polypyridyl complex [Os(bpy)2dcbpy](PF6)2 (dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) (OsL2L') in methanol at the Os LIII edge. We have obtained spectra of superb quality for both the ground state and the photoinduced (3)MLCT excited state that have allowed us not only to extract detailed information about the Os 5d orbitals but also to resolve very small differences of 0.010 ± 0.008 Å in the average Os-N bond lengths of the ground and excited states. Theoretical calculations using a recently developed DFT-based approach support the measured electronic structures and further identify the nature of the molecular orbitals that contribute to the main absorption bands in the XANES spectra.

15.
Inorg Chem ; 53(15): 8071-82, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-25029381

RESUMEN

Cobaloximes are popular H2 evolution molecular catalysts but have so far mainly been studied in nonaqueous conditions. We show here that they are also valuable for the design of artificial hydrogenases for application in neutral aqueous solutions and report on the preparation of two well-defined biohybrid species via the binding of two cobaloxime moieties, {Co(dmgH)2} and {Co(dmgBF2)2} (dmgH2 = dimethylglyoxime), to apo Sperm-whale myoglobin (SwMb). All spectroscopic data confirm that the cobaloxime moieties are inserted within the binding pocket of the SwMb protein and are coordinated to a histidine residue in the axial position of the cobalt complex, resulting in thermodynamically stable complexes. Quantum chemical/molecular mechanical docking calculations indicated a coordination preference for His93 over the other histidine residue (His64) present in the vicinity. Interestingly, the redox activity of the cobalt centers is retained in both biohybrids, which provides them with the catalytic activity for H2 evolution in near-neutral aqueous conditions.


Asunto(s)
Hidrogenasas/química , Compuestos Organometálicos/química , Catálisis , Dicroismo Circular , Cobalto/química , Electroquímica , Espectroscopía de Resonancia por Spin del Electrón , Simulación del Acoplamiento Molecular , Espectrofotometría Ultravioleta
16.
J Phys Chem A ; 118(45): 10497-506, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25015003

RESUMEN

In this study, ultrafast optical transient absorption and X-ray transient absorption (XTA) spectroscopy are used to probe the excited-state dynamics and structural evolution of copper(I) bicinchoninic acid ([Cu(I)(BCA)2](+)), which has similar but less frequently studied biquinoline-based ligands compared to phenanthroline-based complexes. The optical transient absorption measurements performed on the complex in a series of polar protic solvents demonstrate a strong solvent dependency for the excited lifetime, which ranges from approximately 40 ps in water to over 300 ps in 2-methoxyethanol. The XTA experiments showed a reduction of the prominent 1s → 4pz edge peak in the excited-state X-ray absorption near-edge structure (XANES) spectrum, which is indicative of an interaction with a fifth ligand, most likely the solvent. Analysis of the extended X-ray absorption fine structure (EXAFS) spectrum shows a shortening of the metal-ligand bond in the excited state and an increase in the coordination number for the Cu(II) metal center. A flattened structure is supported by DFT calculations that show that the system relaxes into a flattened geometry with a lowest-energy triplet state that has a dipole-forbidden transition to the ground state. While the short excited-state lifetime relative to previously studied Cu(I) diimine complexes could be attributed to this dark triplet state, the strong solvent dependency and the reduction of the 1s → 4pz peak in the XTA data suggest that solvent interaction could also play a role. This detailed study of the dynamics in different solvents provides guidance for modulating excited-state pathways and lifetimes through structural factors such as solvent accessibility to fulfill the excited-state property requirements for efficient light harvesting and electron injection.

17.
J Phys Chem Lett ; 15(19): 5250-5258, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38722188

RESUMEN

Chemical transformations in charge transfer states result from the interplay between electronic dynamics and nuclear reorganization along excited-state trajectories. Here, we investigate the ultrafast structural dynamics following photoinduced electron transfer from the metal-metal-to-ligand charge transfer state of an electron donor, a Pt dimer complex, to a covalently linked electron acceptor group using ultrafast time-resolved wide-angle X-ray scattering and optical transient absorption spectroscopy methods to disentangle the interdependence of the excited-state electronic and nuclear dynamics. Following photoexcitation, Pt-Pt bond formation and contraction takes up to 1 ps, much slower than the corresponding process in analogous complexes without electron acceptor groups. Because the Pt-Pt distance change is slow with respect to excited-state electron transfer, it can affect the rate of electron transfer. These results have potential impacts on controlling electron transfer rates via structural alterations to the electron donor group, tuning the charge transfer driving force.

18.
Inorg Chem ; 52(4): 1860-71, 2013 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-23383971

RESUMEN

Upon electrochemical oxidation of the precursor complexes [Cp*Ir(H(2)O)(3)]SO(4) (1) or [(Cp*Ir)(2)(OH)(3)]OH (2) (Cp* = pentamethylcyclopentadienyl), a blue layer of amorphous iridium oxide containing a carbon admixture (BL) is deposited onto the anode. The solid-state, amorphous iridium oxide material that is formed from the molecular precursors is significantly more active for water-oxidation catalysis than crystalline IrO(2) and functions as a remarkably robust catalyst, capable of catalyzing water oxidation without deactivation or significant corrosion for at least 70 h. Elemental analysis reveals that BL contains carbon that is derived from the Cp* ligand (∼ 3% by mass after prolonged electrolysis). Because the electrodeposition of precursors 1 or 2 gives a highly active catalyst material, and electrochemical oxidation of other iridium complexes seems not to result in immediate conversion to iridium oxide materials, we investigate here the nature of the deposited material. The steps leading to the formation of BL and its structure have been investigated by a combination of spectroscopic and theoretical methods. IR spectroscopy shows that the carbon content of BL, while containing some C-H bonds intact at short times, is composed primarily of components with C═O fragments at longer times. X-ray absorption and X-ray absorption fine structure show that, on average, the six ligands to iridium in BL are likely oxygen atoms, consistent with formation of iridium oxide under the oxidizing conditions. High-energy X-ray scattering (HEXS) and pair distribution function (PDF) analysis (obtained ex situ on powder samples) show that BL is largely free of the molecular precursors and is composed of small, <7 Å, iridium oxide domains. Density functional theory (DFT) modeling of the X-ray data suggests a limited set of final components in BL; ketomalonate has been chosen as a model fragment because it gives a good fit to the HEXS-PDF data and is a potential decomposition product of Cp*.

19.
J Phys Chem A ; 117(39): 9807-13, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23697577

RESUMEN

The molecular and electronic structures of the transient intermediates generated from the photolysis of trirutheniumdodecacarbonyl, Ru3(CO)12, by ultrafast UV (351 nm) laser excitation were investigated using X-ray transient absorption (XTA) spectroscopy. The electronic configuration change and nuclear rearrangement after the dissociation of carbonyls were observed at ruthenium K-edge X-ray absorption near edge structure and X-ray absorption fine structure spectra. Analysis of XTA data, acquired after 100, 200, and 400 ps and 300 ns time delay following the photoexcitation, identified the presence of three intermediate species with Ru3(CO)10 being the most dominating one. The results set an example of applying XTA in capturing both transient electronic and nuclear configurations in metal clusters simulating catalysts in chemical reactions.

20.
J Phys Chem A ; 116(9): 1984-92, 2012 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-22292857

RESUMEN

The metal-to-ligand-charge-transfer (MLCT) excited state of Cu(I) diimine complexes is known to undergo structural reorganization, transforming from a pseudotetrahedral D(2d) symmetry in the ground state to a flattened D(2) symmetry in the MLCT state, which allows ligation with a solvent molecule, forming an exciplex intermediate. Therefore, the structural factors that influence the coordination geometry change and the solvent accessibility to the copper center in the MLCT state could be used to control the excited state properties. In this study, we investigated an extreme case of the steric hindrance caused by attaching bulky tert-butyl groups in bis(2,9-di-tert-butyl-1,10-phenanthroline)copper(I), [Cu(I)(dtbp)(2)](+). The two bulky tert-butyl groups on the dtbp ligand lock the MLCT state into the pseudotetrahedral coordination geometry and completely block the solvent access to the copper center in the MLCT state of [Cu(I)(dtbp)(2)](+). Using ultrafast transient absorption spectroscopy and time-resolved emission spectroscopy, we investigated the MLCT state property changes due to the steric hindrance and demonstrated that [Cu(I)(dtbp)(2)](+) exhibited a long-lived emission but no subpicosecond component that was previously assigned as the flattening of the pseudotetrahedral coordination geometry. This suggests the retention of its pseudotetrahedral D(2d) symmetry and the blockage of the solvent accessibility. We made a comparison between the excited state dynamics of [Cu(I)(dtbp)(2)](+) with its mono-tert-butyl counterpart, bis(2-tert-butyl-1,10-phenanthroline)copper(I) [Cu(I)(tbp)(2)](+). The subpicosecond component assigned to the flattening of the D(2d) coordination geometry in the MLCT excited state was again present in the latter because the absence of a tert-butyl on the phenanthroline allows flattening to the pseudotetrahedral coordination geometry. Unlike the [Cu(I)(dtbp)(2)](+), [Cu(I)(tbp)(2)](+) exhibited no detectable emission at room temperature in solution. These results provide new insights into the manipulation of various excited state properties in Cu diimine complexes by certain key structural factors, enabling optimization of these systems for solar energy conversion applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA